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Abstract 

Numerically computed spectra and pseudospectra are presented for the linear operator that governs the temporal evolution of infinitesimal 
perturbations of laminar flow in an infinite circular pipe at Reynolds numbers 1000, 3000 and 10 000. The spectra lie strictly inside the 
stable complex half-plane, but the pseudospectra protrude significantly into the unstable half-plane, reflecting the large linear transient 
growth that certain perturbations may excite. © 1999 Elsevier Science S.A. All rights reserved. 

I. Introduct ion 

Fluid flow through a pipe at high Reynolds number invariably becomes turbulent, even though a linear 
analysis shows that the laminar flow is stable to infinitesimal perturbations [9,14,20,21]. In this report we 
present results of large-scale computations via hybrid Chebyshev spectral collocation methods designed to shed 
light on this phenomenon of  subcritical transition to turbulence. Specifically, we present plots of  spectra and 
pseudospectra of  the linear operator that governs the temporal evolution of  infinitesimal perturbations of  pipe 
Poiseuille flows at Reynolds numbers 1000, 3000 and 10 000. In the laboratory, transition to turbulence typically 
takes place around R = 2000, though laminar flows have been maintained under special circumstances at 
Reynolds numbers more than fifty times higher than this. 

The context of this work is a development that has taken place in the last ten years in the field of  
hydrodynamic stability: the recognition that the natural transition to turbulence of  certain canonical shear flows 
is dominated by effects that are linear but non-modal,  that is, unrelated to eigenvalues and eigenmodes. The 
roots of  this kind of  analysis go back to Rayleigh and Orr, and more recent related contributions include those of  
Alfredsson, Benney, Bergstr6m, Breuer, Criminale, Ellingsen, Gebhardt, Grossmann, Gustavsson, Haritonidis, 
Hultgren, Ioannou, Klingmann, Landahl, Mayer,  Morkovin, O'Sull ivan,  Palm, Reshotko, Tumin, Waleffe and 
Zikanov, among others. The new point of  view came to the fore in four papers published a few years ago: 

Boberg and Brosa (1988): [4] 
Butler and Farrell (1992): [6] 
Reddy and Henningson (1993): [19] 
Trefethen, Trefethen, Reddy and Driscoll (1993): [24] 

The present report amounts to an extension of  our earlier work [24], which dealt with plane Couette and 
Poiseuille flows, to the case of  pipe Poiseuille flow. We do not give a full-scale discussion, but assume that the 
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reader is familiar with [24]. We also hope the reader is familiar with [4], [6] and [19]. In particular, the paper [4] 
by Boberg and Brosa is a remarkable one, also concerned with the present problem of pipe Poiseuille flow. 
Unfortunately, the authors of  [6], [19] and [24] appear to have been unaware of [4] at the time of  writing. Other 
contributions to the linear, non-modal analysis of the pipe Poiseuille problem include [3], [16], [18], [22] and 
[26]. 

2. The operator 

Consider the flow of an incompressible Newtonian fluid with kinematic viscosity v through an infinite 
circular pipe of  radius a, with cylindrical coordinates x (longitudinal),  r (radial), and 0 (angular). One solution to 
the Nav ie r -S tokes  equations for such a flow is the laminar velocity profile 

u o = u o ( r  ) = V 2  1 -  , (1) 

where V is an arbitrary constant and 2 denotes the unit vector in the x direction. We define the Reynolds number 
for this flow to be R = aV/~,. In the study of  hydrodynamic stability, our concern is the evolution of  a small 
perturbation of  this laminar flow, which we write as 

u 0 + u = uo(r ) + u(x, r, O, t ) .  (2) 

If  u is infinitesimal, its evolution is governed by a linear equation 

du 
d~ (t) = 5fu(t) (3) 

for some linear operator S.. It is the properties of  this linearized Navier -S tokes  operator ~ that we investigate 
in this report. The norm II. II that we use for defining the pseudospectra of  ~7 and in connection with quantities 
such as I IJ I I  is the energy norm, equal to an appropriately scaled 2-norm, as in previous works in this area. 

The problem under study can be simplified by Fourier transformation in two directions. Since the x variable is 
unbounded, its dual variable is an arbitrary real number, which we denote by ~ E ~.  Since the 0 variable is 
27r-periodic, its dual variable is an integer, which we denote by n E 7/. Conventionally, most treatments of the 
pipe Poiseuille problem work within the context of these two Fourier variables. Here, however, following [24], 
although our computations make use of the Fourier reduction, the results we ultimately plot pertain to the 
untransformed problem. Thus, the spectra and pseudospectra we present correspond to 5(, not .L/?~.,,. Such a 
procedure has the disadvantage that effects of different Fourier components may be confused, but the advantage 
that one sees the whole problem at once rather than just  one component that may or may not be dominant. 

