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Abstract. A method is described for the computation of the Green’s function in the complex plane
corresponding to a set of K symmetrically placed polygons along the real axis. An impor-
tant special case is a set of K real intervals. The method is based on a Schwarz–Christoffel
conformal map of the part of the upper half-plane exterior to the problem domain onto
a semi-infinite strip whose end contains K − 1 slits. From the Green’s function one can
obtain a great deal of information about polynomial approximations, with applications in
digital filters and matrix iterations. By making the end of the strip jagged, the method
can be generalized to weighted Green’s functions and weighted approximations.
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1. Introduction. Green’s functions in the complex plane are basic tools for the
analysis of real and complex polynomial approximations [10, 21, 24, 30, 32], which
are of central importance in the fields of digital signal processing [16, 17, 19] and
matrix iterations [5, 6, 11, 20, 28]. The aim of this article is to show that when the
domain of approximation is a collection of real intervals, or more generally symmetric
polygons along the real axis, the Green’s function can be computed to high accuracy
by Schwarz–Christoffel conformal mapping. The computation of Schwarz–Christoffel
maps has become routine in recent years with the introduction of Driscoll’s MATLAB
Schwarz–Christoffel Toolbox [4], a descendant of the second author’s Fortran package
SCPACK [26].

The Green’s function for a single interval can be obtained by a Joukowsky confor-
mal map, and related polynomial approximation problems were solved by Chebyshev
in the 1850s [3]. For two disjoint intervals, the Green’s function can be expressed
using elliptic functions, and approximation problems were investigated by Akhiezer
in the 1930s [2]. For K > 2 intervals, the Green’s function can be derived from a
more general Schwarz–Christoffel conformal map, and the formulas that result were
stated in a landmark article by Widom in 1969 [32]. Polynomial approximations can
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be readily computed in this case by the Remes algorithm, which was adapted for
digital filtering by Parks and McClellan [3, 18].

By a second conformal map, these ideas for intervals can be transplanted to the
more general problem of the Green’s function for the region exterior to a string of
symmetric domains along the real axis [32, p. 230]. The conformal maps in question
cannot usually be determined analytically, however, and even for the case of intervals
on the real axis, the formula for the Green’s function requires numerical integration.
Here, for the case in which the domains are polygonal and thus can be reduced to
intervals by a Schwarz–Christoffel map, we carry out the computations to put these
ideas into practice.

Our algorithm makes possible the computational realization of results in approx-
imation theory going back to Faber, Szegő, Walsh, Widom, and Fuchs, among others.
In particular, Walsh, Russell, and Fuchs obtained theorems concerning simultaneous
approximation of distinct entire functions on disjoint sets in the complex plane [8, 9,
30], which we illustrate here in section 6. Wolfgang Fuchs had been for many years a
leading figure at Cornell University until his unfortunate death in 1997.

2. Description of the Algorithm. Let E be a compact subset of the complex
plane consisting of K disjoint polygons P1, . . . , PK numbered from left to right, with
each polygon symmetric with respect to the real axis. Degenerate cases are permitted
in which a portion of a polygon, or all of it, reduces to a line segment (but not to a
point). The Green’s function problem for E is defined as follows.

Green’s Function Problem. Find a real function g defined in the region of the complex
plane exterior to E satisfying

∆g(z) = 0 for z /∈ E,(1a)
g(z)→ 0 for z → E,(1b)
g(z) ∼ log |z| for z →∞.(1c)

In (1a), ∆ denotes the Laplacian operator and thus g is harmonic throughout
the complex plane exterior to the polygons Pj . Standard results of potential theory
ensure that there exists a unique function g satisfying these conditions [12, 13, 29, 32].

The solution to (1) can be constructed by conformal mapping. What makes this
possible is that the problem is symmetric with respect to the real axis, so it is enough
to find g(z) for the part of the upper half-plane Imz ≥ 0 exterior to E; the solution in
the lower half-plane is then obtained by reflection (the Schwarz reflection principle).
This half-planar region is bounded by the upper halves of the polygons Pj and by
the intervals along the real axis that separate the polygons, where the appropriate
boundary condition for g, by symmetry, is the Neumann condition dg/dn = 0.

