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CALCULATION OF PSEUDOSPECTRA BY THE ARNOLDI ITERATION*

KIM-CHUAN TOHt AND I,LOYD N. TREFETHEN

Abstract. The Amoldi iteration, usually viewed as a method for calculating eigenvalues, can also be used to
estimate pseudospectra. This possibility may be of practical importance, because in applications involving highly
nonnormal matrices or operators, such as hydrodynamic stability, pseudospectra may be physically more significant
than spectra.
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1. Introduction. Large-scale nonsymmetric matrix eigenvalue problems, which typi-
cally arise via discretization of non-self-adjoint differential or integral operators, are com-
monly solved numerically by the Arnoldi iteration and its variants [1], [8], [18], [25]. In
this paper we explore the possibility that the Arnoldi iteration can also be used for the esti-
mation of pseudospectra. Such an idea was first proposed by Nachtigal, Reichel, and Tre-
fethen [17] and Freund [7], and methods much closer to those of the present paper have
been presented by Ruhe in talks at the Householder (1993) and St. Girons (1994) symposia
on linear algebra [23]. Recent developments indicate that in some applications, the pseu-
dospectra of a matrix or operator may be more significant physically than its spectrum (see
7). Since calculation of pseudospectra is much more expensive than calculation of spec-
tra, this suggests that it may be desirable to develop methods for determining them itera-
tively.

The idea investigated here is that the pseudospectra of a matrix A can be approximated
by those of the Hessenberg matrices constructed by an Arnoldi iteration. In the version of
this paper originally submitted for publication [30], we made use of the n x n Hessenberg
matrices H (see the next section for definitions). However, Tom Manteuffel recommended
to us that it might be advantageous to consider instead the (n + 1) x n Hessenberg matrices
n, as is done, for example, in [13]. Meanwhile, this is also the idea that Axel Ruhe has
been investigating. In the end we have decided to present experiments here for both H,
and ,,, while giving greater attention to the latter. For the examples we have computed,
the distinction between the two makes little difference in practice, but has theoretical
advantages (monotonic convergence) and also conceptual appeal, because it bypasses the
usual consideration of Ritz values or "Arnoldi eigenvalue estimates." Thus we find ourselves
exploring a new way of interpreting approximations not only of pseudospectra but also of
spectra, one that may be of interest even in the special case of the Lanczos iteration for
symmetric matrices.

For any e > 0, the e-pseudospectrum of a matrix A is defined by

(1) A(A) {z e C" II(zI A)-lll

with the convention il(zl A)-lll c if z A(A), the spectrum of A [32]. If I1" is the
2-norm, an equivalent definition is
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(2) A(A) {z C trmin(ZI A) < e},

where O’min (zl A) denotes the smallest singular value of zI A. Either definition makes
it clear that the pseudospectra of a matrix are a family of nested subsets of C, with Ao(A)
A(A). They can be computed most straightforwardly by evaluating Crmin(ZI A) on a grid of
values in the complex z-plane, then sending the result to a contour plotter. S.-H. Lui has shown
that this straightforward algorithm can be speeded up by a factor of five to ten by a preliminary
reduction of A to Hessenberg form followed by inverse iteration combined with continuation
12]. Variants of this procedure involve triangular instead of Hessenberg reduction or Lanczos

instead of inverse iteration. Such ideas apply to our matrices Hn and n as well as A, and
thus have little bearing on the relative speedup to be gained via Arnoldi iterations, so we shall
not give details.

If A is normal (has a complete set of orthogonal eigenvectors), then A,(A) is just the
closed e-neighborhood of A(A), but if A is far from normal, A(A) may be much larger.
These are the cases where difficulties are likely to arise if one tries to use the spectrum A(A)
to estimate quantities such as IIAn II, lieta II, or f(A)II, Better estimates can often be obtained
from the pseudospectra using methods such as Cauchy integrals, the Laplace transform, or the
Kreiss matrix theorem [21 ], [32]-[34].

