Low-dimensional models of subcritical transition to turbulence
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In the past five years, working largely independently, five groups of researchers have proposed
low-dimensional models of the behavior of parallel shear flows at high Reynolds numbers. These
models are compared, and it is found that they are more similar than their authors have recognized.
Among other similarities, most of them exhibit a threshold amplitaege O(R*) asR— o for some

a<—1, whereR is the Reynolds number, for perturbations of the laminar state that may excite
transition to turbulence. The reason for this behavior in each case is an interaction of non-normal
linear effects with quadratic nonlinearities. ®97 American Institute of Physics.
[S1070-663(197)00304-9

I. INTRODUCTION the minimal exponent such thét) is satisfied[If the rela-

i i , . tionship of e andR is more complicated than just a power
Ce_rtam laminar fluid flows undergo transition to tu_r_bu- law, involving logarithms or other complications, can be

lence in a manner that cannot be explained by trad't'onabefined as the greatest lower bound of all exponents for

linear stability theory. Incompressible flow in a circular pipe which (1) holds] Of course, the threshold exponents may

is the simplest examp_le, and _plane Couette ﬂov‘.” betweerc]iffer for different flow geometries. Our explanation of the
two parallel plates moving relative to one another, is another

L . phenomenon of subcritical transition is that for the geom-
Such flows are stable to infinitesimal perturbations, regard-t. here this ph . bstantially |
less of the Reynolds numbg;, yet if R is high enough, they etries where this pnenomenon occurss substantially 1ess

invariably become turbulent. Resolving this paradox is athan 0. making laminar flows at high Reynolds numbers in

longstanding problem of fluid mechanits. practice unstable, since even the most careful laboratory ex-
The resolution that we and many others favor is as folPeriment must introduce some small finite perturbations to
lows. For any fixecR, it is true that no infinitesimal pertur- the ideal flow. o 3 o
bation of the laminar flow can excite transition to turbulence. ~ The idea that the limits to stability may diminish as
If R is large, however, a finite perturbation of exceedinglyR—> is an old one, going back at least to Lord Kelvin in
low amplitude may be enough to excite transition. Speciﬁ_1887f3 On the other hand, the formulation of this idea in
cally, let us definee to be the minimum amplitude of all terms of threshold exponents, so far as we know, first ap-
disturbances that may excite transititmeasured in the en- peared in Ref. 2. In that paper, the conjecture—1 was
ergy norm. In the past five years, evidence based on simplénotivated by a simple model consisting of a system of two
models and on Navier—Stokes simulations has been mounerdinary differential equations representing nonmodal linear
ing that for the flows of interests may shrink rapidly as amplification coupled with nonlinear mixing.
R—o. For a given flow geometry, it may be expected that The purpose of this paper is to present some rather sur-
andR will be related by a law approximately of the form  prising results concerning low-dimensional models of paral-
lel shear flows. In the past five years a number of authors
e=0(R") (1) have proposed such models. One set comes from our own
. . group at Cornell University: TTRBTrefethen, Trefethen,
asR—». In Ref. 2 it was conjectured that for plane CouetteReddy, and Driscoll, 199@Ref. 2; BDT=Baggett, Driscoll,

and related flows(1) holds for somex strictly less than-1. and Trefethen, 199%Ref. 7): BT=Baggett and Trefethen,

Numerlcal S|mula_1t|0ns have subsequently borne out this conig%, unpublished. Another is due to Waleffe at MIT, an
jecture, suggesting threshold exponents at least as low as

! outgrowth of earlier work with Hamilton and Kim at the
approximately ~5/4 for plane Couette flow and 7/4 for Center for Turbulence Research at NASA Ames Research
plane Poiseuille flow=® (In the latter case the number refers urbu

to transition by routes unrelated to the linear ToIImien-Center fnd Stanford_ University’ W=Wa|eff_e, 1.995
Schlichting instability) (Refs. 10 and 11 A third comes from the University of

The organizing principle of this paper is the question, Marburg in Germany, building upon earlier work in Marburg
by Boberg and Bros# GG=Gebhardt and Grossmann,
1994 (Ref. 13. A fourth has been described in a paper from
the Royal Institute of Technology in Stockholm: Ki=G.

In this phrasing of the problem, we intend ferto represent Kreiss, Lundbladh, and Henningson, 198ef. 14. Finally,

a fifth model has been proposed in a manuscript froneGo
dPresent address: Center for Turbulence Research, Stanford Universitp,orgv Sweden: JRBJohnson, Rannacher, and Boman, 1995
Stanford, California 94305. (Ref. 15.

“What is the threshold exponen# for transition to
turbulence?” (*)
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FIG. 1. Laminar velocity profiles for pipe and plane Couette flows. TheseF |G- 2. Heuristic bifurcation diagram for subcritical transition to turbulence.

solutions of the Navier—Stokes equations are stable to infinitesimal pertur--rhe basin of attraction of the laminar state shrinks rapidiRas=. Small

bations in principle for all Reynolds numbeRs but unstable in practice for deV|at|ons_ from the Ia_mlnar flow are enough to move the flow across the
largeR boundary into the basin of attraction of the turbulent state.

