
SIAM J. SCl. COMPUT.
Vol. 15, No. 2, pp. 359-368, March 1994

() 1994 Society for Industrial and Applied Mathematics
008

GMRES/CR AND ARNOLDI/LANCZOS AS MATRIX APPROXIMATION
PROBLEMS*

ANNE GREENBAUM AND LLOYD N. TREFETHEN

Abstract. The GMRES and Arnoldi algorithms, which reduce to the CR and Lanczos algorithms in the symmetric
case, both minimize p(A)b over polynomials p of degree n. The difference is that p is normalized at z 0 for
GMRES and at z x for Arnoldi. Analogous "ideal GMRES" and "ideal Arnoldi" problems are obtained if one
removes b from the discussion and minimizes p(/l)II instead. Investigation of these true and ideal approximation
problems gives insight into how fast GMRES converges and how the Arnoldi iteration locates eigenvalues.
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1. Introduction. Since the 1950s it has been recognized that matrix iterative methods
are naturally connected with approximation theory. The most familiar connections are be-
tween polynomial approximation and the numerous iterative methods that make use of Krylov
subspaces, including the Richardson, Chebyshev, conjugate gradient, biconjugate gradient,
CGNR, GMRES, CGS, Bi-CGSTAB, and QMR iterations. Sometimes rational approxima-
tion problems also arise, notably in the analysis of ADI iterations, circulant-preconditioned
Toeplitz iterations, and Krylov subspace algorithms via Pad6 approximation. Recent refer-
ences on these matters include [4], [8], [16], [25].

The approximation problems that are discussed in the linear algebra literature almost
invariably involve scalar functions defined on subsets of the complex plane or, if the matrix
.4 is symmetric, the real axis. The set in question is the spectrum A (.4) or an estimate of the
spectrum. If .4 is normal, such reductions are sometimes exact in the sense that the behavior
of the matrix iteration is determined exactly by the properties of the approximation problem.
If .4 is not normal, however, they are always approximate. GMRES, for example, does not
exactly solve any known approximation problem in the complex plane, when .4 is not normal.
Between the approximation problem and the convergence of the matrix iteration there is a
gap of size x(V), the condition number of a matrix of eigenvectors of .4. When x(V) is
large, predictions based on the approximation problem may have little bearing on the actual
convergence of the matrix algorithm 16], [25].

The purpose of this paper is to explore a different kind of approximation problem that
can also be associated with iterative linear algebra, involving matrices instead of scalars.
Instead of asking how small a polynomial p(z) can be on the set A (.4), we ask how small the
norm p(.4) can be. Matrix approximation questions are implicit in much of the literature of
matrix iterations; we certainly do not claim to be the first to consider them. However, they have
received no discussion in print that we are aware of. We believe it is important to investigate
these problems if one’s goal is an understanding of matrix iterations that does not depend
upon hidden assumptions of near-normality. At the same time, the consideration of matrix
approximation problems preserves a familiar feature of scalar approximation problems, the
removal from the analysis of the effects of the starting vector. Since most of the phenomena
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of greatest interest in iterative linear algebra depend mainly on the matrix, not the starting
vector, this is a valuable simplification for most applications.

We shall concentrate on two algorithms for nonsymmetric matrix problems: GMRES,
which solves systems of equations Ax b, and Arnoldi, which computes eigenvalues of A.
Our matrix approximation analogues of these processes are called the "ideal GMRES" and
"ideal Arnoldi" problems. Mathematically, the new result presented here is a proof of the
existence and uniqueness of ideal GMRES and Arnoldi approximants. (Existence is trivial,
but uniqueness is surprisingly tricky.) In the final section we propose five questions whose
answers might further advance our understanding of matrix iterations.

2. GMRES and Arnoldi. Throughout this paper N and n < N are integers, A is an
N x N matrix, b is an N-vector, I1" is the 2-norm, and

Pn {polynomials of degree < n with p(0) },

pn {monic polynomials of degree n }.

The difference between Pn and pn is that P is normalized at z 0 and pn at z cxz.
GMRES [4], [23] is an algorithm that solves the following approximation problem suc-

cessively for n 1, 2, 3
GMRES APPROXIMATION PROBLEM. Find p, Pn such that

(1) p,(A)b minimum.