Restricting the map to the upper half-plane makes the domain simply connected,
suggesting the following conformal mapping problem.

Conformal Mapping Problem. Find an analytic function f that maps the portion of
the upper half-plane exterior to E (Figure 1(a)) conformally onto a semi-infinite slit
strip (Figure 1(c)). Only the vertices f(S1) = πi, f(TK) = 0, and f(∞) = ∞ are
prescribed. The remaining vertices, and hence the lengths and heights of the slits, are
not specified.

Once this mapping problem is solved, the function g defined by

(2) g(z) = Re(f(z))

is the Green’s function (1) for values of z in the upper half-plane. To see this we
note that g satisfies (1a) because the real part of an analytic function is harmonic,
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Fig. 1 Determination of the Green’s function g(z) by a composition of two conformal maps, g(z) =
Ref(z) = Ref2(f1(z)). (a) The problem domain is restricted to the part of the upper half-
plane exterior to the polygons Pj . (b) The first Schwarz–Christoffel map f1 takes this problem
domain onto the upper half-plane itself. (c) The second Schwarz–Christoffel map f2 takes the
upper half-plane to a slit semi-infinite strip. The interval [sj , tj ] maps to a vertical boundary
segment [σj , τj ] with Re[σj , τj ] = 0. The gaps along the real axis between the intervals [sj , tj ]
map to horizontal slits, and the semi-infinite intervals (−∞, s1) and (tn,∞) map to semi-
infinite horizontal lines with imaginary parts π and 0, respectively. Only the real parts of
the left endpoints of the slits are prescribed; the imaginary parts and the right endpoints αj ,
as well as their pre-images aj , are determined as part of the calculation.

it satisfies (1b) because of the form of the slit strip, and it satisfies (1c) because the
half-strip has height π. The existence and uniqueness of a solution to the Conformal
Mapping Problem can be derived from the standard theory of conformal mapping [12]
or as a consequence of the corresponding facts for the Green’s Function Problem.
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w-plane
w = Φ(z)

Fig. 2 Composition of a third conformal map, the complex exponential, transplants the slit strip to
the exterior of a disk with radial spikes in the upper half-plane. Reflection in the real axis
completes the map of the problem domain of Figure 1(a), yielding a function w = Φ(z) such
that g(z) = log |Φ(z)|.

The function f(z) is a conformal map from one polygon to another and, as such,
it can be represented by Schwarz–Christoffel formulas, an idea going back to Schwarz
and, independently, Christoffel around 1869. Figure 1 shows how f can be constructed
as the composition of two Schwarz–Christoffel maps. The first one maps the problem
domain in the upper half-plane to the upper half-plane, with the upper half of the
boundary of the polygon Pj going to the interval [sj , tj ]. This mapping problem is a
standard one, for which a parameter problem must be solved to determine accessory
parameters in the Schwarz–Christoffel formula; see [4, 12, 26]. By the second Schwarz–
Christoffel map, the upper half-plane is then mapped to the slit strip. This is a
Schwarz–Christoffel problem in the reverse, more trivial direction, with only a linear
parameter problem to be solved to impose the condition that the upper and lower
sides of each slit have equal length. Details can be found in [23] and [32]. A related
linear Schwarz–Christoffel problem involving slits in the complex plane is implicit
in [14].

By composing a third conformal map with the first two, we obtain a picture that
is even more revealing than Figure 1. Figure 2 depicts the image of the slit strip
under the complex exponential: w = Φ(z) = exp(f2(f1(z))). The vertical segments
now map onto arcs of the upper half of the unit circle, the slits map onto radial spikes
protruding from that circle, and the infinite horizontal lines map to the portion of the
real axis exterior to the circle. The real axis is shown dashed, because we immediately
reflect across it to get a complete picture.