2. The Arnoldi iteration. Let A be a real or complex rn x rn matrix, and let denote
the 2-norm. A complete unitary reduction of A to upper Hessenberg form might be written
A QHQ* or A Q QH. The idea of the Arnoldi iteration is to compute the successive
steps of this reduction columnwise, starting from the condition that the first column of Q is a
prescribed vector ql with ]lql 1. Let Qn be the rn n matrix whose columns are the first
n columns of Q,

(3) Qn ql q2 qn

and let ,, be the (n + 1) x n upper-left section of H,

h21 h22
(4) H, "-. "..

hn,n-1

hln

hnn
hn+l,n

Then we have

(5) A Qn Qn+l In,
and the nth column of this equation can be written Aq,, hlnql +... + h,,,,q,, + hn+l,,,q,,+ x.
The Arnoldi iteration is the modified Gram-Schmidt iteration that implements this (n+ 1)-term
recurrence relation:
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q arbitrary (11 ql 1)
forn 1,2,3

v Aqn
for j 1 to n

hjn qfv
v v hjnqj

hn+l,n
qn+l V/ hn+l,

The vectors {qj form orthogonal bases of the successive Krylov subspaces generated by A
and ql,

](’n (ql, Aql An-lql) (ql, q2 qn) -- Urn"

As a practical matter the iteration can be implemented with the aid of a "black box" procedure
for computing the matrix-vector products Aq,,, which can be designed to take advantage of
sparsity or other structure of A.

The product Q Qn+l is equal to the n x (n + 1)identity, i.e., the n x (n + 1)matrix
with 1 on the main diagonal and 0 elsewhere. Therefore Q* Q+I,, is the n x n Hessenberg
matrix obtained by removing the last row of ,,
(6) Hn

hll hln
hzl hzz

hn,n-1 hnn
From (5) we can accordingly derive the formula

(7) Hn Q, A Qn.

Though they differ in only one row, Hn and nn are entirely different objects. To highlight
the difference, it is helpful to extend/-, to the m x n matrix , consisting of the first n
columns of H:

(8) Rn

’hll hln ’h21 hzz

0

hn,n-1 nn

hn+l,n
0

o)

The matrices n and , are identical except for the presence of rn (n + 1) additional rows
of zeros in the latter, and thus they have, for example, the same rank, norm, and singular values.
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We can interpret Hn and n as follows. With respect to the basis {ql, q2 }, ,, represents
the action of A on/Cn, whereas H,, represents the same operation followed by an orthogonal
projection back into/C. Since the domain and range of H are the same, it makes sense to
speak of the eigenvalues of H; but since has distinct domain and range, it does not make
sense to speak of its eigenvalues.

3. Estimation of pseudospectra and numerical range. We propose that in many cases,
for sufficiently large n, some of the pseudo_spectra of A can be reasonably approximated by
the corresponding pseudospectra of Hn or Hn"
(9) A(A) , A,(Hn) , A,(Hn).

For n << m, the computation of A,(H) or A, (,,) will be O((m/n)3) times faster than that
of A,(A). Note that in considering A,(Hn), we are dealing with the e-pseudospectmm of
a rectangular matrix. This set can be defined just as for square matrices by (1), with I now
denoting a rectangular version of the identity and (zl A)-1 denoting the pseudoinverse.
Equivalently, it can be defined by (2). As far as we know, pseudospectra of rectangular
matrices have not been discussed before. However, the smallest singular value of Hn has been
considered in work by Meza, for example, on iterative solution of ill-conditioned systems of
equations 16].

We are not aware of very satisfactory theorems to justify the approximation
A,(H). On the other hand the approximations A,(A) A,(I) converge monotonically
(cf. (3.21) of [16] and Thm. 3.1 of [13]).

