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Abstract. Analysis of nonsymmetric matrix iterations based on eigenvalues can be misleading.
In this paper, we discuss sixteen theorems involving ε-pseudospectra that each generalize a familiar
eigenvalue theorem and may provide more descriptive information in some cases. Our organizing
principle is that each pseudospectral theorem reduces precisely to the corresponding eigenvalue the-
orem when ε = 0.
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1. Introduction. Though we speak of linear algebra, matrix iterative methods
belong to the realm of linear analysis. Convergence of errors or residuals to zero is the
concern, and this process has meaning because the algebraic problem is embedded in
a normed space. Except for questions concerning finite termination, the appropriate
tools for analyzing convergence are not the tools of algebra, such as eigenvalues, which
are basis-independent, but those of analysis, such as singular values, which are defined
via norms and necessarily change with the basis.

In this paper we consider the particular tools of linear analysis known as pseu-
dospectra, which were invented to give information about matrices that lack a well-
conditioned basis of eigenvectors. For simplicity, our norm ‖ · ‖ will always be the
vector 2-norm and the matrix 2-norm that it induces. With this choice of norm, the
matrices of interest are those that are far from normal in the sense that their eigen-
vectors, if a complete set exists, are far from orthogonal. Many of our results can be
extended to other norms and also to operators as well as matrices, but we will not
discuss these generalizations.

Throughout the article, A is an N × N matrix, and Λ(A) denotes its spectrum,
i.e., its set of eigenvalues, a subset of the complex plane C. The pseudospectra of A
are nested subsets of C that expand to fill the plane as ε → ∞.

Definition. For each ε ≥ 0, the ε-pseudospectrum Λε(A) of A is the set of
numbers z ∈ C satisfying any of the following equivalent conditions:

(i) ‖(z −A)−1‖ ≥ ε−1;
(ii) σmin(z −A) ≤ ε;
(iii) ‖Au− zu‖ ≤ ε for some vector u with ‖u‖ = 1;
(iv) z is an eigenvalue of A + E for some matrix E with ‖E‖ ≤ ε.

Here σmin denotes the smallest singular value, and we employ the convention that
‖(z −A)−1‖ = ∞ for z ∈ Λ(A).

Pseudospectra were introduced as early as 1975 [12] and became a popular tool
during the 1990s. We will not give detailed references here, but we refer the reader
to [23] and [24] for examples, to [25] for algorithms and a list of applications, and to [26]
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for history. For extensive online information about pseudospectra, including examples
and a bibliography of papers by many authors, see the Pseudospectra Gateway [3].

This brief article is devoted to a simple idea:
Many theorems about eigenvalues are special cases ε = 0 of theorems about
ε-pseudospectra.

Our whole content consists of the presentation of sixteen examples of theorems of this
kind. These theorems are for the most part neither mathematically deep nor even
new, though in some cases they have not been stated in the language of pseudospectra
before. Nevertheless, for practical applications involving highly nonnormal matrices,
they may sometimes be more useful than their eigenvalue special cases. This will tend
to be so in situations where the eigenvalues of A are misleading, filling a region of
C smaller than where A actually “lives.” For an example illustrating the limitations
of eigenvalue analysis for Krylov subspace methods for linear systems of algebraic
equations, see [6]. Here is another extreme example. If A is nilpotent, with AK = 0
for some K ≥ 1, then Λ(A) = {0}. Some such matrices will have norms ‖Ak‖ that
diminish steadily toward 0 as k → K, while for others, there may be no reduction
until k = K or great transient growth before the eventual decay. Eigenvalues alone
cannot distinguish between these behaviors, but pseudospectra can.

Our presentation will adhere to a fixed pattern. In each case, we first list a
theorem about eigenvalues, without proof, that is either elementary or well known.
We follow this with a generalized theorem for pseudospectra together with an outline
of a proof. Some pointers to the literature are included along the way, but we do not
aim to be exhaustive, as it is often hard with this essentially elementary material to
track down the first appearance of a result in print.

We hope that this article may provide a useful compendium for those concerned
with nonnormal matrices and associated iterations, but we emphasize that this col-
lection does not include all potentially useful theorems involving pseudospectra. By
confining our attention to theorems that reduce for ε = 0 to valid statements about
eigenvalues, we exclude some of the subtler estimates that may be obtained from
pseudospectra, notably those based on contour integrals. One example is the Kreiss
matrix theorem, which contains a constant eN that does not reduce cleanly to 1 as
ε → 0 [11, 19]. Another is the bound on a polynomial norm ‖p(A)‖, of immediate
relevance to iterations such as GMRES, that can be obtained by integrating p(z)
over the boundary contour(s) of Λε(A) [22]. For new results comparing such contour
integral techniques to other approaches, see [5].

2. Sixteen theorems. Our first theorem indicates the connection between the
ill-conditioning of solving a linear system with A and the existence of a pseudoeigen-
value near the origin. This result has been attributed to Gastinel (see [21, pp. 120,
133], [28, p. 248]).