An equivalent statement is

(1’) b (Ab, A2b Anb),

where "y V" denotes the problem of finding the best approximation with respect to
to the point y in the space V. This characterization of GMRES is well known. To explain it
one notes that GMRES finds a vector xn in the Krylov subspace 1Cn < b, Ab An-1 b >
such that the residual rn b Axn has minimal norm over all x 6/Cn. This vector xn can
be represented in the form xn q (A)b for some polynomial q (z) of degree n 1, and (1)
comes upon writing rn p,(A)b with p,(z) 1 zq(z) Pn"

The Arnoldi iteration 1 ], [4], [20]-[22] is an algorithm that solves the analogous problem
involving pn instead of Pn"

ARNOLDI APPROXIMATION PROBLEM Find p* pn such that

(2) P* (A) b minimum.

Equivalently,

(2’) Anb (b, Ab An-lb).
The vector b is no longer the right-hand side of a system of equations, but an arbitrary initial
vector. This characterization is also known, but perhaps not as widely known as it should
be. It can be readily proved as a consequence of the usual formulation of the Arnoldi process
in terms of orthogonality. The Arnoldi iteration "finds p*" in the sense that it constructs a
Hessenberg matrix Hn of which p* is the characteristic polynomial.

1Nothing essential changes if we take N cx and let A be a bounded operator.
aWe have assumed that the initial guess for the iteration is x 0. Arbitrary initial guesses can be handled by

an easy modification.
3See Theorem of [22]. The symmetric (Lanczos) case of this result was stated by Lanczos himself 11, p. 34]

and also appears as Corollary 12-3-7 of 18], unfortunately with a typographical error.
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If A is real and symmetric, the GMRES and Arnoldi iterations reduce to the conjugate
residual (CR) and Lanczos iterations, respectively. Everything said in this paper about GMRES
applies also to CR, and everything said about Arnoldi applies also to Lanczos.

A comparison of (1) and (2) suggests that from an approximation point of view, the
difference between the GMRES and Arnoldi algorithms is slight. This analogy is rarely
brought out in accounts of these algorithms, partly for historical reasons and partly because
the usual applications of the two algorithms are different. Whereas GMRES is applied to solve
systems of equations Ax b, so that (1) comes quickly to mind as a description of it, the
Arnoldi iteration is traditionally thought of as a method for estimating eigenvalues of A. The
"Arnoldi eigenvalue estimates’’4 at step n are the eigenvalues of Hn, that is, the roots of p*.
But what the Arnoldi iteration actually does is solve (2); its connection with eigenvalues is
indirect and approximate.

The formulations (1) and (2) provide elegant proofs of certain well-known properties of
the GMRES and Arnoldi iterations. For example, one sees immediately from (1) and (2) that
both of these iterations are essentially invariant under changes of scale (A ot A, ot 6 C) and
under unitary similarity transformations (A -+ UAU*, U* U-l). The Arnoldi iteration is
also translation-invariant (A -- A + ot I, oe 6 C), since x is translation-invariant, but GMRES
is not, since 0 is not 11 ]. In these statements and throughout this paper, we ignore the effects
of rounding errors.

3. Ideal GMRES and ideal Arnoldi. The GMRES and Arnoldi iterations depend on
the starting vector b. However, one may remove b from the discussion and pose the following
"ideal" approximation problems.

IDEAL GMRES APPROXIMATION PROBLEM. Find q. Pn such that

(3) q, (A) minimum.

Equivalently,

(3’) I (A, A2 An).

IDEAL ARNOLDI APPROXIMATION PROBLEM. Find q* pn such that

(4) q (A) minimum.

That is,

(4’) A (I, A An-l).

