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In the past five years, working largely independently, five groups of researchers have proposed
low-dimensional models of the behavior of parallel shear flows at high Reynolds numbers. These
models are compared, and it is found that they are more similar than their authors have recognized.
Among other similarities, most of them exhibit a threshold amplitudee 5 O(Ra) asR→` for some
a,21, whereR is the Reynolds number, for perturbations of the laminar state that may excite
transition to turbulence. The reason for this behavior in each case is an interaction of non-normal
linear effects with quadratic nonlinearities. ©1997 American Institute of Physics.
@S1070-6631~97!00304-8#
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I. INTRODUCTION

Certain laminar fluid flows undergo transition to turb
lence in a manner that cannot be explained by traditio
linear stability theory. Incompressible flow in a circular pip
is the simplest example, and plane Couette flow, betw
two parallel plates moving relative to one another, is anoth
Such flows are stable to infinitesimal perturbations, rega
less of the Reynolds numberR, yet if R is high enough, they
invariably become turbulent. Resolving this paradox is
longstanding problem of fluid mechanics.1

The resolution that we and many others favor is as
lows. For any fixedR, it is true that no infinitesimal pertur
bation of the laminar flow can excite transition to turbulen
If R is large, however, a finite perturbation of exceeding
low amplitude may be enough to excite transition. Spec
cally, let us definee to be the minimum amplitude of al
disturbances that may excite transition~measured in the en
ergy norm!. In the past five years, evidence based on sim
models and on Navier–Stokes simulations has been mo
ing that for the flows of interest,e may shrink rapidly as
R→`. For a given flow geometry, it may be expected thae
andR will be related by a law approximately of the form

e5O~Ra! ~1!

asR→`. In Ref. 2 it was conjectured that for plane Coue
and related flows,~1! holds for somea strictly less than21.
Numerical simulations have subsequently borne out this c
jecture, suggesting threshold exponents at least as low
approximately25/4 for plane Couette flow and27/4 for
plane Poiseuille flow.3–5 ~In the latter case the number refe
to transition by routes unrelated to the linear Tollmie
Schlichting instability.!

The organizing principle of this paper is the question

‘‘What is the threshold exponenta for transition to
turbulence?’’ ~* !

In this phrasing of the problem, we intend fora to represent

a!Present address: Center for Turbulence Research, Stanford Unive
Stanford, California 94305.
Phys. Fluids 9 (4), April 1997 1070-6631/97/9(4)/1043/11/

Downloaded¬02¬Nov¬2007¬to¬129.67.149.59.¬Redistribution¬subject¬
al

n
r.
-

a

l-

.

-

le
nt-

n-
as

-

the minimal exponent such that~1! is satisfied.@If the rela-
tionship of e andR is more complicated than just a powe
law, involving logarithms or other complications,a can be
defined as the greatest lower bound of all exponents
which ~1! holds.# Of course, the threshold exponents m
differ for different flow geometries. Our explanation of th
phenomenon of subcritical transition is that for the geo
etries where this phenomenon occurs,a is substantially less
than 0, making laminar flows at high Reynolds numbers
practice unstable, since even the most careful laboratory
periment must introduce some small finite perturbations
the ideal flow.

The idea that the limits to stability may diminish a
R→` is an old one, going back at least to Lord Kelvin
1887.6 On the other hand, the formulation of this idea
terms of threshold exponents, so far as we know, first
peared in Ref. 2. In that paper, the conjecturea,21 was
motivated by a simple model consisting of a system of t
ordinary differential equations representing nonmodal lin
amplification coupled with nonlinear mixing.

The purpose of this paper is to present some rather
prising results concerning low-dimensional models of par
lel shear flows. In the past five years a number of auth
have proposed such models. One set comes from our
group at Cornell University: TTRD5Trefethen, Trefethen
Reddy, and Driscoll, 1993~Ref. 2!; BDT5Baggett, Driscoll,
and Trefethen, 1995~Ref. 7!; BT5Baggett and Trefethen
1995, unpublished. Another is due to Waleffe at MIT,
outgrowth of earlier work with Hamilton and Kim at th
Center for Turbulence Research at NASA Ames Resea
Center and Stanford University:8,9 W5Waleffe, 1995
~Refs. 10 and 11!. A third comes from the University of
Marburg in Germany, building upon earlier work in Marbu
by Boberg and Brosa:12 GG5Gebhardt and Grossmann
1994~Ref. 13!. A fourth has been described in a paper fro
the Royal Institute of Technology in Stockholm: KLH5G.
Kreiss, Lundbladh, and Henningson, 1994~Ref. 14!. Finally,
a fifth model has been proposed in a manuscript from Go¨te-
borg, Sweden: JRB5Johnson, Rannacher, and Boman, 19
~Ref. 15!.
ity,
1043$10.00 © 1997 American Institute of Physics
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One might think that these five groups of models wou
have been compared to one another, but for the most par
is not so. Part of the reason for this is that they were devi
for disparate purposes. The models TTRD, BDT, BT, a
GG were developed to shed light on the process of transi
from low-amplitude perturbations, starting from the prem
that non-normal linear amplification is the crucial physic
process and that the details of the nonlinear interactions
less critical unless one wants to follow the process of s
critical transition in detail. The model W was developed
shed light on the structure of turbulent boundary layers,
the opposite view was taken that the essential point is to
the nonlinearities right. Indeed, in Refs. 10 and 11 it is i
plied that the W and TTRD/BDT approaches are contrad
tory. The model KLH was developed in part for technic
mathematical reasons. The model JRB was motivated by
problem of error control in computational fluid dynamics.