THEOREM 1. Let an m x m matrix A be unitarily similar to a Hessenberg matrix H, and
let In denote the (n + 1) n section (4). (In particular, tn might be computed by an Arnoldi
iteration, with arbitrary restarts in case a zero subdiagonal element hn+l,n is encountered.)
Thenfor any z we have

(10) O’min(zI I 1) -> O’min (ZI /-2) --> O’min (ZI /’3) --> --> O’min (zl A),

and, consequently, for any e > O,

(11) A,(I)
__

h,(/-2)
__

he(/-3)
__ __

A,(A).

Proof. Since zl In and zI In differ only by rows. of zeros, they have the same

singular values, and we may replace n in (10) by/n" Since zI A and zl H are unitarily
similar, they too have the same singular values, and we may replace A in (10) by H. Since

is simply the first n columns of H, (10) now follows directly from the characterization

Crmin(A) minllxll=l IIAxll. By (2), this implies (11).
It is interesting to compare Theorem with the more familiar interpretation of Amoldi

and Lanczos iterations. Conventionally, a set of n Ritz values are considered at step n, and
one is faced with the problem of estimating how close they may be to eigenvalues of A. In
Theorem 1, there are no Ritz values. However, it may be noted that Ritz values can be defined
as the points z at which O’min (zl nn) achieves a local minimum (namely, zero). An analogue
for the rectangular case would be to consider the points at which O’min (zl Iln) achieves a
local minimum. It follows from (10) that this minimum value will be equal to zero if and only
if z is an eigenvalue of A corresponding to an eigenvector that lies in the Krylov subspace

Besides pseudospectra, it is well known that an Arnoldi iteration also may provide esti-
mates of the numerical range (= field of values) of A, which we denote by W(A). Now it is

Hn that we most naturally make use of:

(12) W(A) W(nn).
gain we have monotonic convergence (cf. Thm. 3.1 of [13]).
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THEOREM 2. Let A and H be as in Theorem 1, and let Hn denote the n x n section (6).
Then

(13) W(H1) __. W(H2) c_ W(H3) __...._ W(A).

Proof. This is aneasy consequence ofthe definition W(A) {x*Ax Ilxll 1}.

4. Numerical experiments. We now turn to numerical examples computed in MATLAB.
Consider first the m m "Kahan matrix"

(14) A

1 -c -c -c c

s -sc -sc

s2 _$2c _$2c

o

sm-1

where Sm-1 0.1 and s2 + c2 1. Matrices of this type were proposed by Kahan to
illustrate that QR factorization with column pivoting is not a fail-safe method of numerical
rank determination [8], 11 ]. Pseudospectra of this matrix, for m 32, were plotted in [32].

In Fig. 1, we take m 64 and consider Arnoldi approximations A(Hn) to A(A) with
n 5, 10, 15, 20. At each of these steps, the figure shows the approximate numerical range
and the e-pseudospectra for e 10-1, 10-2, 10-3, 10-4 In this and all of our numerical
experiments, the initial vector q is random (independent normally distributed entries).

To the eye, at least, the convergence of A(Hn) to A(A) in Fig. 1 is compelling. At
n 5, the Arnoldi iteration has not learned much of value, but by n 10, recognizable
approximations have begun to emerge. At n 20 the approximations are excellent. Since the
cost of an SVD grows cubically with the dimension of the matrix, and 1000 or more SVDs
are involved in making one of these plots, calculations of pseudospectra even for these small
matrices can be time-consuming, and if n 64 can be replaced by n 20, the savings will
be a factor of around 30.

Note that, as is typical in cases of extreme nonnormality, the convergence of the eigenval-
ues of H,, to those of A in Fig. is slow. The eigenvalues are too ill conditioned to be easily
resolved. This is just the sort ofproblem where eigenvalues are likely to be of limited physical
significance and where pseudospectra may provide a useful alternative. For a discussion of the
physical significance of pseudospectra, including transient evolution phenomena, the effect of
small perturbations, and the notion of "pseudo-resonance" in highly nonnormal systems, see
[34].