One might think that these five groups of models wouldthis is highly unusual. The other is plane Couette flow, in an
have been compared to one another, but for the most part thigfinite channel bounded by two parallel plates moving at
is not so. Part of the reason for this is that they were devise§onstant speed relative to one another. The situation here is
for disparate purposes. The models TTRD, BDT, BT, andnuch the same. The laminar stalimear velocity profilg is
GG were developed to shed light on the process of transitiofitable for allR, but transition is typically observed for
from low-amplitude perturbations, starting from the premiseR~350 or larger.®~** The “record” experimental values of
that non-normal linear amplification is the crucial physicalR for laminar flows are not so high in this case, presumably
process and that the details of the nonlinear interactions a8 Part because experiments are more difficult and rarer.
less critical unless one wants to follow the process of sub- ~ Figure 2 is a heuristic bifurcation diagram that summa-
critical transition in detail. The model W was developed tofizes the problem. For anR?, the laminar state is a stable
shed light on the structure of turbulent boundary layers, andi*ed point of the incompressible Navier—Stokes equations.
the opposite view was taken that the essential point is to gethis state is represented by tReaxis, corresponding to zero
the nonlinearities right. Indeed, in Refs. 10 and 11 it is im-Perturbation from the laminar state. Somewhere in phase
plied that the W and TTRD/BDT approaches are contradicSPace, however, there is also a turbulent state to which flows
tory. The model KLH was developed in part for technical tend to be attracted. Sufficiently small perturbations neces-
mathematical reasons. The model JRB was motivated by thearily relaminarize, but larger perturbations may jump to the
problem of error control in computational fluid dynamics. turbulent state. The boundary between these behaviors is

We have compared the models listed above. In particusuggested by the dashed line.
lar, though most of them were designed for purposes unre- We emphasize that Fig. 2 is only heuristic. The true state
lated to(*), we have investigated the threshold exponents SPace is infinite dimensional, so one must not think of the
that they exhibit. We find that the mathematical features offashed line, for example, as representing a smooth manifold
these models are all strikingly similar. All involve linear, thatapproaches the axis in a simple fashion. On the contrary,
non-normal amplification coupled with nonlinear mixing. it represents theninimumdistance from the origin to some
Moreover, the threshold exponents they produce are similaffinite-dimensional manifold of presumably great complex-
being a=—3 for most of those models that we describe asity- Perturbations of the laminar flow of amplitudes far larger
being without a key “selection rule’[see Eq.(5) and the thanR®may also lie in the basin of attraction of the laminar
associated tektand e=—2 for most that do have this selec- State, if they happen to lie in directions that are not effective
tion rule. at exciting transition.

What do these low-dimensional models tell us about ac- ~ The existence of a mathematically well-defined “turbu-
tual fluid flows? In the final two sections we consider this/ent state,” as assumed in our remarks above and in Fig. 2,
matter briefly. may be questioned. BroSaand Crutchfield and Kanekd
have argued that the turbulence that is observed in such
flows may in principle consist not of an invariant set such as
a strange attractor, but of a combination of transient phenom-

Subcritical transition to turbulence is a phenomenonena (perhaps exponentially or doubly exponentially long
most commonly associated with parallel shear flows. In pareneg excited by perturbations. This possibility is intriguing,
ticular, two flows exhibit this phenomenon in its purest formand it introduces a potential complication into the task of
(Fig. 1). One is pipe flow, also known as Hagen—Poiseuilledefining (*) in a rigorous way. But we shall not pursue it
flow, in an infinite circular pipe. In this case, regardless ofhere, as it is of little significance to what is observed in
the Reynolds numbeR, the laminar statéparabolic velocity —experiments or numerical simulations. In practice, at suffi-
profile) is linearly stable, yet transition to turbulence is typi- ciently high Reynolds number, turbulence is unavoidable,
cally observed forR~2000 or larger. In an exceptionally and permanent once it arrives.
careful experimental situation, laminar flows can be main-  Pipe and plane Couette flows are not the only flows of
tained withR>10%, and the record is on the order of°l®ut  concern in this paper. Other shear flows too exhibit subcriti-

Il. FUNDAMENTALS
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cal transition to turbulence, of which the best known ex- (a) Marburg/Cornell
amples are plane Poiseuille fldvetween two stationary in-
finite parallel platesand Blasius boundary layer flog@along

a flat wal). In both cases, the picture of Fig. 2 must in
principle be modified. Consider plane Poiseuille flow, for Linear,
example. Here, there is a linear instability fBe>5772, a —— —T>
Tollmien—Schlichting wave, which would appear in Fig. 2 as non-modal growth
a bifurcation point on th&R axis® Nevertheless, in practice
the transition to turbulence of plane Poiseuille flows appears
to follow much the same course as that of pipe and plane
Couette flows. It is finite-amplitude 3D disturbances that ex-
cite transition in most experiments, not Tollmien— Nonlinear mixing
Schlichting waves, and this happens both above the critcal == =-—-"=-"="="=-==-===-=+- !
value 5772 and well below it. Thus the questien is of

interest also for plane Poiseuille flow, though a rigorous for-

mulation of it would necessitate qualifications such as a con-

dition of transition on a shorfadvective rather than long

(diffusive) time scale.