We have compared the models listed above. In part
lar, though most of them were designed for purposes u
lated to~* !, we have investigated the threshold exponenta
that they exhibit. We find that the mathematical features
these models are all strikingly similar. All involve linea
non-normal amplification coupled with nonlinear mixin
Moreover, the threshold exponents they produce are sim
beinga523 for most of those models that we describe
being without a key ‘‘selection rule’’@see Eq.~5! and the
associated text# anda522 for most that do have this selec
tion rule.

What do these low-dimensional models tell us about
tual fluid flows? In the final two sections we consider th
matter briefly.

II. FUNDAMENTALS

Subcritical transition to turbulence is a phenomen
most commonly associated with parallel shear flows. In p
ticular, two flows exhibit this phenomenon in its purest for
~Fig. 1!. One is pipe flow, also known as Hagen–Poiseu
flow, in an infinite circular pipe. In this case, regardless
the Reynolds numberR, the laminar state~parabolic velocity
profile! is linearly stable, yet transition to turbulence is typ
cally observed forR'2000 or larger. In an exceptionall
careful experimental situation, laminar flows can be ma
tained withR.104, and the record is on the order of 105, but

FIG. 1. Laminar velocity profiles for pipe and plane Couette flows. Th
solutions of the Navier–Stokes equations are stable to infinitesimal pe
bations in principle for all Reynolds numbersR, but unstable in practice for
largeR.
1044 Phys. Fluids, Vol. 9, No. 4, April 1997
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this is highly unusual. The other is plane Couette flow, in
infinite channel bounded by two parallel plates moving
constant speed relative to one another. The situation he
much the same. The laminar state~linear velocity profile! is
stable for all R, but transition is typically observed fo
R'350 or larger.16–18The ‘‘record’’ experimental values o
R for laminar flows are not so high in this case, presuma
in part because experiments are more difficult and rarer.

Figure 2 is a heuristic bifurcation diagram that summ
rizes the problem. For anyR, the laminar state is a stabl
fixed point of the incompressible Navier–Stokes equatio
This state is represented by theR axis, corresponding to zero
perturbation from the laminar state. Somewhere in ph
space, however, there is also a turbulent state to which fl
tend to be attracted. Sufficiently small perturbations nec
sarily relaminarize, but larger perturbations may jump to
turbulent state. The boundary between these behavior
suggested by the dashed line.

We emphasize that Fig. 2 is only heuristic. The true st
space is infinite dimensional, so one must not think of
dashed line, for example, as representing a smooth man
that approaches the axis in a simple fashion. On the contr
it represents theminimumdistance from the origin to som
infinite-dimensional manifold of presumably great comple
ity. Perturbations of the laminar flow of amplitudes far larg
thanRa may also lie in the basin of attraction of the lamin
state, if they happen to lie in directions that are not effect
at exciting transition.

The existence of a mathematically well-defined ‘‘turb
lent state,’’ as assumed in our remarks above and in Fig
may be questioned. Brosa19 and Crutchfield and Kaneko20

have argued that the turbulence that is observed in s
flows may in principle consist not of an invariant set such
a strange attractor, but of a combination of transient phen
ena ~perhaps exponentially or doubly exponentially lon
ones! excited by perturbations. This possibility is intriguin
and it introduces a potential complication into the task
defining ~* ! in a rigorous way. But we shall not pursue
here, as it is of little significance to what is observed
experiments or numerical simulations. In practice, at su
ciently high Reynolds number, turbulence is unavoidab
and permanent once it arrives.

Pipe and plane Couette flows are not the only flows
concern in this paper. Other shear flows too exhibit subc

e
r-

FIG. 2. Heuristic bifurcation diagram for subcritical transition to turbulen
The basin of attraction of the laminar state shrinks rapidly asR→`. Small
deviations from the laminar flow are enough to move the flow across
boundary into the basin of attraction of the turbulent state.
J. S. Baggett and L. N. Trefethen
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cal transition to turbulence, of which the best known e
amples are plane Poiseuille flow~between two stationary in
finite parallel plates! and Blasius boundary layer flow~along
a flat wall!. In both cases, the picture of Fig. 2 must
principle be modified. Consider plane Poiseuille flow, f
example. Here, there is a linear instability forR.5772, a
Tollmien–Schlichting wave, which would appear in Fig. 2
a bifurcation point on theR axis.1 Nevertheless, in practice
the transition to turbulence of plane Poiseuille flows appe
to follow much the same course as that of pipe and pl
Couette flows. It is finite-amplitude 3D disturbances that
cite transition in most experiments, not Tollmien
Schlichting waves, and this happens both above the crit
value 5772 and well below it. Thus the question~* ! is of
interest also for plane Poiseuille flow, though a rigorous f
mulation of it would necessitate qualifications such as a c
dition of transition on a short~advective! rather than long
~diffusive! time scale.

III. THE FIRST CORNELL MODEL

We begin by discussing the models developed by
own group at Cornell. These arose from studies of hydro
namic stability. In the late 1980s and early 1990s, it w
discovered by various researchers that for certain line
stable flows, transient amplifications of flow perturbations
factors of hundreds may be introduced by mechanisms
are linear but nonmodal, that is, unrelated to eig
values.2,12,21–23This raised the question of how such mech
nisms might bring about transition to turbulence, when co
bined with the nonlinear interactions of the Navier–Stok
equations.

In Ref. 2 we proposed that the transition process is ‘‘
sentially linear’’ in the sense that its qualitative features
not sensitive to the details of these nonlinear interactio
Our proposal was that the role of nonlinearity in transition
to serve as a mixing mechanism, enabling outputs from
linear, nonmodal amplification process to be recycled bac
inputs, as suggested in Fig. 3~a!. According to this view,
even if the Navier–Stokes equations happened to have q
different nonlinear terms than the actual ones, there wo
probably still be a recognizable phenomenon of subcrit
transition to turbulence.~The same view has been pro
pounded by the Marburg group; see Sec. VI.!