Whereas (1) and (2) are vector approximation problems, (3) and (4) involve matrices. Proce-
dures for computing these polynomials, either actual or in our imaginations, might be called
ideal GMRES and ideal Arnoldi algorithms. Some computations of this kind are discussed in

6.
We believe that studying these idealized problems may be a fruitful way to gain insight

into the properties of Krylov subspace iterations in linear algebra. Our reasoning is as follows.
The behavior ofa GMRES or Arnoldi iteration is determined by two things: A and b. However,
though the special properties of b are occasionally important, more often the features that one
cares about do not differ very much from one choice of b to another. It is the properties of A

4The roots of p* are Ritz values of A with respect to the Krylov subspace (2 ’). The roots of p, have been called
"pseudo-Ritz values" [4] and "roots of kernel polynomials" [14]. The Ritz values lie in the field of values of ,4, and
the pseudo-Ritz values lie in the inverse of the field of values of A- 1; see 14].
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that usually decide between an iteration that converges in 10 steps and one that requires 100
or 1000 (which in practice means it is time to look for a better preconditioner). By passing
from (1)-(2) to (3)-(4) we disentangle this matrix essence of the process from the distracting
effects of the initial vector and end up with a pair of elegant mathematical problems in the
bargain.

The solutions to (1)-(2) and (3)-(4) are related by the following bounds. The proof of
this theorem is easy; the four inequalities follow from the minimality properties (1), (3), (2),
and (4), respectively.

THEOREM 1. The true and ideal GMRES polynomials are related by

(5)
Ilp,(A)bll

<_ q,(A)ll _< IIp,(A)II,
Ilbll

and the true and ideal Arnoldi polynomials ate related by

(6) P* (A) b _< q* (A)II _< P* (A)II.
Ilbll

These two pairs ofbounds are identical in form, but from the point ofview of applications,
the nature of the relationship between (4) and (2) is quite different from that between (3) and
(1). The purpose of GMRES is to solve (1), not (3). The relevance of (3) is that it gives an
upper bound on how slow the convergence may be, thanks to (5), and if the right-hand side b
is "random enough," one may expect that this bound may be close to sharp. For an Amoldi
iteration aimed at estimating eigenvalues, the logic is reversed. One can take the view that the
essence of the process by which an Arnoldi iteration locates eigenvalues is the solution not of
(2) but of (4). The iteration solves (2) because that is what is computationally tractable, but the
implicit hope is that if b is "random enough," the solution to (2) will be agood approximation
to the solution to (4). It would be interesting to investigate how this point of view can be
related to the existing theory of convergence of the Arnoldi iteration as developed by Saad
[20], [22].

The ideal Amoldi polynomial q* might be called the degree n Chebyshev polynomial of
A, in analogy to the notion in approximation theory of a Chebyshev polynomial of a subset
of the complex plane, which is a monic polynomial that achieves minimal sup-norm on that
set. Another way to view q* is as a pseudo-annihilating polynomial for A, i.e., a monic
polynomial that maps A to a matrix of norm 0. According to the usual definition, an
annihilating polynomial is a polynomial that annihilates A exactly. This is a fragile concept,
however, ill posed with respect to perturbations of A and with little quantitative force. Krylov
subspace iterations in numerical linear algebra are founded on the observation that for practical
purposes, a pseudo-annihilating polynomial with parameter 10-10 or 10-2o is as useful
as an exact annihilating polynomial and may be of vastly lower degree,

4. The special case when A is normal. When A is normal, problems (1)-(4) reduce to
standard problems of approximation theory. For any vector b we have

N

p(A)b cojp()j)vj, coj vf. b,
j=l

where {;j} and {vj} are a set of eigenvalues and corresponding orthonormal eigenvectors of
A, and therefore

p(A) b Icoj IP()j)

5See Chapter 16 of [9]. This analogy becomes an identity if A is normal; see 4.
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Thus the Amoldi and GMRES problems (1)-(2) are equivalent to weighted least-squares
approximation problems in the complex plane: find an appropriately normalized polynomial
p(z) that has minimal weighted 2-norm on A(A) with respect to the discrete weight function

{Io)jl2}. As for the ideal Amoldi and GMRES problems (3)-(4), the identity

IIP(A) sup IP())I
6A(A)

(for normal matrices only) shows that they are are equivalent to Chebyshev approximation
problems in the complex plane: find a polynomial that has minimal supremum norm on A (A).
In particular, the ideal Amoldi polynomial q, is exactly the same as the Chebyshev polynomial
for the set A (A), mentioned in the last section.