F-=====-

(b) CTR/MIT

Ill. THE FIRST CORNELL MODEL streaks

We begin by discussing the models developed by our streak formation ‘ breakdown
own group at Cornell. These arose from studies of hydrody- (linear (instability)

namic stability. In the late 1980s and early 1990s, it was advection)

discovered by various researchers that for certain linearly

stable flows, transient amplifications of flow perturbations by

factors of hundreds may be introduced by mechanisms that streamwise r-dependent
are linear but nonmodal, that is, unrelated to eigen- vortices flow

values?>??1-2This raised the question of how such mecha-
nisms might bring about transition to turbulence, when com-
bined with the nonlinear interactions of the Navier—Stokes
equations.
In Ref. 2 we proposed that the transition process is “es-
sentially linear” in the sense that its qualitative features areriG. 3. Schematic illustration of the ideas underlyi@y the Marburg and
not sensitive to the details of these nonlinear interactionscomell models(figure taken from Ref. jrand (b) the CTR/MIT model
Our proposal was that the role of nonlinearity in transition is(figure taken from Ref. B Schemda) is abstract, depending only on certain
.. . . eneral mathematical properties, whereas sch@a physical, attempting
t_o Serve as a mixing r_n_ech_anlsm, enabllng outputs from th delineate the actual structures that interact in shear flows at high Reynolds
linear, nonmodal amplification process to be recycled back taumber. Apart from this difference, however, these ideas correspond more
inputs, as suggested in Fig(a According to this view, closely than it may at first appear. The upper-left arrow in the CTR/MIT
even if the Navier—Stokes equations happened to have quitSéhema represents the dominant mechanism of what the Marburg/Cornell
. . Chema calls “linear, non-modal growth,” and the other two arrows amount
different no.nllnear terms t_han the actual ones, there V‘_/(_)Ul a proposal of a dominant mechanism of “nonlinear mixing.” It might
probably still be a recognizable phenomenon of subcriticahppear that the division of this latter part of the loop into two arrows—
transition to turbulence(The same view has been pro- E“:akdo‘g‘"; f°'L°(Vg;a dbb%/tﬁg?neratﬁon_\/\r/ipresemsl'a o g diﬁec;ence
. etween(a) an , but this is not so. en “nonlinear mixing” is mod-
pounded by,the Mar_bur'g group; see Sec.)VI. . eled by arbitrary quadratic interactions among variables, these two phases
To elucidate this idea, we proposed a two-variableysyally still emerge, for reasons explained in Sec. IX.

model:

vortex regeneration
(non-linear interactions)

’ -1
u -R 1 u . . .
(v) =( 0 2R‘1) (U) tinct so that readers would not be distracted by nondiagonal-
B izability), so let us immediately simplify the equations to the
all/o =1\ (u following form:
+
GG ST A
S I [
where the prime denotes differentiation with respedt émd v -RY \v v
|-|| is the 2-norm(square root of sum of squajeThe pres- 1
ence of distinct coefficients R~ and —2R ™! along the di- v ) (“) _
agonal of the first matrix, however, is of little significance to 1 v
the behavior of this systerfihe coefficients were made dis- (TTRD)
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ure. In Fig. 4, for example, the total amplification ultimately
10° | achieved by the smallest above-threshold initial condition is
visibly about three times as great, on the log scale, as the
1 purely linear amplification exhibited by the lower curves.
_2 ] These guesses are rough, however, and our confidence that
the exponents are integers is based on much more than a
1 single picture. For most of the ten cases we have been able to
" prove that the exponent claimed is correct by a rescaling

10

10 /’f analysis(not described hejeFor all of them, we have con-
r 3 firmed the exponent by numerical experiments that show an
10" . . - R“ dependence that is clean and unambiguous.

0 200 400 600 800 We have described the amplitude of the initial vector
y(0) but not its direction. For Fig. 4 and the other analogous
plots of this papery(0) is always determined by the follow-

FIG. 4. Evolution curves for the modglTTRD) (threshold exponent ing recipe:
a=—3) with R=100. The curves show the vector nofiy(t)| for initial
conditions of amplitudefy(0)|=10"7, 1075, 1075,...,10°2 V(0)=C(YmaxT 0-Yand - 3

Here,ymax denotes the unit vector that grows most rapidly at

Here and throughout this paper, blank matrix entries aré=0, that is, with|ly /=1 and @/dt)|e' y .| att=0 as

zero. In this system of differential equations, the first termlarge as possiblpobtained via the eigenvalue decomposition

represents a linear, nonmodal transient amplifying process aif (A+A*)/2]. The vectoly,,,qis a unit vector whose entries

amplitude O(R) and time scaleO(R). The second term are first taken as independent samples from the standard nor-

mixes the two variables nonlinearly but does not directymal distribution, then rescaled by a constant so that

affect the energy, since the matrix involved is skew-|ly.and/=1. Thusy(0) consists of a vector designed to excite

symmetric. great linear growth plus a noise vector of relative size 10%
Figure 4, based on Fig. 10 of Ref. 2, gives an indication(by amplitude or 1% (by energy. Such noise is necessary in

of the behavior of(TTRD) for R=100. In this paper we some of our low-dimensional models—as in the Navier—

present a number of figures of this kind, always following Stokes equations themselves—to break symmetries associ-

the same format. Eleven curves are shown, corresponding ®ied with structures independent of the streamwise or span-

ly(t)|| as a function of for eleven different initial conditions Wwise coordinate. Its initial amplitude has little effect on the

y(0), wherey represents the vector of dependent variablesverall behavior.