3. Spectra 

Figs. l(a), 2(a) and 3(a) show the spectrum A ( ~ )  for R = 1000, 3000 and 10000. So far as we are aware, 
although spectra have been calculated previously for operators Aq,, corresponding to particular choices of 
Fourier parameters [8,9,22], plots such as these for the full operator Af have not appeared before. (Our Fig. 2 
was presented previously as Fig. 10 in the survey paper [23].) 

For each R, A(Af) consists of a collection of curves in the complex left half-plane. (Note that to bring out the 
effects of  greatest interest, we have scaled the real and imaginary parts differently by a factor of ten.) Each curve 
can be thought of  as parametrized by the Fourier variable ce, and the various curves correspond to various values 
of  n, with infinitely many curves for each value of  n, though only finitely many in any given part of the plane. 

To clarify how it is that various values of  n combine to give the full spectrum, Fig. 4 is a breakdown of  the 
case R = 1000 for n = 0, 1, 2, 3, 4, 5. (Here and below we assume n t> 0, since the contributions to the spectrum 
and the pseudospectra for n and - n  are the same.) One sees that the value n = 1 is dominant, and this is true 
also of  other Reynolds numbers. As n increases, the spectrum sinks into the left half-plane. In the portion of the 
plane shown in our figures, the values of  n that contribute to the picture are n <~6 for R = 1000, n ~< 12 for 
R = 3000 and n ~< 27 for R = 10000. 
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F i g .  1. (a)  S p e c t r u m  A ( ~ )  f o r  R = 1000 .  (b )  B o u n d a r i e s  o f  E - p s e u d o s p e c t r a  A ( ~ )  f o r  t h e  s a m e  o p e r a t o r  ( f r o m  f i g h t  to  le f t :  E = 10 z, 
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o r  t w o  at  e a c h  p o i n t .  

I 
I 
I 
I 
I 
I 
I 
t 
I 
I 
I 
I 

I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
0 

(a) 
i 

- I  
0 . 1  - 0 . I  0.1 

Fig. 2. (a) Spectrum A(~-cP) for R = 3000. (b) Boundaries of E-pseudospectra A,(~) for the same operator (e = 10 -2, 10 -z~, 10 3, 10 35). 

Being a collection of  curves, the spectrum for pipe Poiseuille flow looks quite different from that for plane 
Poiseuille or Couette flow, where we get a two-dimensional continuum due to the presence of  two continuous 
Fourier variables [24]. One might think this fundamental difference in the spectra must reflect a fundamental 
difference in the physics of  pipes and channels, but we believe this is not the case, since the overall shapes of 
the spectra are comparable and the pseudospectra are more important physically anyway. 

From Figs. l (a)-3(a)  it appears that the spectrum of  5~ grows more complicated as R increases. In fact, most 

of  what is happening is a linear scale change, 

A ( f  ~R~) ~ z - I A ( ~ R ~ ) ,  (4) 

where 5C ~R~ denotes the operator ~ corresponding to Reynolds number R. In particular, the spectral abscissa 
decreases to 0 in proportion to R - I :  we have approximately 
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Fig. l(a) (R = 1000) for various n. The axes are the same as in Figs. 1-3. 

max Re A ~ - 1 2 . 9 R  - I  (5) 
AEA(~)  

as R----> oc, with the m a x i m u m  achieved by a mode with n = 1, a ~ 0. 
In view of  the conceptual  s implici ty of the pipe Poiseuil le  problem, we find the complexi ty  of Figs. l (a) -3(a)  

delightful.  

4. P s e u d o s p e c t r a  

Figs. l(b),  2(b) and 3(b) show the boundar ies  of  the E-pseudospectra A t ( f )  for R = 1000, 3000, 10 000 and 
E = 10 -2, 10 -2'5, 10 -3, 10 -35.  These sets are defined by curves of  constant  norm of the resolvent,  

a , ( 5 ~ )  = {z ~ C: I[(zl - 5~)-l[I/> E l}, (6) 

with the convent ion  that II(zl - 5 ~ )  '[I - -  ~ for z c A ( ~ ) .  An  equivalent  definit ion is that A , ( ~ )  is the set of  all 
points in the complex  plane that are e igenvalues of  some perturbed operator 5/~ + ~ with II 11 ~. For 
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Fig. 5. B reakdown  of  Fig. 3(b) (R = 10 000)  for  var ious n. The axes are the same as in Figs. 1 -3 .  

discussions of the significance of pseudospectra in hydrodynamic stability and in other fields, see [23] and [24]. 
Visually, the pseudospectra of  5f are less striking than the spectra, but physically, they are more important. 

The important feature is that they extend substantially into the right half-plane--for small E, much further than 
E. The configuration is much the same as for the plane Poiseuille and Couette flows considered in [24]. 