Both weighted least-squares and Chebyshev approximation problems in the complex
plane are well understood and discussed in many books. Existence and uniqueness of best
approximations are easily proved (we defer a precise statement to the next section). In the
Chebyshev case the computation ofbest approximations can be carried out by various methods
such as linear programming, variations ofthe Remes algorithm, the Lawson algorithm, or other
ideas; see [24] and the references therein. In the least-squares case the computation of best
approximants is a matter of routine linear algebra. One can use a QR decomposition, for
example, and that is exactly what GMRES does.

There are two reasons to pay special attention to the case in which A is normal. First,
some matrices are normal or close enough to normal that the results one obtains are some-

times applicable in practice. In particular, the CR and Lanczos iterations fall in this category
since symmetric matrices are normal. Second, most people’s intuitions about the behavior of
matrices are based on the normal case [26]. By studying how the normal case differs from the
general case we obtain a valuable check on our intuitions.

5. Existence and uniqueness. We return now to problems (1)-(4) for matrices A that
are arbitrary, i.e., not necessarily normal. The most fundamental questions to be asked about
(1)-(4) are those of existence and uniqueness. For (1) and (2) the answers to both are straight-
forward and well known. For (3) and (4), existence is straightforward but uniqueness is not.
So far as we are aware, though this seems surprising, the uniqueness of the solutions to (3)
and (4) is a new result.

THEOREM 2. The optimal polynomials p,, p*, q,, q* all exist. Provided that the minima
in (1)-(4) are nonzero, and provided in the cases of GMRES and ideal GMRES that A is

nonsingular, they are unique.
Proof. Consider the formulations (1’)-(4’). In each case we have a problem of the form

y V, where V is a finite-dimensional subspace of a vector space W and y 6 W. (For (1)
and (2), V and W are spaces of N-vectors, whereas for (3) and (4) they are spaces of N N
matrices; generically we can speak of "vectors" in either case.) Existence of a closest point
v 6 V to y follows by a standard compactness argument that can be found in any book on

approximation theory. See, for example, [2, p. 20] or [13, p. 17].
The question of uniqueness of the polynomials p,, p*, q,, q* can be divided into two

parts:
(a) Is the closest point v 6 V to y unique?
(b) Does it have a unique representation as a linear combination of the n vectors indicated

in (1’)-(4’)?
Part (b) can be dispatched as follows. What we have to show is that the n vectors in

question are linearly independent. Consider first the ideal Amoldi problem (4’), and suppose
to the contrary that I, A An-1 are linearly dependent. Then by multiplying by a power of
A ifnecessary we can find a linear combination ofthem that is zero and in which the coefficient
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of An-1 is nonzero. Thus An-1 E (I, A An-2), which implies An (A, A2 An-l)
and therefore q* (A) 0, contradicting the assumption that the minimum in (4) is nonzero.
An analogous argument applies to (2 ’). For the GMRES problem (3 t), suppose A, A2 An

are linearly dependent, which by a similar argument implies A (A, A2 An-l) and thus
again q*(A)[I 0. If the constant term of q* is nonzero, then dividing by that constant term
yields a properly normalized GMRES polynomial q, with q, (A)[[ 0. On the other hand
if the constant term is zero, then since A is nonsingular we can multiply by A-1 one or more
times until it becomes nonzero. An analogous argument applies to (1’).

This brings us to part (a) of the proof of uniqueness. For problems (1’) and (2 t) the
uniqueness of v follows by another standard result in approximation theory, since the vector
norm 11. is strictly convex. See, for example, [2, p. 23] or [13, p. 17]. The matrixnorm [[. 1[,
however, is not strictly convex, and, in general, matrix best approximation problems posed in
this norm do not have unique solutions [6], [27]. The following proof of uniqueness for (3 ’)
and (4’) depends on the special property that these problems concern approximation by matrix
polynomials, not by arbitrary linear combinations of matrices.

Consider first the ideal Arnoldi problem (4). Suppose that q and q2 are two distinct
solutions to (4), and let the minimal norm they attain be

Ilql(A) l[- Ilq2(A)II- C.