To elucidate this idea, we proposed a two-varia
model:

S uv D 8
5S 2R21 1

0 22R21D S uv D
1 I S uv D I S 0 21

1 0 D S uv D , ~2!

where the prime denotes differentiation with respect tot and
i•i is the 2-norm~square root of sum of squares!. The pres-
ence of distinct coefficients2R21 and22R21 along the di-
agonal of the first matrix, however, is of little significance
the behavior of this system~the coefficients were made dis
Phys. Fluids, Vol. 9, No. 4, April 1997
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tinct so that readers would not be distracted by nondiagon
izability!, so let us immediately simplify the equations to th
following form:

S uv D 8
5S 2R21 1

2R21D S uv D 1 I S uv D I
3S 21

1 D S uv D .
~TTRD!

FIG. 3. Schematic illustration of the ideas underlying~a! the Marburg and
Cornell models~figure taken from Ref. 7! and ~b! the CTR/MIT model
~figure taken from Ref. 8!. Schema~a! is abstract, depending only on certain
general mathematical properties, whereas schema~b! is physical, attempting
to delineate the actual structures that interact in shear flows at high Reyn
number. Apart from this difference, however, these ideas correspond m
closely than it may at first appear. The upper-left arrow in the CTR/M
schema represents the dominant mechanism of what the Marburg/Co
schema calls ‘‘linear, non-modal growth,’’ and the other two arrows amou
to a proposal of a dominant mechanism of ‘‘nonlinear mixing.’’ It migh
appear that the division of this latter part of the loop into two arrows—
breakdown followed by regeneration—represents a fundamental differe
between~a! and ~b!, but this is not so. When ‘‘nonlinear mixing’’ is mod-
eled by arbitrary quadratic interactions among variables, these two pha
usually still emerge, for reasons explained in Sec. IX.
1045J. S. Baggett and L. N. Trefethen
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Here and throughout this paper, blank matrix entries
zero. In this system of differential equations, the first ter
represents a linear, nonmodal transient amplifying proces
amplitudeO(R) and time scaleO(R). The second term
mixes the two variables nonlinearly but does not direc
affect the energy, since the matrix involved is skew
symmetric.

Figure 4, based on Fig. 10 of Ref. 2, gives an indicati
of the behavior of~TTRD! for R5100. In this paper we
present a number of figures of this kind, always followin
the same format. Eleven curves are shown, correspondin
iy(t)i as a function oft for eleven different initial conditions
y~0!, wherey represents the vector of dependent variab
@here, y5(u,v)T#. The initial conditions have norms
iy~0!i51027,1026.5,1026,••• ,1022. In Fig. 4, as in our other
analogous figures, one sees that the lower curves have
proximately the same shape, differing only in vertical di
placement. This is because in these cases, the amplitude
too low for the nonlinear terms to have much effect. Wh
remains is just the linear, nonmodal behavior: amplificati
by about 1.5 orders of magnitude followed by slow decay
the zero state analogous to laminar flow. The upper curv
however, are strongly affected by nonlinearity. At the beg
ning, they follow the shape of the linear evolution, but in th
cases withiy~0!i.1025.5, they are attracted ast→` to a
state of magnitudeO~1!, analogous to turbulent flow.

What is important in Fig. 4 is that although the linea
amplification is by less than two orders of magnitude and
nonlinear terms conserve energy, the ultimate amplificat
in the nonlinear system is by close to six orders of mag
tude. This is the phenomenon called ‘‘bootstrapping.’’ Sp
cifically, for this particular model withR5102, the threshold
amplitude for transition is about 331026, and this figure de-
creases with exponenta523 asR→`.

Ten figures analogous to Fig. 4 are presented in t
paper, corresponding to differing low-dimensional mode
In every case, the equations possess a threshold exponea
that we believe to be an exact integer23, 22, or 21. ~As
discussed at the end, we do not necessarily expect an e
integer for the actual Navier–Stokes equations.! In most
cases, the exponent can be guessed from looking at the

FIG. 4. Evolution curves for the model~TTRD! ~threshold exponent
a523! with R5100. The curves show the vector normiy(t)i for initial
conditions of amplitudesiy~0!i51027, 1026.5, 1026,...,1022.
1046 Phys. Fluids, Vol. 9, No. 4, April 1997
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ure. In Fig. 4, for example, the total amplification ultimate
achieved by the smallest above-threshold initial condition
visibly about three times as great, on the log scale, as
purely linear amplification exhibited by the lower curve
These guesses are rough, however, and our confidence
the exponents are integers is based on much more th
single picture. For most of the ten cases we have been ab
prove that the exponent claimed is correct by a resca
analysis~not described here!. For all of them, we have con
firmed the exponent by numerical experiments that show
Ra dependence that is clean and unambiguous.

We have described the amplitude of the initial vec
y~0! but not its direction. For Fig. 4 and the other analogo
plots of this paper,y~0! is always determined by the follow
ing recipe:

y~0!5C~ymax10.1yrand!. ~3!

Here,ymax denotes the unit vector that grows most rapidly

t50, that is, withiymaxi51 and (d/dt)iet̃ Aymaxi at t50 as
large as possible@obtained via the eigenvalue decompositi
of ~A1A* !/2#. The vectoryrand is a unit vector whose entrie
are first taken as independent samples from the standard
mal distribution, then rescaled by a constant so t
iyrandi51. Thusy~0! consists of a vector designed to exci
great linear growth plus a noise vector of relative size 1
~by amplitude! or 1% ~by energy!. Such noise is necessary i
some of our low-dimensional models—as in the Navie
Stokes equations themselves—to break symmetries as
ated with structures independent of the streamwise or sp
wise coordinate. Its initial amplitude has little effect on th
overall behavior.