Like the spectrum, the pseudospectra of  ~ are determined by combining results from various n, and again we 
give a figure to clarify how this works. Fig. 5 shows a breakdown of the case R = 10 000 for n = 0, 1, 2, 3. 
Notice how far from dominant the value n = 0 is, corresponding to axisymmetric perturbations of  the pipe flow. 
This axisymmetric part of the operator is relatively close to normal [22] and contributes little to the process of  
transition to turbulence [4,18]. The value n = 1 is dominant for z ~ 0, whereas for larger z near the real axis, 
values of n as great as 6 become dominant. 

We noted above that the spectra A ( ~ )  scale approximately with R-1. By contrast, the pseudospectra A,(~T) 
appear to be scale-invariant, approaching fixed limits as R---) ~. From the plots it is natural to guess that in the 
limit R---) 0% the spectrum of ~q is the closed left half-plane and the resolvent set is the open right half-plane, 
with I](zl - 5~) II1 taking a finite limiting value for each z with Re z > 0. At the origin, which is the point of  the 
imaginary axis where the resolvent norm is largest, the growth of  l l (zl-  ~)-111 with respect to R is quadratic: 

II= -'ll- 0 . 0 0 1 2 0 R  2 • ( 7 )  

The maximum is achieved by a (pseudo-) mode with n = 1, ce = 0. 
We should mention that Figs. l (b)-3(b)  are not in fact complete depictions of the pseudospectra of ~ .  There 

are additional components of  each pseudospectrum in the left half-plane, between the various curves of the 
spectrum, which we have not attempted to resolve. 

5. Discussion 

We shall not attempt to discuss the significance of  our computations in detail, referring the reader to 
[3,4,16,18,22,26] for treatments of linear, non-modal effects in pipe Poiseuille flow and to [23] and [24] for 
further matters related to pseudospectra. In [24] it is pointed out that pseudospectra may provide insight into 
three related but distinct forms of destabilization that may apply in different flow situations. First, the 
interpretation of  Figs. l (b)-3(b)  in terms of  eigenvalue perturbations suggests that slight perturbations from the 
ideal of  an infinitely long straight pipe, such as irregularities in the boundary wall, may be expected to move 
some eigenvalues into the right half-plane and thereby bring about modal instabilities. Second, the interpretation 
in terms of  the norm of the resolvent suggests that since the resolvent norm is large at points on the imaginary 
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axis, substantial 'pseudoresonance' may occur when a pipe flow is stimulated by periodic inputs at certain 
frequencies. This is the subject of receptivity,  recently investigated for pipe flows by Tumin [25]. Third is the 
aspect of  non-normal physics that has received the most attention, the phenomenon of  transient growth of certain 
perturbations. 

Fig. 6 illustrates transient growth for the pipe problem by depicting Ile'~'ll as a function of t for R = 10 000. 
The most important feature of  this curve is that it achieves a height much greater than 1 : about 84.9, attained at 
t ~ 490. Both of  these numbers scale in proportion to R. Thus, pipe Poiseuille flow is susceptible to linear, 
non-modal amplification of  disturbances by factors on the order of  hundreds for Reynolds numbers of  practical 
interest. If  one takes the square of  the perturbation amplitude as a measure of  energy, then one may speak of 
energy amplifications by factors of tens of thousands. 

The kink in the curve in Fig. 6 at t = t, ~ 300 has a simple explanation. For each fixed n, Ile'~'ll depends 
smoothly on t. The value of Ile'~'l[, however, is the upper envelope of these quantities, hence not necessarily 
smooth. As it happens, for t > t the value n = 1 is dominant, while for t < t ,  larger values of n become 
dominant. The curve for t < t drawn in the figure corresponds to n -- 2, but in principal there are further kinks 
near t = 0 corresponding to higher values of  n. However, these would be scarcely visible on the scale of the plot. 
For more information see [3,22]. 

From the pseudospectra of  5(, upper and lower bounds on this transient growth can be derived. An upper 
bound would involve a resolvent integral; we do not pursue this here. For a lower bound we can take the 
maximum over • > 0 of the ratio p,(~Lf)/e, where p,(Sc °) denotes the •-pseudospectral abscissa of f ,  that is, the 
maximum real part of  the e-pseudospectrum. (This bound can be derived from the Laplace transform of e'a; see 
[19,23,24].) This quantity can be estimated by sampling I I ( z l -  ~7)-'1] for z on the positive real axis, and from 
this we get the lower bound 55.7 plotted as a dashed line in Fig. 6. Like the actual height of  the transient growth 
curve, this bound scales in proportion to R as R--~ ~. 