By the composition Φ(z) of three conformal maps, we have transplanted the K-
connected exterior of the region E of Figure 1(a) to the simply connected exterior of
the spiked unit disk of Figure 2. (These connectivities are defined with respect to the
Riemann sphere or the extended complex plane C ∪ {∞}.) The Green’s function for
E is given by the extraordinarily simple formula

(3) g(z) = log |Φ(z)|.
Have we really mapped a K-connected region conformally onto a simply connec-

ted region? No, this is is not possible, and to resolve what looks like a contradiction
we must think more carefully about reflections. Suppose in Figure 1(a) we think of
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the finite dashed intervals as branch cuts not to be crossed, and reflect only across
the semi-infinite dashed intervals at the ends. Then the complement of E becomes
simply connected, and we have indeed constructed a conformal map onto the simply-
connected region of Figure 2. However, the Schwarz reflection principle permits reflec-
tion across arbitrary straight lines or circular arcs. There is no reason why one should
exclude the finite intervals in Figure 1(a) as candidates, which would correspond in
the w-plane to reflection in the protruding spikes of Figure 2. When such reflections
are allowed, Φ(z) becomes a multivalued function whose values depend on paths in
the complex plane—or equivalently, a single-valued conformal map of Riemann sur-
faces. Even under arbitrary reflections with arbitrary multivaluedness, fortunately,
(3) remains valid, since all reflections preserve the absolute value |Φ(z)| and g(z) de-
pends only on this absolute value. Therefore, for the purpose of calculating Green’s
functions, we escape the topological subtleties of the conformal mapping problem.

The phenomenon of multivaluedness is a familiar one in complex analysis. An
analysis of the multivalued function Φ(z) is the basis of Widom’s approximation-
theoretic results in [32], and earlier discussions of the same function can be found, for
example, in [30] and [31].

3. Computed Example: Electrostatic Interpretation. Our first computed ex-
ample is presented in detail to illustrate our methods. The region E of Figure 3(a)
has K = 2 polygons, a red hexagon and a green square. (The hexagon is defined by
coordinates −6.5, −5 ± 1.5i, −5.75 ± 2.25i, −8, and the square by coordinates 9.5,
8.75 ± 0.75i, 8.) In Figure 3(b), three subsets of the real axis have been introduced,
blue, turquoise, and magenta, to complete the boundary of the half-planar region.
Figures 3(c) and 3(d) show the conformal images of this region as a slit strip and the
exterior of the disk with a spike. The color coding is maintained to indicate which
boundary segments map to which.

All of these computations, like those in our later examples, have been carried out
with the high accuracy that comes cheaply in Schwarz–Christoffel mapping [26]. Thus
our figures can be regarded as exact for plotting purposes. For the sake of those who
may wish to duplicate some of these computations, in the sections below we report
occasional numbers, which are believed in each case to be correct to all digits listed.

Green’s functions have a physical interpretation in terms of two-dimensional elec-
tric charge distributions, that is, cross sections of infinite parallel line charge dis-
tributions in three dimensions. In Figure 3(d), the equilibrium distribution of one
(negative) unit of charge along the unit circle is the uniform distribution, which gen-
erates the associated potential g(w) = log |w|. By conformal transplantation under
the map z = Φ−1(w), this maps to a nonuniform distribution along the boundaries of
the polygons Pj in the z-plane. This nonuniform charge distribution on the polygons
Pj is precisely the minimal-energy, equilibrium charge distribution for these sets. It
is the charge distribution that would be achieved if each polygon were an electrical
conductor connected to the other polygons by wires in another dimension so as to put
them all at the same voltage. Mathematically, the charge distribution is distinguished
by the special property that it generates the potential g(z) with constant value on
the boundaries of the polygons.

4. Asymptotic Convergence Factor, Harmonic Measure, and Capacity. Ev-
ery geometrical detail of Figure 3 has a mathematical interpretation for the Green’s
Function Problem, which becomes a physical interpretation if we think in terms of
equilibrium charge distributions. We now describe several items that are particularly
important.
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z-plane

(a) Problem domain, showing the com-
puted critical level curve g(z) = gc as
well as one lower and one higher level
curve.

(b) To obtain these results, first the real
axis is drawn in as an artificial boundary.
Heavy lines mark the boundary of the
new simply connected problem domain.