[here, y=(u,v)"]. The initial conditions have norms Though we present only one figure for each model de-

ly(0)|=10"7,10"%51076--- ,1072. In Fig. 4, as in our other scribed in this paper, several runs have in fact been made in

analogous figures, one sees that the lower curves have agach case, with distinct vectoys,,q, to ensure that the be-

proximately the same shape, differing only in vertical dis-havior in the plot presented is typical.

placement. This is because in these cases, the amplitudes are In summary: for our first model under consideration,

too low for the nonlinear terms to have much effect. What(TTRD), a bootstrapping phenomenon occurs and the thresh-

remains is just the linear, nonmodal behavior: amplificationold exponent ise=—3.

by about 1.5 orders of magnitude followed by slow decay to

the zero state analogous to laminar flow. The upper curves,

hpwever, are strongly affected by nonlinearity._ At the l:_uegin-lv_ OTHER CORNELL MODELS

ning, they follow the shape of the linear evolution, but in the

cases withlly(0)[|>10"°", they are attracted as—»= to a Equation(TTRD) has been criticized on the grounds that

state of magnitud€®©(1), analogous to turbulent flow. although the norm||-| may be appealingly simple, the
What is important in Fig. 4 is that although the linear Navier—Stokes equations contain quadratic products of vari-

amplification is by less than two orders of magnitude and theables, not norms. It is easy to modiff TRD) so that it will

nonlinear terms conserve energy, the ultimate amplificatiomave this property. For example, we may consider

in the nonlinear system is by close to six orders of magni-

tude. This is the phenomenon called “bootstrapping.” Spe-( U) ,z( -R™ 1 ) u i —u) ( U) (TTRD')
cifically, for this particular model witiR=10?, the threshold v -R7\v u v
amplitude for transition is about@L0 ®, and this figure de-
creases with exponemnt=—3 asR—o. or
Ten figures analogous to Fig. 4 are presented in thig |’ [—-R™! 1 u -v\lu
paper, corresponding to differing low-dimensional modelsjv) =( —R‘l) ol v )(v) (TTRD")

In every case, the equations possess a threshold expanent
that we believe to be an exact integeB, —2, or —1. (As  Figures %a) and §b) show the evolution of TTRD’) and
discussed at the end, we do not necessarily expect an exa@tTRD") for various initial amplitudes. The first looks al-
integer for the actual Navier—Stokes equatipris. most  most exactly the same as Fig. 4 for amplitugigh<1; again
cases, the exponent can be guessed from looking at the fighe threshold exponent ig&=—3. The second looks qualita-
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(a) Model (TTRD’) (threshold exponent ¢ = —3)

FIG. 6. Evolution curves for modéBDT) (threshold exponent=—3) with
R=100.

10

As expected, Eq(4) differs from (TTRD) in that arbi-
trary choices of nonlinear coefficients yield transition with
probability close to 1, not 0.5, for sufficiently higR. De-
pending on the choices @af, b, andc, the asymptotic*“tur-
bulent”) state may be a finite fixed point, the point at infin-
ity, a limit cycle, or chaos. The early stages of transition are
independent of the final state, and the threshold exponent is
againa=—3. These matters are discussed in detail in Ref. 7.

As before, for the purposes of this paper it is convenient
to discard most details and consider simply

10

10

2///

10

0 200 400 600 800

(b) Model (TTRD”) (threshold exponent o = —2)

FIG. 5. Evolution curves for two other two-variable models Wik 100. al’ —R! R
v — _ R*l R~ 1/2
tively similar, but now the bootstrapping effect is evidently w -R7! w

weaker, and in fact, we hawe=—2. In Sec. IX we explain

why these different exponents appear. u -11 u
A second criticism of TTRD) has been that if the matrix +{| v 1 1| v (BDT)
in the nonlinear term is chosen at random, though still skew- w -1 -1 w

symmetric, then transition is observed with probability only

0.5. The other half of the time, the nonlinear mixing rotatesThis system captures the essence4)f though of course,
energy in the phase plane in the wrong direction, shutting offince the constanis,b,c have been set arbitrarily ter1, it

the loop of Fig. 8a). One might think that this shutoff effect exhibits only a single behavior ds- for any fixed choice
calls into question the idea that arbitrary nonlinear mixing isof initial data. Figure 6 shows the evolution @DT) in the
likely to generate a phenomenon of subcritical transition. Inusual format. Again we have a bootstrapping phenomenon,
fact, it is an artifact of the triviality of two-dimensional dy- and the threshold exponentds=—3.