Though we present only one figure for each model
scribed in this paper, several runs have in fact been mad
each case, with distinct vectorsyrand, to ensure that the be
havior in the plot presented is typical.

In summary: for our first model under consideratio
~TTRD!, a bootstrapping phenomenon occurs and the thre
old exponent isa523.

IV. OTHER CORNELL MODELS

Equation~TTRD! has been criticized on the grounds th
although the normi•i may be appealingly simple, th
Navier–Stokes equations contain quadratic products of v
ables, not norms. It is easy to modify~TTRD! so that it will
have this property. For example, we may consider

S uv D 8
5S 2R21 1

2R21D S uv D 1S 2u

u D S uv D ~TTRD8)

or

S uv D 8
5S 2R21 1

2R21D S uv D 1S 2v

v D S uv D . ~TTRD9)

Figures 5~a! and 5~b! show the evolution of~TTRD8! and
~TTRD9! for various initial amplitudes. The first looks a
most exactly the same as Fig. 4 for amplitudesiyi!1; again
the threshold exponent isa523. The second looks qualita
J. S. Baggett and L. N. Trefethen
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tively similar, but now the bootstrapping effect is evidentl
weaker, and in fact, we havea522. In Sec. IX we explain
why these different exponents appear.

A second criticism of~TTRD! has been that if the matrix
in the nonlinear term is chosen at random, though still ske
symmetric, then transition is observed with probability on
0.5. The other half of the time, the nonlinear mixing rotate
energy in the phase plane in the wrong direction, shutting
the loop of Fig. 3~a!. One might think that this shutoff effect
calls into question the idea that arbitrary nonlinear mixing
likely to generate a phenomenon of subcritical transition.
fact, it is an artifact of the triviality of two-dimensional dy-
namics. To elucidate this point, a three-variable analogue
~TTRD! was proposed in Ref. 7:

S u
v
w
D 8

5S 22R21 b~R!

22R21 b~R!

22R21
D S u

v
w
D

1I S u
v
w
D I S a b

2a c

2b 2c
D S u

v
w
D . ~4!

As in ~TTRD!, the linear term here introduces transient, no
modal amplification of amplitudeO(R) and time scale
O(R); the valueb(R) 5 3.86A(R11)/R2 was chosen in Ref.
7 so that the ‘‘O’’ constants are approximately 1. The entrie
a,b,c in the nonlinear term were chosen arbitrarily, bu
scaled so that the matrix has norm 1.

FIG. 5. Evolution curves for two other two-variable models withR5100.
Phys. Fluids, Vol. 9, No. 4, April 1997
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As expected, Eq.~4! differs from ~TTRD! in that arbi-
trary choices of nonlinear coefficients yield transition wi
probability close to 1, not 0.5, for sufficiently highR. De-
pending on the choices ofa, b, andc, the asymptotic~‘‘tur-
bulent’’! state may be a finite fixed point, the point at infi
ity, a limit cycle, or chaos. The early stages of transition a
independent of the final state, and the threshold expone
againa523. These matters are discussed in detail in Ref

As before, for the purposes of this paper it is conveni
to discard most details and consider simply

S u
v
w
D 8

5S 2R21 R21/2

2R21 R21/2

2R21
D S u

v
w
D

1I S u
v
w
D I S 21 1

1 1

21 21
D S u

v
w
D . ~BDT!

This system captures the essence of~4!, though of course,
since the constantsa,b,c have been set arbitrarily to61, it
exhibits only a single behavior ast→` for any fixed choice
of initial data. Figure 6 shows the evolution of~BDT! in the
usual format. Again we have a bootstrapping phenomen
and the threshold exponent isa523.

A third criticism of ~TTRD! and~BDT! has been that in
the Navier–Stokes equations, ‘‘nonlinear mixing’’ must ta
place in a more indirect fashion than in these models.
plane Couette flow, for example, the strongest transient
plification is achieved by a vortex tilting mechanism acti
on structures independent of the streamwise coordinate
which a perturbation in the form of a streamwise roll adve
low- and high-velocity fluid to relatively high- and low
velocity surroundings, respectively, where it shows up a
streamwise streak. If the initial perturbation is perfectly i
dependent of the streamwise coordinate, with zero energ
Fourier components corresponding to streamwise variat
then this situation must persist for all time and turbulen
cannot be achieved. Algebraically, we can see this by no
that the nonlinear interactions of the Navier–Stokes eq
tions for certain flow geometries operate in triads, obey
‘‘selection rules’’ of the form

FIG. 6. Evolution curves for model~BDT! ~threshold exponenta523! with
R5100.
1047J. S. Baggett and L. N. Trefethen

to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



is
g
e
s
ou
h
a

v

n
od
f
io

.

in
o
x-

the

is

is
ts:
ed,
to

ss
-

er-
ali-
tur-
tion

n-
al-
ce,
a-
lent
is

ol-
u-
e of
uch
lent
mic
ism

hat
ks

sed

r-
ion.
ility
the
s
con-

y
to
id
~6a1 ,6b1!1~6a2 ,6b2!→~6a16a2 ,6b16b2!, ~5!

wherea andb denote Fourier parameters in the streamw
and spanwise directions, respectively. In particular, a sin
mode ~a,b! does not affect itself nonlinearly. Becaus
~TTRD! and ~BDT! do not incorporate such selection rule
one might expect that the Navier–Stokes equations sh
exhibit a weaker bootstrapping effect than these models. T
possibility was mentioned in Refs. 7 and 2, where it w
suggested thata may not be as low as23 for actual fluid
flows.