(c) The half-planar region is then
transplanted by a composition of two
Schwarz–Christoffel maps to a slit semi-
infinite strip. The real interval between
the polygons (turquoise) maps to a hori-
zontal slit whose coordinates are deter-
mined as part of the solution. Verti-
cal lines in the strip correspond to level
curves of the Green’s function of the orig-
inal problem.

w-plane

w = Φ(z)
(d) Finally, the exponential function
maps the strip to the upper half of the ex-
terior of the unit disk. The slit becomes
a protruding turquoise spike. Here the
Green’s function is log |w|, with concen-
tric circles as level curves. Reflection ex-
tends the circles to the lower half-plane,
and following the maps in reverse pro-
duces the curves of (a).

Fig. 3 Color-coded computed illustration of our algorithm for an example with K = 2 polygons.
The blue, red, turquoise, green, and magenta boundary segments in the various domains
correspond under conformal maps. Fainter lines distinguish function values obtained by
reflection.
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Critical point, potential, and level curve. For sufficiently small ε > 0, the region
of C\E where g(z) < ε consists of K disjoint open sets surrounding the polygons Pj .
At some value gc, two of these sets first coalesce at a point zc ∈ R, which will be
a saddle point of g(z), i.e., a point where the gradient of g(z) and also the complex
derivative Φ′(z) are zero [30]. We call zc the critical point, gc the critical potential,
and {z ∈ C : g(z) = gc} the critical level curve. (We speak as if zc is a single point
and just two sets coalesce there, which is the generic situation, but in special cases
there may be more than one critical point and more than two coalescing regions, as
in Figure 7 later in the paper.)

These critical quantities can immediately be obtained from the geometry of our
Conformal Mapping Problem. Let wc denote the endpoint of the shortest protruding
spike as in Figures 2 or 3(d). Then zc = Φ−1(wc) (= f−1

1 (ajc), where jc is the index
of the critical point aj as in Figure 1), gc = log(|wc|), and the critical level curve is the
pre-image under Φ of the circle |w| = |wc|. For the example of Figure 3, zc = 2.517348,
gc = 0.634942, and the critical level curve is plotted in Figure 3(a).

Asymptotic convergence factor. In applications to polynomial approximation, as
described in section 6, the absolute value of the end of the shortest spike is of particular
interest. With the same notation as above, we define the asymptotic convergence
factor associated with g(z) by

(4) ρ = |wc|−1 = exp(−gc).
For the example of Figure 3, ρ = 0.529966.

Note that gc and ρ depend on the shape of the domain E, but not on its scale.
Doubling the sizes of the polygons and the distances between them, for example, does
not change these quantities. They are also invariant with respect to translation of the
set E in the complex plane.

Harmonic measure. Another scale-independent quantity is the proportion µj of
the total charge on each polygon Pj , which is known as the harmonic measure of Pj
(with respect to the point z =∞) [1, 7, 13]. This quantity is equal to π−1 times the
distance between the appropriate two slits in the strip domain (or a slit and one of
the semi-infinite boundary lines), or equivalently to π−1 times the angle between two
spikes (or a spike and the real axis) in the w-plane. In the notation of Figure 1,

(5) µj =
σj − τj

πi
.

For the example of Figure 3, the slit is at height Imσ2 = 1.290334, and dividing by π
shows that the proportion of charge on the green square is µ2 = 0.410726. The density
of charge at particular points along the boundary is equal to π−1|dw/dz| = π−1|Φ′(z)|,
a number that is easy to evaluate since the Schwarz–Christoffel formula expresses Φ(z)
in terms of integrals. (This density can be used to define the harmonic measure of
arbitrary measurable subsets of the boundary of E, not just of the boundary of Pj .)