namics. To elucidate this point, a three-variable analogue of A third criticism of (TTRD) and(BDT) has been that in
(TTRD) was proposed in Ref. 7: the Navier—Stokes equations, “nonlinear mixing” must take
place in a more indirect fashion than in these models. In

u\’ —2R7T B(R) u plane Couette flow, for example, the strongest transient am-
v| = -2R™!  B(R) v plification is achieved by a vortex tilting mechanism acting
w —oRr" 1/ \w on structures independent of the streamwise coordinate, in
which a perturbation in the form of a streamwise roll advects
u a b u low- and high-velocity fluid to relatively high- and low-
+ v —a c v | (4 velocity surroundings, respectively, where it shows up as a
W b ¢ W streamwise streak. If the initial perturbation is perfectly in-

dependent of the streamwise coordinate, with zero energy in
As in (TTRD), the linear term here introduces transient, non-Fourier components corresponding to streamwise variation,
modal amplification of amplitudeO(R) and time scale then this situation must persist for all time and turbulence
O(R); the valueB(R) = 3.86\(R+ 1)/R?was chosenin Ref. cannot be achieved. Algebraically, we can see this by noting
7 so that the 'O” constants are approximately 1. The entries that the nonlinear interactions of the Navier—Stokes equa-
a,b,c in the nonlinear term were chosen arbitrarily, buttions for certain flow geometries operate in triads, obeying
scaled so that the matrix has norm 1. “selection rules” of the form
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(Tap, 2B+ (xay, £By)—(Tarray, £61*£B,), (5 0 YsBstyeBe  y3Bst+yiB,
B=| —YsBi—YeBs 0 y1Bi+y2Bs |,
wherea and 8 denote Fourier parameters in the streamwise —y3Bi—y.BI —yiBl—V.B;] 0
and spanwise directions, respectively. In particular, a single @)
mode (a,8) does not affect itself nonlinearly. Because
(TTRD) and (BDT) do not incorporate such selection rules,
one might expect that the Navier—Stokes equations shoul
exhibit a weaker bootstrapping effect than these models. Thi
possibility was mentioned in Refs. 7 and 2, where it wa

suggested tha may not be as low as-3 for actual fluid curves for (BT). As expected, the bootstrapping effect is

flows. . . weakened. However, it is still present: we have —2, not
Curiously, a roughly equivalent restatement of the above _

L a=—1. This is readily explained; see Sec. IX. Again there is
C”“C'S”.‘ is that the model¢TTRD) a‘r?d(B[.)'.I') Eossess an Jittle qualitative dependence on the nonlinear coefficients:
unphysical property: they undergo “transition” even when

L2 i ) . one gets transition with probability close to 1. As expected,
the initial vector is uncontaminated by noise. In these mod, 9 P y P

_ . . however, this is our first model for which transition fails to
e_zls, an initial vectory(O) d_etermlned solely on the baS|s_<_)f oceur if the noise term of3) is removed.
linear algebra_con5|derat_|ons is enough to excite transition. We have now presented plots fy(t)| vs t for five
We conf_|rm this by experlm_en'(slot shown that reveal th_at low-dimensional models. Do all the figures look more or less
if the noise component dB) is removed, the curves of Figs. alike, at least for amplitudegy| <1? That, of course, is pre-

4-6 change very little. cisely the point. Although the various criticisms @GfTRD)

BD!It') Its a stra|ghttforwe|1rdt.matteir tol mOd'ngT F:]D()j andk. that we have mentioned were all motivated by valid obser-
( 0 Incorporate Selection rules. n unpublished Work N, o nq apout fluid flows, none of them bear upon the quali-

early 1995, we replaced the single pair of variables of .. : . .
. . . .~ tative behavior of these systems of equations for low distur-
(TTRD) by three pairs of variables. The resulting six- y 9

. ) bance amplitudes or the phenomenon of subcritical transition
variable model can be written With a< —1

where B4, ...,Bg are arbitrarily chosen 22 matrices with
IBjl=1. Because of the zero blocks on the diagonal7n

e quadratic terms ifiBT) affect each of the three>2
§ubsystems only via products of the other two, which is the
Sessence of a selection rule aq'm. Figure 7 shows evolution

y' =Ay+B(y)y (BT) v, CTR/MIT MODEL

with We now turn to a model that was conceived in an en-
tirely different manner. This is the model proposed by Wal-
effe in Refs. 10 and 11. It arose from studies of turbulence,
not stability: specifically, from investigation of the genera-
-R7! tion and regeneration of streaks near boundaries in turbulent
—-R! 0 flows. In Waleffe’s thinking, the essence of his model is
A= distinctly nonlinear.
Waleffe’'s work in this area began around 1990 in col-
-R7? 0 laboration with Kim and Hamilton at the Center for Turbu-
—R1 lence Research. The questions that led to it were some of
those that have been important in studies of turbulence, such
(6) as, what determines the spacing of streaks in turbulent
and boundary layers? As in the recent studies of hydrodynamic
stability, it was recognized from the start that the mechanism
of streak generation was linedrBut the emphasis in this
work was on the search for a nonlinear mechanism that
might produce a ‘“self-sustaining process” whereby streaks
10° | § could form, decay, and form again.

In Refs. 8 and 9, Waleffe and his colleagues proposed
the self-sustaining process schematized in Fi@).3An the
upper-left portion of the loop in that figure, streamwise vor-
ticity generates streamwise streaks by linear advection.

w0 These streaks then break down according to an instability
f that can be viewed as linear and modal, essentially the
f\ Kelvin—Helmholtz instability. Finally, nonlinear interactions
10° . . occur that recreate streamwise vorticity, and the process con-
0 200 400 600 800 tinues.
The cycle of Fig. &) is not formulated as an ordinary
FIG. 7. Evolution curves for modgBT) (threshold exponent=—2) with differential equations model in Refs. 8 and. 9. In 'reactlon 'tO
R=100. These curves are based upon one parti¢iaadom choice of the ~ Ref. 2, however, Waleffe wrote a paper in which he did
matricesB; in (7). formulate his views in this wa}’ Upon publication of Ref.