Curiously, a roughly equivalent restatement of the abo
criticism is that the models~TTRD! and ~BDT! possess an
unphysical property: they undergo ‘‘transition’’ even whe
the initial vector is uncontaminated by noise. In these m
els, an initial vectory~0! determined solely on the basis o
linear algebra considerations is enough to excite transit
We confirm this by experiments~not shown! that reveal that
if the noise component of~3! is removed, the curves of Figs
4–6 change very little.

It is a straightforward matter to modify~TTRD! and
~BDT! to incorporate selection rules. In unpublished work
early 1995, we replaced the single pair of variables
~TTRD! by three pairs of variables. The resulting si
variable model can be written

y85Ay1B~y!y ~BT!

with

A5S 2R21 1

2R21

2R21 0

2R21

2R21 0

2R21

D
~6!

and

FIG. 7. Evolution curves for model~BT! ~threshold exponenta522! with
R5100. These curves are based upon one particular~random! choice of the
matricesBj in ~7!.
1048 Phys. Fluids, Vol. 9, No. 4, April 1997
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B5S 0
2y5B5

T2y6B6
T

2y3B3
T2y4B4

T

y5B51y6B6

0
2y1B1

T2y2B2
T

y3B31y4B4

y1B11y2B2

0
D ,
~7!

whereB1 ,...,B6 are arbitrarily chosen 232 matrices with
iBj i51. Because of the zero blocks on the diagonal in~7!,
the quadratic terms in~BT! affect each of the three 232
subsystems only via products of the other two, which is
essence of a selection rule as in~5!. Figure 7 shows evolution
curves for ~BT!. As expected, the bootstrapping effect
weakened. However, it is still present: we havea522, not
a521. This is readily explained; see Sec. IX. Again there
little qualitative dependence on the nonlinear coefficien
one gets transition with probability close to 1. As expect
however, this is our first model for which transition fails
occur if the noise term of~3! is removed.

We have now presented plots ofiy(t)i vs t for five
low-dimensional models. Do all the figures look more or le
alike, at least for amplitudesiyi!1? That, of course, is pre
cisely the point. Although the various criticisms of~TTRD!
that we have mentioned were all motivated by valid obs
vations about fluid flows, none of them bear upon the qu
tative behavior of these systems of equations for low dis
bance amplitudes or the phenomenon of subcritical transi
with a,21.

V. CTR/MIT MODEL

We now turn to a model that was conceived in an e
tirely different manner. This is the model proposed by W
effe in Refs. 10 and 11. It arose from studies of turbulen
not stability: specifically, from investigation of the gener
tion and regeneration of streaks near boundaries in turbu
flows. In Waleffe’s thinking, the essence of his model
distinctly nonlinear.

Waleffe’s work in this area began around 1990 in c
laboration with Kim and Hamilton at the Center for Turb
lence Research. The questions that led to it were som
those that have been important in studies of turbulence, s
as, what determines the spacing of streaks in turbu
boundary layers? As in the recent studies of hydrodyna
stability, it was recognized from the start that the mechan
of streak generation was linear.24 But the emphasis in this
work was on the search for a nonlinear mechanism t
might produce a ‘‘self-sustaining process’’ whereby strea
could form, decay, and form again.

In Refs. 8 and 9, Waleffe and his colleagues propo
the self-sustaining process schematized in Fig. 3~b!. In the
upper-left portion of the loop in that figure, streamwise vo
ticity generates streamwise streaks by linear advect
These streaks then break down according to an instab
that can be viewed as linear and modal, essentially
Kelvin–Helmholtz instability. Finally, nonlinear interaction
occur that recreate streamwise vorticity, and the process
tinues.

The cycle of Fig. 3~b! is not formulated as an ordinar
differential equations model in Refs. 8 and 9. In reaction
Ref. 2, however, Waleffe wrote a paper in which he d
formulate his views in this way.10 Upon publication of Ref.
J. S. Baggett and L. N. Trefethen
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7, he wrote a second paper in which the model was gene
ized to include explicit Reynolds number dependence.11 This
model, containing four variables, takes the form

S u
v
w
D 8

5S 2lR21 m

2mR21

2nR21
D S u

v
w
D

1S 2gw

2dw

gw 2dw
D S u

v
w
D , ~8!

m852sR21m1sR212uv,

wherel, m, n, s, g, andd are positive constants of order 1
it is mentioned that in a more refined analysis,g andd would
have some dependence onR. Unlike the variables in the
models of the last two sections, the variables in~8! are given
physical interpretations from the start. Roughly, they rep
sent amplitudes of a streamwise streak (u), a streamwise
vortex (v), a streamwise undulation of the streak that rend
it unstable (w), and the mean shear amplitude (m). For a
laminar flow, the values areu5v5w50 andm51.

As written above, Waleffe’s equations do not exhibit
separation into linear and quadratic terms; the entrym in the
first matrix and the inhomogeneous termR21 in the scalar
equation break the pattern. However, this is an artifact o
choice of variables in which the laminar flow corresponds
mÞ0. To regularize the situation, let us definen512m. The
equations become

S uvw
n
D 8

5S 2lR21 1

2mR21

2nR21

2sR21

D S uvw
n
D

1S 2gw 2v

dw

gw 2dw

v
D S uvw

n
D .

(W)

Waleffe does not discuss the threshold exponent ex
ited by this model. We have computeda for ~W! and find
that it is22. The evolution curves are shown in Fig. 8 for t
arbitrary choicel5m5n5s5g5d51.