Figure 2 shows the same computation, for the same matrix, exceptnow the approximations
are based on the rectangular Hessenberg matrix ,. Broadly speaking, the approximations
are about as good as in Fig. 1. Notice that there are no longer any Ritz values in the plot,
which might be considered conceptually advantageous. On the other hand, in dealing with a
matrix whose behavior was close to normal in some parts of the complex plane and far from
normal in others, it might certainly be convenient to have Ritz values.

Not every matrix behaves as nicely as in Figs. 1 and 2. In Fig. 3 we consider the 64 64
"Grcar matrix," a Toeplitz matrix with 1 on the subdiagonal and 1 on the main diagonal and
on the first three superdiagonals. This time, Arnoldi approximations based on H,, at steps 10,
20, 30, and 40 are plotted, and only at n 40 is reasonable convergence of the pseudospectra
beginning to be evident. Although (40/64)3 0.24 is still substantially less than 1, this is
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FIG. 1. e-pseudospectra ofthe 64 x 64 Kahan matrix (14) compared with those offour Arnoldi approximations

Hn ( 10-1 10-2, 10-3, 10-4). The upper halfofeach plot corresponds to A(Hn), and the lower halfto A(A).
The dashed curves represent an analogous comparison of the numerical ranges W(Hn) and W(A). The small dots
are the eigenvalues of A in the lower half-plane (hard to distinguish; they appear like a solid interval on the real
axis), and the small circles are the eigenvalues of Hn in the upper half-plane (Ritz values). The real and imaginary
axes are marked by ticks in each plot; the axis limits are 1.8 < 97z < 1.8, 1.8 < z < 1.8.

a case where there is probably little to be gained in approximating AE(A) by/E(/-n) (or
A (Hn), whose performance is about the same).

Figures 2 and 3 represent two of the thirteen examples of highly nonnormal matrices
considered in [32]. We have plotted Arnoldi approximations to pseudospectra for all of these
and find that the Kahan matrix exhibits the best convergence and the Grcar matrix among the
worst. Based on these examples alone, one would probably conclude that the Arnoldi approach
to calculation of pseudospectra holds some promise but is not completely convincing.

However, the matrices of [32] are not typical of the large-scale problems that arise in
practice. For these special matrices, selected for their dramatic pseudospectra, the nonnor-
mality is such that all m eigenvalues are strongly coupled to one another. In applications, it
is more typical for a small number of eigenvalues to be dominant and not strongly coupled to
the others, with the behavior of the pseudospectra in the vicinity of these eigenvalues being of
primary interest. In such cases Arnoldi approximations may perform better.
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n5.. ---- ..\ n= !0 \\
/ \

\iiI \

//I /111
n=15 \\\ n=20 \\

I
FI. 2. Same as Fig. 1, but now the curves in the upper, half of each plot correspond to A(ISln) instead of

A(Hn). Since the Ritz values have no simple connection to Hn, they are no longer shown. The dashed curves still
correspond to W Hn and W A).

Figure 4 presents an example ofthis kind. Here A is the 64 x 64 bidiagonal matrix defined
by

(15) ak,k+ ag,g k- /2.

We can think of this as a prototype of a highly nonnormal compact operator and imagine that
it is the behavior of the spectrum and pseudospectra away from the origin that is of interest.
The convergence in this part of the complex plane is excellent. Moreover, it would be nearly
as fast even if rn were much larger than 64. For an example like this, the payoff in estimating
pseudospectra iteratively could be huge.

5. Modified Arnoldi iterations. The large-scale matrices that arise most often in appli-
cations are of a kind different from all of our examples so far. These are discretizations of
differential operators, which are not compact. As in Fig. 4, it is the behavior near a few leading
eigenvalues that is of greatest interest, but the rest of the spectrum will typically extend to o
in the complex plane.
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n=10

n=30

I \

\

n =40

FIG. 3. Same as Fig. 2, exceptfor the pentadiagonal Grcar matrix ofdimension m 64. The axis limits are
-3 < Rz < 4,-3.5 < z < 3.5.