10

"
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7, he wrote a second paper in which the model was general- " - -
ized to include explicit Reynolds number dependeficehis 100 L s —pnd
model, containing four variables, takes the form /
" [ =AR7! m 2
u u 10 1
v| = —uR71 v ]
w - VR_l W 10“ 3
—w\ [y N ]
J— - 1 1
+ wl v, (8) %% 200 400 600 800
YW —Sw w
m' =—-oR 'm+ R 1—up, FIG. 8. Evolution curves for modéW) (threshold exponent=—2) with
R=100.

where\, u, v, o, v, and é are positive constants of order 1;

it is mentioned that in a more refined analysisnd 6 would

have some dependence & Unlike the variables in the u
models of the last two sections, the variableg8nare given v| = -R7? v

physical interpretations from the start. Roughly, they repre- w R \w

sent amplitudes of a streamwise streak,(a streamwise

vortex (v), a streamwise undulation of the streak that renders —W u

it unstable ), and the mean shear amplitudm)( For a 4 W v | (W)
laminar flow, the values are=v=w=0 andm=1.

As written above, Waleffe's equations do not exhibit a
separation into linear and quadratic terms; the entip the  Figure 9 shows the corresponding evolution curves. The glo-
first matrix and the inhomogeneous tef1? in the scalar  bal behavior is entirely different from that ¢®V), but the
equation break the pattern. However, this is an artifact of dow-amplitude behavior is almost the same, and again the
choice of variables in which the laminar flow corresponds tothreshold exponent ia=—2.
m+#0. To regularize the situation, let us defime 1—m. The

equations become VI. MARBURG MODEL

W —wW w

" \R"! 1 Now we cross the Atlantic to the fluid mechanics group
of Siegfried Grossmann at the University of Marburg in Ger-
many.

The Refs. 2, 21-23 cited above were a closely related
series of works appearing in 1991-1993 on the subject of
linear, non-normal effects in hydrodynamic stability. When
u these papers were written, their authors were apparently un-

Sw v aware of a remarkable publication by Boberg and Brosa that
—sw W had proposed many of the same ideas four years e&tlier.
W (Certainly this was true in our own cagén retrospect, it
v : now appears that the schema of Fi¢p)3vas first described
W)

_MR*l
—vR7?

S5 S < C
S5 S < C

—yW  —v

Waleffe does not discuss the threshold exponent exhib-
ited by this model. We have computedfor (W) and find
that it is —2. The evolution curves are shown in Fig. 8 for the 10° ]
arbitrary choicen=u=v=0=vy=45=1.

For the study of turbulence, since the perturbations of
the laminar state involved are of order 1, an important fea- 10 3
ture of Waleffe’s model is the energy balance reflected in the
variablen. For the study of threshold exponents:—1 for “

transition, however, it is the behavior of low-amplitude per-
turbations that dominates. The energy balance is of little con- f\
sequence so long as<—1, andn can be replaced by zero. 10° . ;

Since our concern in this paper is qualitative behavior rather 0 200 400 600 800
than quantitative details, we may also replace the constants

A A o, and 6 by 1. Now the equations reduce to & i, 9. Evolution curves for modéW’) (threshold exponent=—2) with
three-variable system: R=100.
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in the Boberg-Brosa paper. The Marburg group, like the Cor- B, (y,y)=0.2y,y,+0.4iy,y% +0.6y*y,+0.8y*y*
nell group, have taken the view that more or less arbitrary

nonlinear mixing is sufficient to induce transition in flows — 145 (1+1.2)y,y5 — 1.6y3%

with non-normal linear amplification. Boberg and Brosa _ - * ok w
write bluntly, “The nonlinearity is a random mixer.” Ba(y.y)=y1y2+ 1.2yTy,+ 1.4y1y; +1.6y1Y7
Though some low-dimensional models are discussed in —0.6y;—(0.2+0.4))y,y; —0.8y}?,
Ref. 12, for example of dimensions 10 and 20, no single
model is settled upon and no Reynolds number dependen'
is included. More recently, however, prompted by the two- —lyl (0 o.
dimensional mode(TTRD), Gebhardt and Grossmann have  C(||lyl))= oyl 7)
; L AV A+]yl[\o o
published a paper in which they propose a model containing
two complex variables that they argue is reasonably close tth these equations, th& term represents linear nonmodal
the Navier—Stokes equatiofisThis work is close to that of amplification, theB term is quadratic and energy conserving
Ref. 7; the two were independent and approximately simul{though this is not obvious as writtgrthe C term is a mean
taneous. To facilitate comparisons, we have rescaled Gelflow adjustment analogous to Waleffe’s fourth equation in
hardt and Grossmann’s variablesindu (which we cally)  (8), cutting off the non-normal amplification fdju||=0O(1),
by factorsR andR ™2, respectively, and then replac&by  andvyis a zero or nonzero parameter corresponding to back-