If we define q (z) (ql (z) + q2 (z)), then q (A) _< C, so we must have q (A) C since
q and q2 are minimal. Let w wj be a set of maximal right singular vectors for q(A),
i.e., a set of orthonormal vectors with

Ilq(A)wjll C, 1 <_ j < J,

with J as large as possible. For each wj we must have

Ilql(A)wjll [Iqz(A)wjll C

and

ql (A)wj q2(A)wj,

for otherwise, by the strict convexity of the vector norm I[, we would have q (A) wj < C.
Thus

(q2 ql)(A)wj O, < j < J.

Now since (q2 q l)(z) is not identically zero, we can multiply it by a scalar and a suitable
power of z to obtain a monic polynomial Aq pn such that

Aq(A)wj- O, 1 < j < J.

For e 6 (0, 1), consider now the polynomial q, pn defined by the convex linear combination

q (z) (1 e)q (z) + e Aq (z).

If wj+ WN denote the remainder of a set of N singular vectors of q(A), with corre-
sponding singular values C > rj+ > > o-N 0, then we have

IIq,(A)wj [ (1 )C

/ (1 )rj/ / Aq(A)II

(1 <j< J),

(J+I<j<N).
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The first row is < C for arbitrary , and the second row is < C for sufficiently small e, since
orj+ < C. Since the singular vectors w wN form an orthonormal basis for RN, this
implies that q, (A)II < C for sufficiently small e, contradicting the assumption that qa and
q2 are minimal.

For the ideal GMRES problem (3), the argument is the same except that from q2 ql we
need to construct Aq 6 Pn rather than Aq 6 pn. If the constant term of q2 ql is nonzero,
we do this by dividing by that term. If it is zero, we make use of the assumption that A is
nonsingular and multiply by a suitable power of z-1 q

6. Computations. If A is normal, the ideal Arnoldi and GMRES polynomials q* and
q, are simply Chebyshev polynomials for the set A (A), as noted in 4, and can be computed
by various algorithms. If A is not normal, however, we know of no simple algorithm that is
guaranteed to compute q* and q,. For simplicity, from now on we shall consider the ideal
GMRES polynomial q,; our remarks carry over straightforwardly to the ideal Arnoldi problem.

We have found that in many cases, q, can be computed by using an optimization code to
determine an initial vector b, with [Ib 1, for which P, (A) b is maximal at the prescribed
step n. From Theorem we have

(7) ItP,(A)bll < IIq,(A)ll < IIP,(A)II

for any b with Ilbll 1. If a choice of b can be found for which ]lp,(A)bll IIp,(A)II, it
follows that p, q,. It is not known whether such a b always exists, but we conjecture that
it does (see the first question of the next section). Maximizing the left-hand side of (7) seems
to be easier in practice than minimizing the right-hand side, presumably because the latter
problem is nonsmooth. We have carried out our computations using the Matlab optimization
routine fra+/-nu [15] coupled with a GMRES subprogram to compute IlP,(A)bll for a given
vector b. Although several attempts with different initial guesses b are often required for the
optimization code to succeed, it usually does so eventually.

Figure 1 illustrates the behavior of the ideal vs. true GMRES polynomials by a simple
example--a matrix ofLenferink and Spijker 12], [26]. This is a nonnormal tridiagonal matrix
of the form zr+/-d+/-ag((i + 1) -1, -3 2i, + 1), 1 N. For the Lenferink-Spijker
matrix of order N 16, we computed the ideal GMRES polynomials q, of degree 1 through
15 as well as the true GMRES polynomials p, for five different random initial vectors. The
thick curve in the figure represents the norms Ilq,(A)II as a function of n, and the thinner
curves represent P, (A) b for the various vectors b. The GMRES curves lie below the ideal
GMRES curve, as they must, but exhibit qualitatively the same shape. Our experiments have
not been sufficiently extensive to draw conclusions about how GMRES and ideal GMRES
convergence curves compare in general.

It is interesting to note that while the norm of the ideal GMRES polynomial for this
problem decreases strictly monotonically, this does not always happen. For many problems,
q, (A)II remains exactly equal to 1 for a number of steps before it begins to decrease. The

case n 1 of this phenomenon is fully understood: one can show that q, (A)I[ < at step
if and only if the field of values of A lies in an open half-plane with respect to the origin

in C (see [3] and [16, 6]). For some problems, Ilq,(A)II 1 for steps 1 through N 1.
This happens frequently with random matrices, for example. For such problems there is a
right-hand side vector b for which the GMRES algorithm makes no progress whatsoever until
step N.