Capacity. The capacity C (= logarithmic capacity, also called the transfinite
diameter) of a compact set E ⊂ C is a standard notion in complex analysis and ap-
proximation theory [1, 13]. This scale-dependent number can be defined informally as
the average distance between charges, in the geometric-mean sense, for an equilibrium
charge density distribution on the boundary of E. Familiar special cases are C = R
for a disk of radius R and C = L/4 for an interval of length L. For a general domain
E, C is equal to the derivative dz/dw evaluated at z = w =∞, that is, C = 1/Φ′(∞).
(Normally one would have absolute values, but for our problem, Φ′(∞) is real and
positive.)
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One way to compute C is to note that Φ(z) is the composition of f1(z) and
exp(f2(z)), in the notation of Figures 1 and 2, and f ′1(∞) is just the multiplicative
constant of the first of our two Schwarz–Christoffel maps. Thus the crucial quantity
to determine is the limit of z/ exp(f2(z)) as z →∞, whose logarithm is given by

lim
z→∞

(log z − f2(z)) = lim
z→∞

[ ∫ z

1
ζ−1 dζ −

∫ z

tK

f ′2(ζ) dζ
]

=
∫ ∞
tK

(
1

z + 1− tK
− f ′2(z)

)
dz

since f2(tK) = 0. This is a convergent integral of Schwarz–Christoffel type that can
be evaluated accurately by numerical methods related to those of SCPACK and the
Schwarz–Christoffel Toolbox.

Alternatively, we have found that sufficient accuracy can be achieved without the
explicit manipulation of integrals. Using the Schwarz–Christoffel maps, we calculate
the quantities

C(z) =
z

Φ(z)

for a collection of values of z such as z = 2j , j = 10, . . . , 15. The function C(z) is
analytic at z =∞, and the capacity C = C(∞) can be obtained in a standard manner
by Richardson extrapolation. For the example of Figure 3, C = 4.082273.

The ideas of this section can be spelled out more fully in formulas, generally
integrals or double integrals involving the charge density distribution; see [13, 21, 29].
We omit these details here.

5. Further Examples. Figures 4–7 present computed examples with K = 2, 3, 4,
and 5 polygons. In each case, the critical level curve of g(z) has been plotted together
with three level curves outside the critical one. In the case of Figure 6, a fifth level
curve has also been plotted that corresponds to the highest of the three saddle points of
g(z) for that problem. If the small square on the right in that figure were not present,
then, by symmetry, there would be two saddle points between the long quadrilaterals
at the same value of g(z). The square, however, breaks the symmetry, moving those
saddle points to the slightly distinct levels g(z) = 3.491 × 10−4 (shown) and g(z) =
3.681× 10−4 (not shown).

Figure 7 may puzzle the reader. Why does the critical level curve self-intersect at
four points, indicating four saddles at exactly the same level, even though there is no
left–right symmetry in the figure? The answer is that the coordinates of the squares in
this example have been adjusted to make this happen. The widths of the squares are
1, 2, 3, 4, and 5, with the left-hand edges of the first two located at x = 0 and x = 4.
This gave us a system of three nonlinear equations in three unknowns to solve for
the locations of the remaining three left-hand edges that would achieve the uniform
critical value. (This is an example of a generalized Schwarz–Christoffel parameter
problem, in which geometric constraints from various domains are mixed [27].) The
locations that satisfy the conditions are 10.948290, 20.326250, and 31.191359; the
critical potential value is gc = 0.0698122; and the capacity is C = 10.292969.

6. Applications to Polynomial Approximation. Many uses of Green’s functions
pertain to problems of polynomial approximation. The basis of this connection is an
elementary fact: if p(z) =

∏
(z−zj), then log |p(z)| =∑ log |z−zj |, and thus the size
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Fig. 4 Green’s function for a region defined by two polygons. This computation is identical in
structure to that of Figure 3.

Fig. 5 Green’s function for a region defined by three degenerate polygons with empty interior. As it
is exteriors that are conformally mapped, the degeneracy has no effect on the mathematical
problem or the method of solution.

of a polynomial p(z) is essentially the same as the value of the potential generated by
“point charges” with potentials log |z − zj | located at its roots {zj}. In the limit as
the number of roots and charges goes to ∞, one obtains a continuous problem such
as (1). Generally speaking, the properties of optimal degree-n polynomials for various
approximation problems can typically be determined to leading order as n→∞ from
the Green’s function in the sense that we get the exponential factors right but not
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Fig. 6 Green’s function for a region defined by four polygons. The square on the side breaks the
symmetry.