R/20. Their equations now take the form ground advection.
, These equations look quite different from those we have
y' =Ay+B(y,y)+C(lyly. (GG)  considered so far. However, let us rewrite them in terms of
where real variables. Settingy=(u,v,w,x)=(Rey,;,Imy;,Rey,,
Imy,) and takingy=0, we are led to the equation
_ -1 : ,
Ao TORFO8Y 0.7 y'=Ay+B(y)y+C(lyly, (GG
_ -1 PR
-0.R?! 0.7
-0.R?! 0.7
A= —1.9R1? ,
-1R1?
0 —X—2wW du—12w+4v—8x  3v+2x+6u—8w
1 X+ 2w 0 —2v—7x+4u—14w 3u—7w—2v+2x
B(y)=—=
) 5| —4u+12w—4v+8x 2v+7x—4u+14w 0 —5v—6u ’
—3v—2Xx—6u+8w —3u+7w+2v—2x 5v+6u 0
|
and to be @=—3. This expectation is confirmed by experiments
(Fig. 10. On the other hand if a nonzero advection param-
0 0 07 O eter y is chosen in the same model, the exponent at least in
00 0 07 some cases becomes=—2 (not shown herg illustrating
c(lylh= —llyl _ that shear may enhance stability by tearing apart unstable
01+[y[{o 0o 0o o structures. This is related to the phenomenon that the thresh-
0 0 old exponent appears to be closer to O for plane Couette flow

than for plane Poiseuille flow, as mentioned in the

. _ o _ Di iorf>
Note thatB(y) is skew-symmetric, explaining why this term ISCUSsIo

is energy conserving.

The complicated entries d8(y), while intended to be
physically plausible, were selected somewhat arbitrarily by, sTOCKHOLM MODEL
Gebhardt and Grossmann. In Ref. 13 there is no discussion
of the exponenty, though there is some consideration of Numerous contributions have been made to questions of
threshold amplitudes near Figs. 6 and 8. For a model of thigransition over the years by a group of researchers whom we
kind with no selection rules, one would expect the exponentnay loosely associate with the Royal Institute of Technology
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10 1

0 200 400 600 800 0 200 400 600 800

i

FIG. 10. Evolution curves for modéGG) (threshold exponent=—3) with FIG. 11. Evolution curves for modéKLH) (threshold exponent=—1)

R=100. (For nonzero values of the advection paramegethe exponent iy R=100. This is the only figure in this paper in which no bootstrapping

changes tar=-2,) appears. Note that the vertical scale is shifted by two orders of magnitude;
the initial amplitudes have been correspondingly shifted [s0)]|
=1075,...,10.

in Stockholm. Among the central figures in the recent work
are Dan Henningson, who was also at MIT for a time, and/ |\ ' —-R1 1

Peter Schmid, his student at MIT. R ;I N v\c/)z

In 1992, Henningson and Schmid proposed a three
variable model of certain features of transition to turbulence,\ "V —R77)\W uw
though without Reynolds number dependeffc&his model (KLH")

involved three eigenmodes, and the linear term was accor
ingly diagonal; this was before this group became fully in-
volved in the non-normal developments of Refs. 2, 12, an
21-23. Rather than giving further details, let us turn to a
later model proposed by Kreiss, Lundbladh, and Henning-
son. This model appears in a paper explicitly devoted to th
question of threshold exponeritslts origin is rather differ-
ent from the other models we have discussed, however, fof!ll: GOTEBORG MODEL

besides be|ng motivated by the Navier—Stokes equat|0ns Not far away in Sweden’ another group has been active
themselves, it is also designed to illustrate certain points reqt the Chalmers Institute of Technology in"@borg. A
garding the mathematical techniques used in that paper.  manuscript by Claes Johnson and Mats Boman of Chalmers

The KLH model is as follows: together with Rolf Rannacher of the University of Heidel-
, _R-t 1 berg proposes a three-variable ODE moddédlhe motivation
u u 0 for this model is tied to computational fluid mechanics: these
v | = -R7! v+ w. researchers are concerned with error control in numerical
w -1 w uw simulations, a challenging problem since small perturbations

(KLH) may have large and long-lasting effects.
Like Waleffe’s equationg8), the equations of Ref. 15

are not written in our standard linear-plus-quadratic form.

qor someo presumably in the rangesr<1. As we explain

n Sec. IX, the threshold exponent becomes—1—¢. The
corresponding energy history is plotted in Fig. 12 for the
Gcaser=1. Note the strong resemblance to Fig. 9; BEyg!)
an nd(KLH') are almost the same.

Hereu represents a streamwise streaka streamwise vor-
tex, andw a nonstreamwise mode of some kind. The nonlin-
ear term is intended to be suggestive of certain processes
without capturing them accurately, and energy conservation
is intentionally not included in the model. 10° 1

Like the other models we have consideréd, .H) con-
tains a non-normal matrix as its linear term. The threshold
exponent for transition turns out to lae=—1, the first time
we have encountered a value that is rot 1. See Fig. 11.

