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A celebrated theorem of Aldous, Bayer and Diaconis asserts that it takes - 2 log, n 
riffle shuffles to randomize a deck of n cards, asymptotically as n + oo, and that the 
randomization occurs abruptly according to a 'cut-off phenomenon'. These results 
depend upon measuring randomness by a quantity known as the total variation 
distance. If randomness is measured by uncertainty or entropy in the sense of infor- 
mation theory, the behaviour is different. It takes only - log, n shuffles to reduce 
the information to  a proportion arbitrarily close to zero, and - $ log, n to  reduce 
it to  an arbitrarily small number of bits. At % log, n shuffles, ca. 0.0601 bits remain, 
independently of n .  

Keywords: shuffling; information; entropy; Markov chain; cut-off phenomenon; 
eigenvalues 

1. Introduction 

Wide publicity has been attracted in recent years to the question: how many rif- 
fle shuffles does it take to  randomize a deck of cards? A beautiful mathematical 
paper by Bayer & Diaconis in 1992, building upon earlier work by Aldous and by 
Diaconis, proved that in a certain precise sense the answer is - $ log2n for a deck 
of n cards in the limit n + oo (Aldous 1983; Bayer & Diaconis 1992; Diaconis et 
al. 1995; Aldous & Diaconis 1986). Moreover, the randomization arrives abruptly: 
after 1.4 log2 n shuffles, for large enough n ,  the deck is nowhere near random. These 
conclusions have been discussed on radio talk shows and in newspapers and mag- 
azines including The New York Times ,  The Economist, Newsweek and Seventeen 
(Kolata 1990). They do not stand in isolation but are part of the developing subject 
of the analysis of non-asymptotic convergence of Markov chains, with implications 
in condensed matter physics, computer science and other fields (Su 1995; Diaconis 
1996). 

Throughout our discussion, a riffle shuffle is defined in a mathematically precise 
way due to Gilbert and Shannon (Gilbert 1955) and, independently, Reeds (1981, 
unpublished work). The deck is first cut roughly in half according to  a binomial 
distribution: the probability that v cards are cut is 
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Figure 1. Randomization of a deck of n cards as measured in the total variation norm 
- P P [ ~ vof Aldous, Bayer and Diaconis. The dots and the numerical axis labels corre- 

spond to n = 52 and the dashed line to the limit n + co.In this limit, a 'cut-off phenomenon' 
occurs, with abrupt randomization at N % log, n shuffles. For n = 52, /PC falls below PPM/~~ 
0.5 at the seventh shuffle. 

The two halves are then riffled together by dropping cards roughly alternately from 
each half onto a pile, with the probability of a card being dropped from each half being 
proportional to  the number of cards in it. There is evidence that this idealization of 
a shuffle is a reasonable approximation to the actual behaviour of human shufflers 
(Diaconis 1988). 

Of course, there are other ways to achieve randomness besides shuffling. For exam- 
ple, 'exact mixing' methods have recently been investigated by Lov&sz & Winkler 
(1995). However, we confine our attention here to randomization by riffle shuffle. 
Some aspects of the wider mathematical context of our discussion, concerning ill- 
conditioned eigenvalues and eigenvector expansions in this and other fields, are men- 
tioned in § 5. 

2. Shuffling and total variation norm: the cut-off phenomenon 

Figure 1illustrates the theorem of Diaconis and his colleagues. The kth dot indicates 
the total variation distance to  randomness lipk-Pm1ITv(defined below) after k 
shuffles. Through step k = 4, virtually no reduction is achieved, and PPII~v 
does not fall below 0.5 until step k = 7. This is the origin of the often-quoted 
conclusion that 'it takes seven shuffles to randomize a deck of cards'. As n + oo,the 
dots straighten up into the sharp curve indicated by the dashed line. Specifically, if 
k/logz n + a as n + co for some constant a, then IIP" PmlITv-+ 1 if a < 1.5 
and PPOO/ITv+ 0 if a > 1.5. 

Mathematically, the shuffling problem is a Markov chain defined on the state space 
consisting of the n! possible orderings of the deck (for n = 52, n! 8 x 1 0 ~ ~ ) .= Suppose 
that at a particular moment, the probability that the deck is in ordering i is pi,  with 
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0 < pi < 1and 
n! 