Fig. 7 Green’s function for a region defined by five polygons. The spacing of the squares has been
adjusted to make all the critical points lie at the same value gc.

the algebraic ones. Numerous results in this vein are set forth in the treatise of Walsh
[30].

Perhaps the simplest approximation topic one might consider is the Chebyshev
polynomials {Tn} associated with a compact set E ⊆ C. For each n, Tn is defined
as the monic polynomial of degree n that minimizes ‖Tn‖ = maxz∈E |Tn(z)|. The
following result indicates one of the connections between Tn and the Green’s function
for E.

Theorem 1. Let E ⊆ C be a compact set with capacity C. Then a unique
Chebyshev polynomial Tn exists for each n ≥ 0, and

(6) lim
n→∞

‖Tn‖1/n = C.

It follows from this theorem that the numerical methods of this paper enable
us to determine the leading order behavior of Chebyshev polynomials for polygons
symmetrically located on the real axis. For example, the nth Chebyshev polynomial of
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the five-square region of Figure 7 has size approximately (10.292969)n. Other related
matters, such as generalized Faber polynomials [32], can also be pursued.

Theorem 1 is due to Szegő [25], who extended earlier work of Fekete; a proof can
be found, for example, in [29]. For the case in which E is a smooth Jordan domain,
Faber showed that in fact ‖Tn‖/Cn → 1 as n → ∞. If E consists of two intervals,
Akhiezer [2, pp. 285–289] showed that ‖Tn‖/Cn oscillates between two constants, and
the starting point of the paper of Widom [32] is the generalization of this result to a
broad class of sets E with multiple components.

Instead of discussing Chebyshev polynomials further, we shall consider a different,
related approximation problem investigated by Walsh, Russell, and Fuchs, among
others [8, 9, 30, 31]. Let h1, h2, . . . , hK be entire functions; i.e., each hj is analytic
throughout the complex plane, and to keep the formulations simple, assume that
these functions are distinct. The following is a special case of the general complex
Chebyshev approximation problem.

Polynomial Approximation Problem. Given n, find a polynomial pn of degree n that
minimizes the quantity

(7) En = max
1≤j≤K

max
z∈Pj

|pn(z)− hj(z) |.

Note that we are concerned here with simultaneous approximation of distinct
functions on disjoint sets by a single polynomial. The approximations are measured
only on the polygons Pj ; nothing is required in the “don’t care” space in-between. For
digital filtering, the polygons would typically be intervals corresponding to pass and
stop bands, and for matrix iterations, they would be regions approximately enclosing
various components of the spectrum or pseudospectra of the matrix.

According to results of approximation theory going back to Chebyshev, there
exists a polynomial pn that minimizes (7), and it is unique [2, 3, 30]. What is
interesting is how much about pn can be inferred from the Green’s function. We
summarize two of the known facts about this problem as follows.

Theorem 2. Let {pn} and {En} be the optimal polynomials and corresponding
errors for the Polynomial Approximation Problem, let g be the Green’s function, and
let the critical level curve and the asymptotic convergence factor ρ be defined as in
section 4. Then

(a) lim supn→∞E
1/n
n = ρ.

(b) (“Overconvergence”) pn(z) → hj(z) as n → ∞, not only for z ∈ Pj, but for
all z in the region enclosed by the component of the critical level curve enclosing Pj,
with uniform convergence on compact subsets. Conversely, pn(z) does not converge
uniformly to hj(z) in any neighborhood of any point on the critical level curve.

These results are due in important measure to Walsh and are proved in his treatise
[30]; see Theorems 4.5–4.7 and 4.11 and the discussions surrounding them. Some of
this material was presented earlier, in a 1934 paper by Walsh and Russell [31], which
attributes previous related work to Faber, Bernstein, Riesz, Fejér, and Szegő. The
formulations as we have stated them are not very sharp. The original results of Walsh
are more quantitative, and they were sharpened further by Fuchs, especially for the
case in which E is a collection of intervals [8, 9].