For the study of turbulence, since the perturbations
the laminar state involved are of order 1, an important f
ture of Waleffe’s model is the energy balance reflected in
variablen. For the study of threshold exponentsa,21 for
transition, however, it is the behavior of low-amplitude pe
turbations that dominates. The energy balance is of little c
sequence so long asa,21, andn can be replaced by zero
Since our concern in this paper is qualitative behavior rat
than quantitative details, we may also replace the const
l, m, n, s, g, and d by 1. Now the equations reduce to
three-variable system:
Phys. Fluids, Vol. 9, No. 4, April 1997
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S u
v
w
D 8

5S 2R21 1

2R21

2R21
D S u

v
w
D

1S 2w

w

w 2w
D S u

v
w
D . ~W8!

Figure 9 shows the corresponding evolution curves. The g
bal behavior is entirely different from that of~W!, but the
low-amplitude behavior is almost the same, and again
threshold exponent isa522.

VI. MARBURG MODEL

Now we cross the Atlantic to the fluid mechanics gro
of Siegfried Grossmann at the University of Marburg in Ge
many.

The Refs. 2, 21–23 cited above were a closely rela
series of works appearing in 1991–1993 on the subjec
linear, non-normal effects in hydrodynamic stability. Wh
these papers were written, their authors were apparently
aware of a remarkable publication by Boberg and Brosa
had proposed many of the same ideas four years earli12

~Certainly this was true in our own case.! In retrospect, it
now appears that the schema of Fig. 3~a! was first described

FIG. 8. Evolution curves for model~W! ~threshold exponenta522! with
R5100.

FIG. 9. Evolution curves for model~W8! ~threshold exponenta522! with
R5100.
1049J. S. Baggett and L. N. Trefethen
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in the Boberg-Brosa paper. The Marburg group, like the C
nell group, have taken the view that more or less arbitr
nonlinear mixing is sufficient to induce transition in flow
with non-normal linear amplification. Boberg and Bro
write bluntly, ‘‘The nonlinearity is a random mixer.’’

Though some low-dimensional models are discusse
Ref. 12, for example of dimensions 10 and 20, no sin
model is settled upon and no Reynolds number depend
is included. More recently, however, prompted by the tw
dimensional model~TTRD!, Gebhardt and Grossmann ha
published a paper in which they propose a model contain
two complex variables that they argue is reasonably clos
the Navier–Stokes equations.13 This work is close to that of
Ref. 7; the two were independent and approximately sim
taneous. To facilitate comparisons, we have rescaled G
hardt and Grossmann’s variablest andu ~which we cally!
by factorsR andR21, respectively, and then replacedR by
R/20. Their equations now take the form

y85Ay1B~y,y!1C~ iyi !y, ~GG!

where

A5S 20.9R2110.8ig 0.7

0 21.9R2111.1ig D ,
b
si
of
th
en
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B1~y,y!50.2y1y210.4iy1y2*10.6y1* y210.8iy1* y2*

21.4y2
22~111.2i !y2y2*21.6iy2*

2,

B2~y,y!5y1y211.2iy1* y211.4y1y2*11.6iy1* y2*

20.6y1
22~0.210.4i !y1y1*20.8iy1*

2,

and

C~ iyi !5
2iyi

0.11iyi S 0 0.7

0 0 D .
In these equations, theA term represents linear nonmod
amplification, theB term is quadratic and energy conservin
~though this is not obvious as written!, theC term is a mean
flow adjustment analogous to Waleffe’s fourth equation
~8!, cutting off the non-normal amplification foriui5O(1),
andg is a zero or nonzero parameter corresponding to ba
ground advection.

These equations look quite different from those we ha
considered so far. However, let us rewrite them in terms
real variables. Settingy5(u,v,w,x)5~Rey1,Im y1,Rey2,
Im y2! and takingg50, we are led to the equation

y85Ay1B~y!y1C~ iyi !y, ~GG!

with
A5S 20.9R21 0.7

20.9R21 0.7

21.9R21

21.9R21

D ,
B~y!5

1

5 S 0 2x22w

x12w 0

24u112w24v18x 2v17x24u114w

23v22x26u18w 23u17w12v22x

4u212w14v28x 3v12x16u28w

22v27x14u214w 3u27w22v12x

0 25v26u

5v16u 0

D ,

ts
m-
t in

able
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flow
he

s of
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gy
and

C~ iyi !5
2iyi

0.11iyi S 0 0 0.7 0

0 0 0 0.7

0 0 0 0

0 0 0 0

D .
Note thatB(y) is skew-symmetric, explaining why this term
is energy conserving.

The complicated entries ofB(y), while intended to be
physically plausible, were selected somewhat arbitrarily
Gebhardt and Grossmann. In Ref. 13 there is no discus
of the exponenta, though there is some consideration
threshold amplitudes near Figs. 6 and 8. For a model of
kind with no selection rules, one would expect the expon
y
on

is
t

to bea523. This expectation is confirmed by experimen
~Fig. 10!. On the other hand if a nonzero advection para
eterg is chosen in the same model, the exponent at leas
some cases becomesa522 ~not shown here!, illustrating
that shear may enhance stability by tearing apart unst
structures. This is related to the phenomenon that the thr
old exponent appears to be closer to 0 for plane Couette
than for plane Poiseuille flow, as mentioned in t
Discussion.25

VII. STOCKHOLM MODEL

Numerous contributions have been made to question
transition over the years by a group of researchers whom
may loosely associate with the Royal Institute of Technolo
J. S. Baggett and L. N. Trefethen
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in Stockholm. Among the central figures in the recent wo
are Dan Henningson, who was also at MIT for a time, a
Peter Schmid, his student at MIT.