If p represents the row vector of these probabilities, of length n!, then one step of the 
shuffling process replaces p by the product p P ,  where P is an n! x n! matrix with 
non-negative entries and row sums equal to one; the entry Pij is the probability that 
the chain, if currently at state i ,  moves to  state j at  the next step. This much is 
standard material in the field of Markov chains (Feller 1968; Meyn & Tweedie 1993; 
Norris 1997). The total variation norm after step k is defined by the formula 

where P%S the kth power of P and P" is the limit of P%S k +cc (J6nsson & Tre-
fethen 1998). This formula represents half the 1-norm of the matrix P' -P" when 
viewed as acting on row vectors (Trefethen & Bau 1997) and it can be interpreted as 
follows. Let A be a subset containing lAl elements of the set of all n! permutations 
of the deck and let p("(A) be the probability that the deck lies in one of the con- 
figurations of A a t  step k. Then IIP" -POOIITVis the difference I ~ ( ' ) ( A )  - IAl/n!l, 
maximized over all subsets A. This number quantifies the rate a t  which an infinitely 
competent gambler could expect to make money, on average, if permitted to place 
bets with payoff 1 against a fair house to the effect that the deck does or does not 
lie in arbitrary sets of configurations A. 

3. Shuffling and uncertainty: steady randomization 

In the field of probability theory, there are longstanding arguments for considering 
the total variation norm. On the other hand, the shuffling of a deck of cards, like 
the wide range of other Markov chain problems of which this may be viewed as a 
prototype, can also be considered from the point of view of information theory. Let 
the uncertainty or entropy associated with a probability vector p be defined by the 
familiar formula associated with Wiener and Shannon (Shannon & Weaver 1949; 
Kullback 1959; Reliyi 1970; Barron 1986; Cover & Thomas 1991), 

This quantity ranges from zero if we have complete information about the system 
(pi = 1 for a single i) to log2(n!) if we have no information (pi = l l n !  for all i). 
Conversely, the information associated with p is defined by 

According to standard results of information theory, this number quantifies the rate 
a t  which an infinitely competent coder could expect to  transmit information, on 
average in the limit of infinitely long message lengths, if permitted to encode signals 
arbitrarily in shuffled decks of cards. 
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Figure 2. Randomization as measured by reduction of information from log,(n!) to zero bits. 
Again, the dots and the numerical axis labels correspond to n = 52 and the dashed line to 
n + co.In this measure there is no cut-off effect, and randomization in the sense of reduction of 
the original information to a proportion arbitrarily close to zero is achieved after only N log, n 
shuffles. For n = 52, 3.52% of the information remains after five shuffles and 0.92% after six 
shuffles. 

Shuffling a deck of n cards can thus be thought of as a process of destruction of 
information, in which the information content of the deck is reduced from log2(n!) to 
zero bits. The question is, how many shuffles does it take to achieve this? We have 
computed answers to this question numerically. An earlier analysis of alternatives 
to total variation for various Markov chain problems is presented by Su (1995) and 
our I is essentially the relative entropy distance considered by him. In particular, Su 
observed behaviour like that described here for problems related to Ehrenfest urns or 
random walks on a hypercube. A standard reference on the use of information-related 
measures in statistics is Kullback (1959). 

Figure 2 shows results for both n = 52 and the limit n + oo, and some of the 
numbers for n = 52 are reported in table 1. The first shuffle reduces I by almost 
exactly n bits (ca. 51.999 999 999 999 93 bits, for n = 52). Subsequent shuffles also 
reduce I by approximately n bits until I reaches a level that is small relative to  its 
initial value log2(n!). Each further shuffle then reduces I by a factor asymptotically 
of i. In the measure of information, evidently, the cut-off phenomenon is absent. 
Shuffles remove information from the deck in a steady fashion, until asymptotically 
as lc + oo,all the information is gone. 