Theorem 2 concerns the exact optimal polynomials for the Polynomial Approxi-
mation Problem, which are usually unknown and difficult to compute. Walsh showed
that the same conclusions apply more generally, however, to any sequence of poly-
nomials that is maximally convergent, which means any sequence {pn} whose errors
{En} as defined by (7) satisfy condition (a) of Theorem 2. Now then, how can we
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construct maximally convergent sequences? Further results of Walsh establish that
this can be done via interpolation in suitably distributed points, as follows.

Theorem 3. Consider a sequence of sets of n + 1 = 1, 2, 3, . . . points {β(n)
j }

either lying in E or converging uniformly to E as n → ∞, and suppose that the
potential they generate in the sense of section 4 converges uniformly to the Green’s
function g(z) on all compact subsets disjoint from E. Let {pn} be the sequence of
polynomials of degrees n = 0, 1, 2, . . . generated by interpolation in these points of a
function h(z) defined in C with h(z) = hj(z) in a neighborhood of each Pj. This
sequence of polynomials is maximally convergent for the Polynomial Approximation
Problem.

Theorem 4. The overconvergence result of Theorem 2(b) applies to any se-
quence {pn} of maximally convergent polynomials for the Polynomial Approximation
Problem.

For proofs see Theorems 4.11 and 7.2 of [30] and the discussions nearby.
Theorem 3 implies that once the Green’s function g(z) is known, it can be used to

construct maximally convergent polynomials by a variety of methods. The simplest
approach is to take pn to be the polynomial defined by interpolation of hj in the
pre-images along the boundary of Pj of roots of unity in the w-plane:

(8) zk = Φ−1(eiθk),

(9) θk =
(k − 1

2 )π
n+ 1

, k = 1, . . . , n+ 1.

Alternatively, and perhaps slightly more effectively in practice, we may adjust the
points along the boundary of each polygon Pj . Given n, we determine by (8) and (9)
the number nj of interpolation points that will lie on the boundary of Pj . If θ and θ
are the lower and upper edge angles along the unit circle in the w-plane corresponding
to Pj (in the notation of Figure 1, θ = τj/i and θ = σj/i), then we define the actual
interpolation points along the boundary of Pj by (8) and

(10) θk = θ +
(k − 1

2 )(θ − θ)
nj

, k = 1, . . . , nj .

Both of the choices (9) and (10) lead to maximal convergence as in Theorem 3.
Figure 8 illustrates the ideas of Theorems 2 and 3, especially the phenomenon

of overconvergence. Here we continue with the same geometry as in Figure 3 and
construct near-best approximations pn(z) by interpolation of the constants −1 on the
hexagon and +1 on the square in the points described by (8) and (9). These two
constants represent distinct entire functions, so the polynomials {pn(z)} cannot con-
verge globally. They converge on regions much larger than the polygons themselves,
however, as the figure vividly demonstrates: all the way out to the critical “figure-8”
level curve, in keeping with Theorem 2. The colors correspond to just the real part of
pn(z), but the imaginary part (not shown) looks similar, taking values close to zero
inside the figure-8 and growing approximately exponentially outside.

Our final example, motivated by the work of Mitchell, Shen, and Strang on digital
filters, takes a special case in which E consists of two real intervals. Consider the
approximation problem defined by a “stop band” P1 = [−1,−0.4] with h1(x) = 0
and a “pass band” P2 = [−0.3, 1] with h2(x) = 1. That is, the problem is to find
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Fig. 8 Illustration of the overconvergence phenomenon of Theorem 2(b) and Theorem 4. On the
same two-polygon region as in Figure 3, a polynomial p(z) is sought that approximates the
values −1 on the hexagon and +1 on the square. For this figure, p is taken as the degree-29
near-best approximation defined by interpolation in 30 pre-images of roots of unity in the
unit circle under the conformal map z = Φ−1(w) (eqs. (8) and (9)); a similar plot for the
exactly optimal polynomial would not look much different. The figure shows Rep(z) by a
blue-red color scale together with the polygons, the interpolation points, and the figure-8-
shaped critical level curve of the Green’s function. Not just on the polygons themselves, but
throughout the two lobes of the figure-8, Rep(z) comes close to the constant values −1 and
+1. Outside, it grows very fast.

polynomials pn of degree n that minimize

(11) En = max
{

max
x∈[−1,−0.4]

|p(x)| , max
x∈[−0.3,1]

|p(x)− 1|
}

.