It is well known that a pure Arnoldi iteration may be ineffective in cases of this kind. As
an example, consider another bidiagonal matrix defined by

(16) ak,k =-0.3k, ak,k+ 1.

Here the spectral and pseudospectral behavior near the origin should be largely unaffected
by whether the dimension is 64 or 64,000. A pure Arnoldi iteration will have difficulty
nonetheless, and the difficulty will increase with the dimension. This is illustrated in Fig. 5a,
with rn 64, where we see quite disappointing convergence to the pseudospectra near z 0.

Solutions to this problem have been proposed by a number of authors. One approach is
to suppress the part of the spectrum far from the origin by an ancillary linear process such
as a Chebyshev iteration or some other polynomial filter. Such ideas have been investigated
by Chatelin and her colleagues and by Saad, Scott, Sorensen, and others [6], [9], [17], [24],
[25], [27], [29]. A more powerful possibility, when it is feasible, is to modify the problem
with the use of matrix inverses, in effect working with rational functions of A rather than
just ’polynomials. Variations on this theme go by names such as shift-and-invert Arnoldi and
rational Krylov iteration, and have been investigated by Ruhe, Saad, and Spence, among others
15], [22], [23], [25]. To be effective, such methods depend on the assumption that inverting
A (i.e., solving a system Ax b) is cheaper than the computation of main interest. This
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n=10

/

n=15

/

n=20

FIG. 4. Same as Fig. 2 butfor the bidiagonal matrix (15), a prototype ofa compact operator. The axis limits
are-0.3 _< tz _< 1.6,-0.95 _< z _< 0.95.

assumption is satisfied by many sparse eigenvalue problems, since sparsity can often be better
taken advantage of for systems of equations than eigenvalues. It is amply satisfied in many
calculations of pseudospectra, since these computations are even more expensive. Finally, an
intermediate class of acceleration methods is based on preconditioning the eigenvalue problem
by inverses not of A itself but of more easily inverted approximations M A. This is the
idea behind Davidson’s method [4], [5] and related methods developed more recently by
Meerbergen, Van der Vorst, and others [14], [25], [28].

We shall not attempt a systematic comparison of the uses for estimating pseudospectra of
the various acceleration and preconditioning methods that have been proposed. Instead, we
shall consider just the simplest modified Arnoldi process to give an idea of the great speedups
that may be achieved by these methods. Figure 5b is a repetition ofFig. 5a in which the Arnoldi
iteration has been replaced by an "inverse Arnoldi" iteration carried out with A-1 instead of
A. This entails a solution of a system of equations involving A at each step, but this is a minor
matter since A is bidiagonal. The result is a Hessenberg matrix H that approximates A-1,
and it is the pseudospectra of Hn-1 that we plot as approximations to those of A. Since Hn-1
is square, the plot also shows its eigenvalues.

Figure 5b shows excellent agreement of/k(nn-1) and A,(A). Evidently the inverse-
Arnoldi idea is highly effective for this problem. We take this as illustrative of the kind
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n=5 n=15

FIG. 5A. Same as Fig. 2 butfor the bidiagonal matrix (16), a prototype ofan unbounded operator. The axis
limits are-2 <_ 9z <_ 0.4,- 1.2 <_ z _< 1.2.

n=5 n=15

FIG. 5B. Repetition ofFig. 5a with the Arnoldi iteration replaced by an inverse-Arnoldi iteration based on A-1

instead of A. The plot shows pseudospectra and eigenvalues ofH

n=5

/

// \\

/

n=15

FIG. 5C. Repetition ofFig. 5a with the Arnoldi iteration replaced by aprojection ofA onto the invariant subspace
associated with the n eigenvalues ofmaximal real part.
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of gains that may be achieved by acceleration techniques in cases where A is invertible at
reasonable cost. More sophisticated algorithms of this kind (based on n, not just Hn) are
currently under development by Ruhe [23].