In 1992, Henningson and Schmid proposed a thr
variable model of certain features of transition to turbulen
though without Reynolds number dependence.26 This model
involved three eigenmodes, and the linear term was acc
ingly diagonal; this was before this group became fully
volved in the non-normal developments of Refs. 2, 12, a
21–23. Rather than giving further details, let us turn to
later model proposed by Kreiss, Lundbladh, and Henni
son. This model appears in a paper explicitly devoted to
question of threshold exponents.14 Its origin is rather differ-
ent from the other models we have discussed, however
besides being motivated by the Navier–Stokes equat
themselves, it is also designed to illustrate certain points
garding the mathematical techniques used in that paper.

The KLH model is as follows:

S u
v
w
D 8

5S 2R21 1

2R21

21
D S u

v
w
D 1S 0

w2

uw
D .
~KLH !

Hereu represents a streamwise streak,v a streamwise vor-
tex, andw a nonstreamwise mode of some kind. The nonl
ear term is intended to be suggestive of certain proce
without capturing them accurately, and energy conserva
is intentionally not included in the model.

Like the other models we have considered,~KLH ! con-
tains a non-normal matrix as its linear term. The thresh
exponent for transition turns out to bea521, the first time
we have encountered a value that is not,21. See Fig. 11.

The reason for the exponenta521 is easily spotted.
The~3,3! entry of the linear term of~KLH ! is21, not2R21.
This term represents advective decay, and the entry21 cor-
responds to a decay rate independent ofR. If one modifies
this part of the model to allow a diminishing decay rate
R→`, which might be thought of as an approximation to
problem with decreased advective decay, one obtain
model such as

FIG. 10. Evolution curves for model~GG! ~threshold exponenta523! with
R5100. ~For nonzero values of the advection parameterg, the exponent
changes toa522.!
Phys. Fluids, Vol. 9, No. 4, April 1997
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S u
v
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D 8

5S 2R21 1

2R21

2R2s
D S u

v
w
D 1S 0

w2

uw
D
~KLH 8)

for somes presumably in the range 0<s<1. As we explain
in Sec. IX, the threshold exponent becomesa5212s. The
corresponding energy history is plotted in Fig. 12 for t
cases51. Note the strong resemblance to Fig. 9; Eqs.~W8!
and ~KLH 8! are almost the same.

VIII. GÖTEBORG MODEL

Not far away in Sweden, another group has been ac
at the Chalmers Institute of Technology in Go¨teborg. A
manuscript by Claes Johnson and Mats Boman of Chalm
together with Rolf Rannacher of the University of Heide
berg proposes a three-variable ODE model.15 The motivation
for this model is tied to computational fluid mechanics: the
researchers are concerned with error control in numer
simulations, a challenging problem since small perturbati
may have large and long-lasting effects.

Like Waleffe’s equations~8!, the equations of Ref. 15
are not written in our standard linear-plus-quadratic for

FIG. 11. Evolution curves for model~KLH ! ~threshold exponenta521!
with R5100. This is the only figure in this paper in which no bootstrappi
appears. Note that the vertical scale is shifted by two orders of magnit
the initial amplitudes have been correspondingly shifted toiy~0!i
51025,...,100.

FIG. 12. Evolution curves for model~KLH 8! ~threshold exponenta522!
with s51, R5100.
1051J. S. Baggett and L. N. Trefethen
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However, by replacing their variableu121 by u, we can
remedy this. To facilitate comparisons we also rename o
variables of Ref. 15 as follows:R5n21, v5u2 , w5u3 ,
a5g12, b5g13, andc5g31. The equations become

S u
v
w
D 8

5S 2R21 a b

2R21

2R21
D S u

v
w
D

1S auv1buw
0

cR21uw
D , ~JRB!

wherea,b,c are nonnegative constants. Note that the va
able v in this system evolves linearly, unaffected by t
other variables. Fort→`, ~JRB! is in fact close to the two-
variable model~TTRD9!, except that the quadratic couplin
term cR21uw has coefficientO(R21) instead ofO~1!. For
this reason, the threshold exponent turns out to bea521
~figure not shown!.

IX. WHY THESE FIGURES ALL LOOK ALIKE:
TWO VIEWS OF STREAK INSTABILITY

We come now to the mathematical heart of this pap
Why do all the curves we have presented look so similar
least as long as the amplitudes remain!1? The answer was
summarized in the caption of Fig. 3. The Cornell and M
burg groups speak of ‘‘nonlinear mixing,’’ and the CTR/MI
and Swedish groups speak of ‘‘streak instabilities’’ and ot
physical notions, but these are different ways of looking
the same phenomena. In a system exhibiting linear, n
modal transient growth, more or less arbitrary nonlinearit
may produce a ‘‘streak instability;’’ one does not have to p
it in the model explicitly.

To explain this statement, we now present heuristic
guments that explain the threshold exponents we have
served. Each of these models contains a linear, nonm
amplifier of gainO(R) and time scaleO(R). Consider the
following caricature. The output of the amplifier~the rela-
tively high-amplitude quantity in the early stages of a p
cess of transition! is a variablew(t). All other quantities of
interest, including the input to the amplifier, are represen
by another variablec(t) ~potentially of much lower ampli-
tude in the early stages of transition!. Bothw andc start with
amplitudee. The variablew(t) grows to sizeeR by linear,
non-modal effects, and lingers at that level for a timeO(R).
The variablec grows by quadratic interactions,

c8'wc, c~0!'e, ~9!

hence for a period of durationO(R),

c8'eRc, c~0!'e, ~10!

with solution

c~ t !'eeeRt, 0<t<O~R!. ~11!

All together, we predict exponential growth at rateeR up to
an amplitude of ordereeeR2. UnlesseR2 is bounded, this
corresponds to growth by an arbitrary factor, so thatc may
1052 Phys. Fluids, Vol. 9, No. 4, April 1997
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In other words, the threshold exponent for ‘‘transition’’ i
Eqs.~9!–~11! is a522.