Our Schwarz–Christoffel computations (elementary, since the more difficult first map
f1 of Figure 1 is the identity in this case) show that the asymptotic convergence
factor is ρ = 0.947963, the capacity is C = 0.499287, the critical point and level are
zc = −0.350500 and gc = 0.053440, and the harmonic measures are µ1 = 0.385927
and µ2 = 0.614073.

For n = 19, Figure 9 plots the near-best polynomial pn defined by interpolation
in the points defined by (8) and (10). The polynomial has approximately equiripple
form, suggesting that it is close to optimal. The horizontal dashed lines suggest the
error in this approximation, but it is clear they do not exactly touch the maximal-
error points of the curve. In fact, these dashed lines are drawn at distances ±ρn/√n
from the line to be approximated, where ρ is the asymptotic convergence factor; the
adjustment by

√
n is suggested by the theorems of Fuchs [8]. In other words, these

lines mark a predicted error based on the Green’s function, not the actual error of the
polynomial approximation obtained from it.
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Fig. 9 The near-best polynomial p19(x) obtained from the Green’s function by interpolation in the
20 points (8), (10) of 0 in the stop band [−1,−0.4] and 1 in the pass band [−0.3, 1]. The
polynomial is not optimal, but it is close.
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Fig. 10 Same as Figure 9, but for the optimal polynomial p19(x) computed by the Remes algorithm.
At first glance, the approximation looks worse. In fact, it is better, since there are large
errors in Figure 9 at the inner edges of the stop and pass bands.
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Fig. 11 Comparison of Green’s function predictions (solid curves) with exact equiripple approxima-
tions (dots) for the example (11). Details in the text.

Figure 10 shows the actual optimal polynomial for this approximation problem,
with equiripple behavior. Something looks wrong here—the errors seem bigger than
in Figure 9, not smaller! In fact, Figure 9 is not as good as it looks. At the right edge
of the stop band and at the left edge of the pass band, for x ≈ −0.4 and x ≈ −0.3,
there are large errors. The numerical results line up as follows:

Optimal error En: 0.1176
Error ρn/

√
n estimated from Green’s function: 0.0831

Error in polynomial obtained from Green’s function: 0.2030.

In some engineering applications, of course, Figure 9 might represent a better filter
than Figure 10 after all.

Figure 11 presents three comparisons between properties of the exactly optimal
polynomials pn(x) for this problem (solid dots) and predictions based on the Green’s
function (curves). The top plot compares the error En with the prediction ρn/

√
n (the

distances between the horizontal dashed lines in Figures 9 and 10). Evidently these
quantities differ by a factor of less than 2. The middle plot compares the proportion
of the interpolation points that lie in the stop band with the harmonic measure µ1.
The agreement is as good as one could hope for. Finally, the bottom plot compares
the point x in [−1, 1] at which the optimal polynomial satisfies p(x) = 0.5 (the vertical
dashed line of Figure 10) with the critical point zc (the vertical dashed line of Figure 9).



760 MARK EMBREE AND LLOYD N. TREFETHEN

Evidently the Green’s function makes a good prediction of this transition point for
finite n and exactly the right prediction as n→∞, as it must by Theorem 2(b).

7. Weighted Green’s Functions for Weighted Approximation. In signal pro-
cessing applications, rather than a uniform approximation, one commonly wants an
approximation corresponding to errors weighted by different constants Wj in different
intervals Pj . In closing we note that the techniques we have described can be general-
ized to this case by considering a weighted Green’s function in which (1b) is replaced
by the condition

g(z)→ − n−1 logWj for z → Pj ,(1b′)

which depends on n. The function g can now be determined by a conformal map
onto a semi-infinite strip whose end is jagged, with the K segments lying at real parts
−n−1 logWj . Numerical experiments show that this method is effective, and very
general theoretical developments along these lines are described in the treatise of Saff
and Totik [21].
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