Of course, linear transient growth in itself does not constitute turbulence or transition to turbulence, but it 
must play a part in these phenomena, as the nonlinear terms of the Navier-Stokes equations conserve the energy 
of  perturbations of  the laminar flow [12]. The fact that the excited pseudomodes (= left singular vectors of  e '~') 
have the form of streaky structures aligned with the flow, as are seen so often in experiments, adds further 
weight to the argument. It has been proposed that these linear effects combine with the quadratic nonlinearities 
of  the Navier-Stokes equations in such a way as to produce a very narrow basin of  attraction of the laminar 
state in the state space of  all velocity perturbations, and that this accounts for the tendency of  at least some pipe 
flows at high Reynolds numbers to undergo transition [1,2,4,10,24]. This reasoning led to a conjecture stated in 
[24]: the threshold perturbation amplitude for transition to turbulence decreases superlinearly with R, that is, it is 
O(R ~') for some y < - 1  as R - - - ~ .  For channel flows, this conjecture has subsequently been verified by 
Navier-Stokes simulations of  Henningson, Lundbladh and Reddy [11,15]. For pipe Poiseuille flow, no 
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analogous simulations have yet been carried out, but exceptionally careful experimental results have recently 
been reported by Darbyshire and Mullin [7] and Nieuwstadt et al. [17]. Both sets of authors report exponents y 
in the range - 1 < y < 0, but in both cases the definition of perturbation amplitudes differs from the usual 
energy norm in a nontrivial way. After appropriate correction, the experimental evidence of [7] and [17] may be 
consistent with y < - 1  after all, but this issue is not yet resolved. 

6. Computational methods 

To produce the plots presented here, one must first discretize the operator 5f. For this purpose we used the 
codes developed by the third author and described in [22], based on earlier work by Burridge and Drazin [5] and 
Herbert [13], among others. These codes handle the x and 0 variables by Fourier transformation and the r 
variable by a hybrid spectral collocation method based on Chebyshev polynomials; the dependent variables are 
the radial velocity and the radial vorticity. For computing pseudospectra and other norm-dependent quantities, 
the resulting matrices are then modified by a similarity transformation so that the matrix 2-norm becomes the 
physically correct energy norm I]' [I. Further details are given in [22]. 

Since our aim has been to present plots comprehending all values of  c~ and n, the scale of our computations 
has been larger than in previous studies. To produce Figs. l(a)-3(a), we calculated the spectrum of A ° for 7 -25  
values of  n and several hundred values of  c~; each of these spectra is obtained by solving a complex matrix 
eigenvalue problem of dimension on the order of 50 to 100. Thus, each spectral plot represents several thousand 
matrix eigenvalue calculations. Figs. l (b)-3(b)  required a greater effort. Here, we evaluate ] [ (z l -~)-~]1  on a 
grid in the upper half-plane of  size approximately 30 × 30, reflect the result by symmetry into the lower 
half-plane, and send the result to a contour plotter. Each evaluation of II(zl - A o) ~ll requires optimization over n 
(discrete, carried out trivially since only half a dozen values are involved) and a (continuous, carried out by a 
univariate optimization routine). In the end, each plot of pseudospectra represents 104-105 complex matrix 
singular value calculations, again with matrix dimensions on the order of 50-100.  The total number of  
floating-point operations for such a plot is on the order of 3 × 10 ~ 

Some of  these computations have been carried out in Matlab on workstations, but for satisfactory performance 
it is convenient to use faster machines. The bulk of our work has been based on Fortran programs run in 1994 
on the Intel Paragon at the Swiss Federal Institute of Technology (ETH) in Zurich. The problem is 
embarrassingly parallel; we use, typically, 30 processors, each assigned a different value of Im z. A succession 
of  values of Re z are treated on each processor, decreasing from Re z = 0.1 until the spectrum is reached, and the 
optimal Fourier parameter a obtained in the minimization for each value of z is utilized as an upper limit on a 
for the minimization at the next value of z; the lower limit is taken as Re z. The computational kernels are based 
on LAPACK routines on the Paragon, and the overall computation speeds we obtain are typically on the order of  
one third of a gigaflop when running on 30 processors, or one gigaflop when running with a finer grid on the full 
96 processors available at the ETH. These figures could certainly be improved, as we made no attempt to 
optimize the code for performance on the Paragon. 

We close with a remark about the accuracy of  our plots. The discretizations we employ are spectrally 
accurate; they reliably provide three or four digits of precision with matrices of dimension <100,  and higher 
precision does not cost much more. Thus, accuracy is not fundamentally an issue in our computations. However, 
grid resolution is an issue when it comes to plotting pseudospectra, and our grids are not as fine as they might 
have been. This explains the slight irregularities apparent in some of the plots: our data are effectively exact, but 
they are coarsely sampled. We are confident that all the points on our curves are correct to within a millimeter or 
two. 
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