The reason for the exponeat=—1 is easily spotted.
The (3,3 entry of the linear term ofKLH ) is —1, not—R™%.
This term represents advective decay, and the entrycor-
responds to a decay rate independenRoif one modifies
this part of the model to allow a diminishing decay rate as
R—o, which might be thought of as an approximation to a
problem with decreased advective decay, one obtains g 12 Evolution curves for modéKLH") (threshold exponent=—2)
model such as with o=1, R=100.
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However, by replacing their variable;—1 by u, we can achieve amplitudé€(1), after which anything may happen.
remedy this. To facilitate comparisons we also rename othdn other words, the threshold exponent for “transition” in
variables of Ref. 15 as followsR=v"1, v=u,, w=us, Egs.(9)—(11) is a=—2.

a=1y,, b=7v,3, andc=1v3;. The equations become Models(TTRD"), (BT), (W), and(W’) fit the pattern just
described. FofTTRD"), this is obvious; the variablas and

’ -1
u R a b u v play the roles ofp and i, respectively. For the others, the
v = —-R™* v variableu [or y, in the case ofBT)] plays the role ofp, and
w R/ \W all the other variables collectively correspond o In the
case of(W'), for example, the ternuw represents the qua-
auv +buw dratic interactioneys of (9), feeding energy back from the
+ 0 , (JRB) output of the linear amplifiery) into the rest of the system
cR luw (v andw).

In Eq. (9), there is no quadratic terg’. The absence of
wherea,b,c are nonnegative constants. Note that the varithjs term is the representation within Eq8)—(11) of the
able v in this system evolves linearly, unaffected by the crucial “selection rule” of the kind discussed earlier. Physi-
other variables. For—c, (JRB) is in fact close to the two- cally, we may think of the fact that a purely streamwise
variable mode(TTRD"), except that the quadratic coupling streak, no matter how large in amplitude, cannot by itself
term cR™*uw has coefficientO(R™?) instead ofO(1). For  feed energy into modes that are not independent of the
this reason, the threshold exponent turns out toebe-1  streamwise coordinate. By contrast, if we have a system with
(figure not shown no such selection rule, we can caricature it by changirig

to ¢2 in Eq. (9). Equations(9)—(11) become

' 2 —
IX. WHY THESE FIGURES ALL LOOK ALIKE: v'=e% P0)~e, (12
TWO VIEWS OF STREAK INSTABILITY W' ~(eR)2,  Y(0)~e (13)
We come now to the mathematical heart of this paper. w(t)~(eR)2t 0<t<O(R) (14)

Why do all the curves we have presented look so similar, at
least as long as the amplitudes reme&ih? The answer was leading toy(t)=0(€’R%) att=0(R). Now, if €R® is of
summarized in the caption of Fig. 3. The Cornell and Mar-order € or greater, thery may be larger at=0O(R) than it
burg groups speak of “nonlinear mixing,” and the CTR/MIT was att=0. Another round of amplification at a higher level
and Swedish groups speak of “streak instabilities” and othemmay begin, leading to self-sustaining growth up to amplitude
physical notions, but these are different ways of looking atO(1). In other words, the threshold exponent for “transi-
the same phenomena. In a system exhibiting linear, nortion” in Egs. (12—(14) is determined by the condition
modal transient growth, more or less arbitrary nonlinearitiess=€°R3, giving a=—3.2 Models (TTRD’) and (GG) fit this
may produce a “streak instability;” one does not have to putpattern. So do modelr'TRD) and (BDT), though the qua-
it in the model explicitly. dratic nature of the nonlinearity is obscured by the use of the

To explain this statement, we now present heuristic arnorm|ly|.
guments that explain the threshold exponents we have ob- We remark that the question of whether or not a model
served. Each of these models contains a linear, nonmodé#icorporates selection rules is not as black-and-white as the
amplifier of gainO(R) and time scaléD(R). Consider the above discussion may suggest. For example, we mentioned
following caricature. The output of the amplifiéthe rela- that (TTRD"), (BT), (W), and (W’) all contain the crucial
tively high-amplitude quantity in the early stages of a pro-selection rule that ng? term is present. However, the last
cess of transitionis a variableg(t). All other quantities of three of these carry the idea further than the first by incor-
interest, including the input to the amplifier, are representegorating an additional selection rule within the group of vari-
by another variable/(t) (potentially of much lower ampli- ables corresponding . Specifically[in the notation of W)
tude in the early stages of transitjoBoth ¢ andy start with ~ and (W')], u does not affecv directly, but only indirectly
amplitudee. The variablep(t) grows to sizeeR by linear, throughw. As a result, though the final threshold exponent
non-modal effects, and lingers at that level for a tiOR). is not affected,(BT) and (W) and (W') require “noise” in
The variabley grows by quadratic interactions, the form of an initial valuav+#0 to excite transition, whereas

, (TTRD") has no such requirement.

Vi=ed 9(0)=e ©) Easy modifications of these arguments explain why our
hence for a period of duratio®(R), remaining three model$kKLH) and(KLH ") and(JRB), have
threshold exponenta=—1, —1—o0, and —1, respectively.

yr=eRy, YlO0)=e (10 The two-variable caricature Eq$9)—(11) has more
with solution physics in it than one might expect. In this pair of equations,
H(t)~eeR,  0=<t<O(R). (11) the presence of an approximately steady high-amplitude sig-

nal ¢(t) makes it possible for a second signit) to grow
All together, we predict exponential growth at rate up to  exponentially over many orders of magnitude. This is noth-
an amplitude of ordeee®’. UnlesseR? is bounded, this ing more than an abstract description of a linear secondary
corresponds to growth by an arbitrary factor, so thhahay  instability. In the case of the breakdown of a streamwise
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