6. Projection onto an invariant subspace. There is another, more elementary, trick that
we must not fail to mention. The calculation of pseudospectra is expensive, much more so
than the calculation of a single eigenvalue decomposition. It follows that when the latter is
affordable, much may be gained by simply calculating an eigenvalue decomposition of A, then
projecting it onto the subspace of Cm spanned by certain eigenvectors. In typical applications
these might be the eigenvectors associated with a subset of eigenvalues of A of maximal real
part. This idea may be useful even when no Arnoldi iterations are in store; it is used, for
example, in [20].

The mechanics of such a projection are as follows. We have already noted after (8) that if
Q is an rn x n matrix with orthonormal columns, then Q*A Q represents the projection of A
onto the column space of Q. Suppose now that we start with an rn x n matrix V whose columns
are selected eigenvectors ofA, satisfying AV VD for some n x n diagonal eigenvalue matrix
D. If V QR is a QR decomposition of V, with Q of dimension rn x n and R of dimension
n x n, then we have Q*V R and Q VR-1 and therefore

(17) Q*AQ- Q*AVR-1-- Q*VDR-1- RDR-1.

Thus RDR-1 (upper triangular) is the matrix representation of the projection of A onto the
subspace spanned by the selected eigenvectors.

Figure 5c illustrates that for the example (16), this eigenvalue projection idea gives highly
accurate pseudospectra. Despite its triviality, this trick can save a great deal of work. For
example, an eigenvalue decomposition of a matrix of dimension 300 is a straightforward
matter, whereas computing pseudospectra of such a matrix is a major project on most machines
available today. If the dimension can be reduced to 30 by eigenvalue projection, the calculation
of pseudospectra becomes easy.

Figure 6, following the format of Fig. 5, presents a less contrived example. Consider the
convection-diffusion operator

(18) /u u" + u’, u(O) u(d) 0

acting on the interval [0, d (in the Hilbert space L2[0, d ]). The spectrum of this operator is a
discrete, unbounded subset ofthe negative real axis, but, as discussed in [21 ], the pseudospectra
are large regions in the left half-plane shaped approximately like parabolas. Taking d
40, suppose we want to determine these pseudospectra in the neighborhood of the origin
determined by the axis limits in Fig. 6. As discussed in [21], an efficient procedure is to
construct a discretization matrix A based on Chebyshev spectral differentiation (we omit
details). Unfortunately, for an accurate picture, the dimension of A has to be on the order
of 100, making the calculation of the pseudospectra quite time-consuming, and if we wanted
results in a larger region of the complex plane, matters would get worse. The figure shows
that the inverse-Arnoldi idea works reasonably wellhere. Since A is dense, the eigenvalue
projection idea is even better, and with n 40 it produces a perfect picture with ten times less
computing than would be involved in treating the full matrix with rn 100.

The dashed curves in Fig. 6, corresponding to the boundary of the numerical range, are
worth a comment. Note that in Figs. 6b and 6c, we appear to have convincing convergence of
the numerical range estimates in the upper half of the plot, but no dashed mirror image appears
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(a) n=20 \ n =40

(b) n=20 n =40

(c) n=20 =40

FIG. 6. Same as Fig. 5, but for a 100 x 100 Chebyshev spectral approximation to the convection-diffusion
operator (18). The axis limits are -5 < z < 1, -3 < z < 3.

in the lower half. The explanation is that the actual 100 x 100 spectral differentiation matrix
considered here has some huge "outlier" eigenvalues of size 1.2 x 104. These eigenvalues are
artifacts of the discretization, with no relevance to the convection-diffusion operator Z, but
they make the numerical range of A much larger than the axis scales of the figure. Thus the
numerical range estimates in the upper half of Fig. 6 are no good at all, strictly speaking, for
the matrix A being approximated. As it happens, however, they are excellent approximations
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to the numerical range of the operator/. This stroke of good fortune is more than just
coincidence, but of course one would have to be cautious about counting on such effects in
applications.