A quantitative analysis of the process just described sheds light on the disparity 
between figures 1and 2. Suppose we wish to  reduce I from log2(n!) to  elog2(n!) for 
some 6 with 0 < 6 << 1. At n bits per shuffle, since log2(n!) - n log2(n/e) - n log2 n ,  
this takes - log2 n shuffles. We call this the linear phase of the shuffling process. 
Now suppose we wish to reduce I further to  some absolute level 6 > 0, inde- 
pendent of n as n + oo. With a reduction by the factor $ at  each shuffle, this 
takes log4 ( E  log2 (n!)/S) - log4 (log2 (n!)) - log4 (n log, n)  - log4 n = log2 n further 
shuffles. We call this the exponential phase of the shuffling process. Figure 3 illus- 
trates these two phases. 
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Table 1. Information I i n  a n  initially ordered deck of 52 cards 

shuffle number information (bits) 

number of shuffles 

Figure 3. A different view of information for decks of sizes n = 13,26,52,104,208. The vertical 
scale is now logarithmic, facilitating consideration of the absolute as well as relative amount 
of information at each step, and the horizontal axis is scaled differently for each n so that 
g log, n always falls at the dashed line in the middle. Randomization is achieved in two phases: 
linear reduction of I for N log, n shuffles (unrelated to the eigenvalues of P - P") followed by 
exponential reduction forever (determined by the eigenvalues). At g log, n shuffles, ca. 0.0601 bits 
remain, independently of n. 

The shuffling process is governed by powers of the n! x n! matrix P - Pa, since 
(P-P")" P' - P" for k 3 1 (J6nsson & Trefethen 1998), and the asymptotic 
convergence rate is equal to the square of the largest eigenvalue of this matrix, i, 
which is the same as the second eigenvalue of the matrix P .  A general result about 
this squaring of the eigenvalue appears as corollary 5.3 of Su (1995), though it is 
not precisely applicable to the present case since it assumes a reversible Markov 
chain and the riffle shuffle chain is irreversible. The study of the second eigenvalue 
of Markov chains is well established (see, for example, Diaconis & Stroock 1991; 
Fill 1991). For a different view of the gap between eigenvalues and convergence for 
Markov chains, see Stewart (1997). 
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A curious observation emerges from figure 3 and related computations. After 
$ log, n shuffles, we find that ca. 0.0601 bits of information remain in the deck. Since 
the shuffle number is discrete and the information is divided by ca. 4 at each step, of 
course, there will be no particular step k in general at which 0.0601 bits remain; one 
might have 0.1 bits a t  one step and 0.025 bits at the next. Nevertheless, the num- 
ber 0.0601 emerges very cleanly when the discrete data are smoothly interpolated 
to  k = log, n .  Thus, if one wished to  communicate by encoding messages in large 
decks of cards, each one having been shuffled $ logz n times, one would need to  ship 
ca. 16 decks per bit. 

4. Numerical methods 

The results we have presented are numerical, though several of them suggest theorems 
that presumably could be proved. We give just a brief outline of our methods. The 
matrix P is of the computationally intractable dimension n!, but it can be reduced 
to  an equivalent matrix problem of size n by identifying all permutations of the deck 
that have the same number of 'rising sequences'. The ideas that make this possible are 
contained in Bayer & Diaconis (1992) and the matrix entries have been worked out 
explicitly in J6nsson & Trefethen (1998) and G. F. J6nsson (unpublished research). 
Copies of our MATLAB programs, ca. 100 lines in total, can be obtained from L.N.T. 

We have also computed I versus k for another well-known example that shows a 
cut-off effect in the total variation norm, the problem of Ehrenfest urns, where at each 
step one of n balls located in either of two urns is selected at random and moved to  
the other urn (Kac 1959; Bingham 1991; Diaconis 1996; J6nsson & Trefethen 1998). 
As mentioned above, related theorems for this problem are reported in Su (1995). 
The cut-off of JIP" Pa l J T V  for this problem is at i n  log, n ,  but I decreasesN 

steadily from the start at a rate governed by the square of the largest eigenvalue, 
1- 2/(n + I),with no preliminary linear phase of convergence. Plots illustrating the 
absence of a cut-off for this problem in other senses are given in Martin-Lof (1983) 
and J6nsson & Trefethen (1998). 