Models~TTRD9!, ~BT!, ~W!, and~W8! fit the pattern just
described. For~TTRD9!, this is obvious; the variablesu and
v play the roles ofw andc, respectively. For the others, th
variableu @or y1 in the case of~BT!# plays the role ofw, and
all the other variables collectively correspond toc. In the
case of~W8!, for example, the termuw represents the qua
dratic interactionwc of ~9!, feeding energy back from the
output of the linear amplifier (u) into the rest of the system
~v andw!.

In Eq. ~9!, there is no quadratic termw2. The absence of
this term is the representation within Eqs.~9!–~11! of the
crucial ‘‘selection rule’’ of the kind discussed earlier. Phys
cally, we may think of the fact that a purely streamwi
streak, no matter how large in amplitude, cannot by its
feed energy into modes that are not independent of
streamwise coordinate. By contrast, if we have a system w
no such selection rule, we can caricature it by changingwc
to w2 in Eq. ~9!. Equations~9!–~11! become

c8'w2, c~0!'e, ~12!

c8'~eR!2, c~0!'e, ~13!

c~ t !'~eR!2t, 0<t<O~R!, ~14!

leading toc(t)5O(e2R3) at t5O(R). Now, if e2R3 is of
ordere or greater, thenc may be larger att5O(R) than it
was att50. Another round of amplification at a higher lev
may begin, leading to self-sustaining growth up to amplitu
O~1!. In other words, the threshold exponent for ‘‘trans
tion’’ in Eqs. ~12!–~14! is determined by the condition
e5e2R3, giving a523.2 Models ~TTRD8! and ~GG! fit this
pattern. So do models~TTRD! and ~BDT!, though the qua-
dratic nature of the nonlinearity is obscured by the use of
norm iyi .

We remark that the question of whether or not a mo
incorporates selection rules is not as black-and-white as
above discussion may suggest. For example, we mentio
that ~TTRD9!, ~BT!, ~W!, and ~W8! all contain the crucial
selection rule that now2 term is present. However, the la
three of these carry the idea further than the first by inc
porating an additional selection rule within the group of va
ables corresponding toc. Specifically@in the notation of~W!
and ~W8!#, u does not affectv directly, but only indirectly
throughw. As a result, though the final threshold exponena
is not affected,~BT! and ~W! and ~W8! require ‘‘noise’’ in
the form of an initial valuewÞ0 to excite transition, wherea
~TTRD9! has no such requirement.

Easy modifications of these arguments explain why
remaining three models,~KLH ! and~KLH 8! and~JRB!, have
threshold exponentsa521, 212s, and21, respectively.

The two-variable caricature Eqs.~9!–~11! has more
physics in it than one might expect. In this pair of equatio
the presence of an approximately steady high-amplitude
nal w(t) makes it possible for a second signalc(t) to grow
exponentially over many orders of magnitude. This is no
ing more than an abstract description of a linear second
instability. In the case of the breakdown of a streamw
J. S. Baggett and L. N. Trefethen
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streak,w corresponds to the amplitude of the streak andc to,
among other quantities, the amplitude of a deviation fr
perfect streamwise independence. The exponential growt
such deviations, just as in~11!, appears strikingly in certain
Navier-Stokes simulations of transition to turbulence fro
initial perturbations consisting of streamwise vortices p
noise.25 Note that Eqs.~10! and~11! predict that the growth
rate of the instability should be proportional to the amplitu
of the streak. Under certain circumstances, exactly this
havior is observed in the simulations.

X. DISCUSSION

The compressed discussions of this paper cannot b
to do justice to the wide range of physical ideas put forw
by the more than a dozen authors whose works we h
compared. Mathematically, however, the low-dimensio
models proposed by these authors have much in comm
We hope this paper has communicated some of the surp
with which we discovered how close these various mod
are, for the similarities are certainly not highlighted in t
original papers. All are small systems of ordinary different
equations combining a non-normal linear term with a q
dratic nonlinearity. In each case the zero solution is ma
ematically stable, but small perturbations can be amplified
factorsO(R) on a time scaleO(R). In most cases the linea
and nonlinear effects interact in such a way that the thresh
exponent for ‘‘transition’’ is strictly less than21.

For actual fluid flows, the evidence concerning thresh
exponents is sparse. What does seem clear, based on N
Stokes simulations, is thata is strictly less than21 for plane
Couette flow ~a<25/4?! and plane Poiseuille flow
~a<27/4?!.3,4 In principle the actual exponents might b
less than these estimates, but numerical experiments by
gett, Henningson, Lundbladh, Reddy, and Schmid have
vealed no evidence of this so far. For pipe Poiseuille flo
there are as yet no computations concerning threshold e
nents, but a very interesting experimental paper has rece
been published by Darbyshire and Mullin.27 These authors
suggest a value ofa not much less than 0, perhaps appro
mately 21/2, but this is based on a notion of disturban
amplitudes that differs from ours. In their experiments
fixed volume of fluid is injected over a fixed time, regardle
of the speed of the flow. This corresponds to a velocity p
turbation that decreases inverse-linearly withR, suggesting
to us that the results of Darbyshire and Mullin, when tra
lated into our language, actually correspond to a value oa
below 21, perhaps in the vicinity of21.5. We hope that
clarification of this issue will be achieved through futu
discussions and experiments.

In view of this numerical and experimental situation a
the fact that the Navier–Stokes equations contain selec
rules of the kind we have discussed, a reasonable guess
be that for actual flows in pipes and channels, the true va
of a lie in the range22<a,21.
Phys. Fluids, Vol. 9, No. 4, April 1997
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