For larger problems than those illustrated in this paper, a combination of the Arnoldi
iteration and eigenvalue projections might be advantageous. A matrix of dimension 5000,
for example, might be projected to dimension 100 by the Arnoldi iteration, whereupon an
eigenvalue decomposition might be used to project further to a matrix of dimension 50, whose
pseudospectra could then be plotted quickly by the methods proposed by Lui [12]. In such
a sequence, the speedup over a naive calculation of pseudospectra might be on the order of
many thousands.

7. Discussion. In this paper we have proposed that the iterative algorithms that have
been developed for calculating spectra of large matrices may also be useful for estimating
pseudospectra. If the matrix is a sparse approximation of a differential operator, the gains to
be achieved by rational variants of the Arnoldi algorithm may be very great. If the matrix is
dense, other acceleration devices may play a role, and surprisingly good results can be achieved
by the simple method of computing the eigenvalue decomposition of A, then projecting onto
an invariant subspace associated with a subset of the eigenvalues.

We have made no attempt to explain why our methods approximate pseudospectra as well
as they do, beyond the lower bound on A(A) of Theorem 1. An upper bound on A, (A) has
been developed by Ruhe [23], but it appears to be far from sharp in practice.

It should be emphasized that the idea of using Arnoldi iterations for purposes more
general than the calculation of eigenvalues is not new. The Arnoldi iteration potentially has
relevance in all kinds of matrix problems where A is too big to deal with directly, but where
there is reason to expect that the essential behavior can be captured by a low-dimensional
projection. The example that has received the most attention is the use of Krylov subspaces to
approximate eta [6], 10], [26]. Ofcourse, the approximation ofpseudospectra is not unrelated
to the approximation of eta, since the ultimate purpose of estimating pseudospectra is often
to obtain better insight into the behavior of lieta than the spectrum alone provides.

In closing, we would like to make two remarks.
Our first observation concerns the uses of Arnoldi iterations and the uses of spectra. The

examples of this paper have shown that in cases of pronounced nonnormality, the behavior
of a Krylov subspace iteration may be more closely tied to the pseudospectra of a matrix or
operator than to its spectrum. A curious parallel of this statement is the recent discovery that
in applications involving pronounced nonnormality, what is ultimately of physical interest
may also be tied more closely to the pseudospectra than to the spectrum. In particular this
is true of problems of hydrodynamic instability of fluid flows in a pipe or a channel, where
traditional eigenvalue methods fail to explain the instabilities that are observed in practice,
but pseudospectra do much better [2], [3], [19], [31], [34]. In our view, these two parallel
statements about spectra andpseudospectra form a natural pair. In highly nonnormal problems,
the Arnoldi iteration may indeed not be effective at determining eigenvalues, but we should
not wish it to be. The information that it does acquire may be deeper and more valuable. It will
be interesting to see whether this vision of broader uses of Arnoldi iterations in applications
comes to fruition in upcoming years.

Our second remark is addressed to all those who use nonsymmetric Krylov subspace
iterations or who produce software for such computations. For the present, due to the great
variety of iterations and preconditioners that have been found to be useful, computations ofthis
kind almost invariably involve an element of exploration. We believe that such explorations
can be carded out far more effectively if the user habitually produces plots, not just numbers.
Such plots might show Ritz values, lemniscates, pseudospectra of Hn, pseudospectra of H,,,
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eigenvalues ofperturbed matrices, or other things--tastes differ, and at this time no one choice
seems clearly superior to all others. But we firmly believe it is a mistake to plot nothing at all,
or to plot nothing but Ritz values. The habit of looking at plots leads almost unconsciously to
new questions and new understanding. Matrices and operators have personalities, which may
be revealed with surprising economy by a few curves on the computer screen.
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