5. Mathematical context: troublesome eigenvalue problems 

In exhibiting a disjunction between transient and asymptotic behaviour, the shuf- 
fling problem illustrates a mathematical phenomenon that is also important in fluid 
mechanics, numerical analysis and other disciplines (Trefethen et al.  1993). In vari- 
ous problems in these fields, the eigenvectors of the matrix or operator that govern 
a system have no relevance to  its transient behaviour. For the shuffling problem, for 
example, let V denote the n! x n! matrix whose rows are normalized left eigenvectors 
of P - Pa. For a given probability distribution p, the vector pV-I then consists of 
the coefficients of the expansion of p as a linear combination of the eigenvectors of 
P - Pa. For n = 52, the norm of V-I is at least lo4', indicating that the expan- 
sion coefficients may be lo4' times larger than p itself, or, in other words, there 
may be a gap as large as lo4' between the behaviour of individual eigenmodes and 
the transient behaviour of a vector p. It takes log, n shuffles before this factor N 

is breached and the asymptotic behaviour governed by eigenvalues and eigenmodes 
becomes observable. 
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6. Discussion 

It is not obvious, even to  experts, what the full significance is of the distinction 
between our two measures of randomization, JJPk-Pm1ITv,which shows a cut-
off, and I, which does not. To shed some light on this matter, here is perhaps the 
simplest possible example of a Markov chain with a cut-off. (Generalizations of this 
chain are analysed in Diaconis & Graham (1992).) Suppose we start with a word 
of n bits and modify it at each step by randomizing the last bit, then shifting the 
word circularly to the left. The information remaining after k 6 n steps is I = 
n - k bits: the decay is exactly linear. The total variation norm, on the other hand, 
is JIPk-PmIITv= 1- 2"%: there is a cut-off, with essentially no decay until k 
gets close to  n. (Since convergence is achieved in n steps, P - Pm is nilpotent, 
with all eigenvalues equal to  zero and the largest Jordan block of dimension n.) 
The explanation of the formula 1- 2"% is that after step k, n - k bits remain 
untouched, so a gambler could be guaranteed to  win one dollar on a bet for which 
the house, based on the assumption of randomness, would only require him or her 
to put up 2k-n dollars. This example suggests that the difference between I and 
IJPk-PallTvis analogous to the difference in statistics between the magnitude of a 
trend and its statistical significance. As a deck of cards is shuffled, the magnitude of 
the non-randomness decreases steadily from the start, but until k loga n ,  there N 

remains a significant pocket of non-randomness: the deck is biased in the direction 
of having slightly less than the asymptotically correct number i ( n  + 1) of rising 
sequences. (See the theorems of Bayer & Diaconis (1992) and the figures of J6nsson 
& Trefethen (1998).) The question of which measure of randomization is the more 
important one for gamblers and card players is presumably game dependent. 

We thank David Aldous, Persi Diaconis, Peter Doyle and Francis Edward Su for comments on 
a draft of this article; these four all know more about shufling and cut-offs than we do. Doyle 
points out that many of our results were known to him four years ago, though not published, 
and even communicated to us (L.N.T.) in January 1996, but overlooked; we thank him for 
graciously encouraging us to go forward nonetheless with this publication. Aldous points out 
that as entropy is subadditive (Aldous 1983), it is obvious that there can be no cut-off in 
this measure. We thank Gudbjorn JClnsson for many of the ideas that made our computations 
possible and L.N.T. thanks Diaconis for advice over the years and for an inspiring course on 
Markov chains in 1996 a t  Cornell University. It must be said, however, that not all the views 
expressed here are necessarily shared by Diaconis. The research of L.N.T. has been supported 
by the NSF (US, grant DMS-9500975CS) and by the EPSRC (UK, grant GRlM12414). 

Note added in proof 

In work to  be published, D. Stark, A. Ganesh and N. O'Connell of BRIMS, Hewlett- 
Packard Labs, Bristol have proved theorems establishing some of our numerical obser- 
vations. In particular, the figure of 0.0601 is exactly 1/24 log(2) (Stark et al. 1999). 
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