A difference we have observed between the ideal GMRES polynomials for normal and
nonnormal matrices is the following. If A is normal, then q,(A) must have at least n + 1 equal
maximal singular values. This follows from the fact that the degree n Chebyshev polynomial
for a set in the complex plane always takes on its maximum-absolute value in at least n + 1
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FIG. 1. Convergence curves for the 16 x 16 Lenferink-Spijker matrix. The upper curve corresponds to ideal
GMRES and the lower curves to standard GMRES withfive different random initial vectors b.

distinct points. In contrast, when A is not normal, our experiments indicate that after the initial
phase with q, (A) just mentioned, q, (A) usually has only one maximal singular value.

7. Open questions. Our work on ideal GMRES and Arnoldi approximations has raised
more questions than it has answered. We shall close with a list of five questions that we consider
particularly interesting. In each of the following, A is a matrix, b is a vector-normalized by
Ilbll 1, and the convergence curve is the curve of IIP,(A)bll or IIq,(A) as a function of
the step number n. The questions are posed for GMRES, but they all have Arnoldi analogues.

1. Is the envelope attained? Theorem asserts that the GMRES convergence curve
lies below the ideal GMRES convergence curve, as illustrated in Fig. 1. Given n, does
there exist an initial vector b such that these two curves intersect at step n, i.e., such that
Ilp,(A)bll ]lq,(A)]] .9 Theanswer is known to be yes for symmetric matrices [5] and
more generally for normal matrices [6], [10], and for arbitrary matrices at step n [6],
[10]. It is also yes in the "generic" nonnormal case in which the maximal singular value of
q, (A) is simple. Whether it is yes in all cases is not known. If it is, then the ideal GMRES
convergence curve can be described as the upper envelope of the GMRES convergence curves
corresponding to all initial vectors b.

2. How close is the average case to the worst case? Assuming that the envelope is attained
in the sense above, there is still the question of how closely the GMRES and ideal GMRES
convergence curves agree for typical starting vectors. If A is normal, it is easily argued that
two agree typically to within a factor on the order of /. We do not know what can be said
for general A.

3. What convergence curves are possible? At step n, q, (A)II must be at least as small
as minl<k<n-1 IIQk(A)II [[qn-k(A)II, where q denotes the ideal GMRES polynomial for A at
step k. Geometrically this means that the ideal GMRES convergence curve is convex when
plotted on a logarithmic scale. Are all convergence curves that satisfy this convexity constraint
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possible? If not, how can one characterize those convergence curves that are possible?
4. Can any matrix be simulated by a normal matrix? Short of a full characterization of

convergence curves, one may naturally ask if the possibilities for normal matrices are more
restricted than for nonnormal matrices. In other words, are there convergence curves that can
only be generated by a nonnormal matrix? For standard GMRES the answer has recently
been proved to be no; any sequence p,(A)b as a function of n can be duplicated by another
sequence p,(A)b where A is normalmin fact, unitary [7]. For ideal GMRES, the answer
is unknown.

5. Is there a variant of Lawson’s algorithm for ideal GMRES approximation? In our

experience the "brute force" use of a general optimization program such as frn+/-nu to compute
p,, as described in the last section, is neither efficient nor reliable. As an alternative we have
found that one can sometimes maximize the left-hand side of (7) by means of an iteration
modeled on Lawson’s algorithm, which is a method of iteratively reweighted least squares
that has been proved convergent for problems of scalar L approximation [19]. We have
obtained good results this way in many cases, but have not succeeded in developing a method
of this kind that converges consistently (and consequently we will not provide details here).
Can a matrix variant of Lawson’s algorithm with guaranteed convergence be devised for the
ideal GMRES problem?

Acknowledgments. We are happy to acknowledge discussions with Michael Overton,
who showed us how the ideal Arnoldi and GMRES problems relate to more general problems
of minimization of singular values of functions of matrices 17].
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