Theorem 1. A is singular ⇐⇒ 0 ∈ Λ(A).
Theorem 1ε. ‖A−1‖ ≥ ε−1 ⇐⇒ 0 ∈ Λε(A).
Proof. The proof is immediate from the definitions.
Pseudospectra possess the satisfying property that every connected component of

the ε-pseudospectrum must contain at least one eigenvalue. This property forms the
basis for the following result.

Theorem 2. A has N distinct eigenvalues =⇒ A is diagonalizable.
Theorem 2ε. Λε(A) has N distinct components =⇒ A is diagonalizable.
Proof. From definition (iv) of pseudospectra it is clear that for any δ > 0, Λε(A)

is contained in the interior of Λε+δ(A). By the continuity of matrix eigenvalues with
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respect to perturbations, the same condition (iv) implies that if Λε(A) has N distinct
components, so does Λε+δ(A) for sufficiently small δ > 0. Thus we see that ‖(z −
A)−1‖ must achieve local maxima strictly in the interior of each of the N components
of Λε+δ(A). Now log ‖(z − A)−1‖ is a subharmonic function of z throughout the
complex plane except at the eigenvalues of A (see, e.g., [7, Thm. 3.13.1], [4]), and thus
log ‖(z−A)−1‖ and likewise ‖(z−A)−1‖ satisfy the maximum principle away from the
eigenvalues of A. Putting these facts together, we see that each component of Λε(A)
must contain an eigenvalue of A, which implies that A has N distinct eigenvalues and
thus is diagonalizable.

Gallestey has developed an algorithm for computing pseudospectra based on the
maximum principle property used in the above proof [4]. A simpler exclusion al-
gorithm, recently proposed by Koutis and Gallopoulos [10], is based upon the next
result.

Theorem 3. ‖(z −A)−1‖ ≥ 1
dist(z,Λ(A))

.

Theorem 3ε. ‖(z −A)−1‖ ≥ 1
dist(z,Λε(A))+ε

.

Proof. A perturbation of A of norm dist(z,Λε(A)) + ε could make z an
eigenvalue.

The Koutis–Gallopoulos algorithm utilizes Theorem 3ε rewritten in the form

dist(z,Λε(A)) ≥ 1

‖(z −A)−1‖ − ε.

In our next theorem, S is an arbitrary nonsingular matrix and κ(S) is its condition
number, κ(S) ≡ ‖S‖‖S−1‖. Though the theorem is stated as an inclusion in one
direction only, it applies in the other direction too, and in that sense Theorem 4
maintains our usual pattern of being the special case ε = 0 of Theorem 4ε. The result
demonstrates that pseudospectra are invariant under unitary transformations, and
also reflects the extent to which an ill-conditioned similarity transformation can alter
pseudospectra. When B is diagonal, so that SBS−1 represents a diagonalization of A,
Theorem 4ε is equivalent to the most familiar version of the Bauer–Fike theorem [1].

Theorem 4. A = SBS−1 =⇒ Λ(A) = Λ(B).
Theorem 4ε. A = SBS−1 =⇒ Λε(A) ⊆ Λκ(S)ε(B).
Proof. Since (z − A)−1 = S(z − B)−1S−1, ‖(z − A)−1‖ ≤ κ(S)‖(z − B)−1‖.

Therefore if ‖(z −A)−1‖ ≥ ε−1, then ‖(z −B)−1‖ ≥ (κ(S)ε)−1.
The following theorem makes use of the idea of the “average pseudoeigenvalue”

of a matrix, meanλε∈Λε(A)λε. Of course, this quantity needs to be defined. We could

be very specific and make use of, say, Haar measure (isotropy in C
N ) on the space

of N × N matrices, but for the purposes of this theorem it is enough to say that
meanλε∈Λε(A)λε is the mean of the eigenvalues of A + E averaged over any fixed

distribution on the matrices E with ‖E‖ ≤ ε with the property that each matrix
entry eij has mean 0.

Theorem 5. tr(A) = N · meanλ∈Λ(A)λ.
Theorem 5ε. tr(A) = N · meanλε∈Λε(A)λε.
Proof. The theorem looks deep but is elementary. All we need to do is consider

traces of perturbed matrices. Since each ejj has mean 0 by assumption, so does their
sum, and thus tr(A) = mean‖E‖≤εtr(A + E) = N · meanλε∈Λε(A)λε.

Our next pair of results requires a definition of the condition number κA(Σ(A))
of a compact set Σ = Σ(A) ⊂ C depending on A with respect to perturbations
of A. If Σ1 and Σ2 are compact subsets of C, let d(Σ1,Σ2) denote the Hausdorff
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distance d(Σ1,Σ2) = max{maxs∈Σ1
d(s,Σ2),maxs∈Σ2

d(s,Σ1)}, where d(s,Σ) is the
usual distance of a point s to a set Σ. Then

κA(Σ(A)) ≡ lim sup
δ→0

(
δ−1 sup

‖D‖≤δ

d(Σ(A + D),Σ(A))

)
.

Theorem 6. Λ(A) depends continuously on A, with condition number κA(Λ(A))
= 1 if A is normal.

Theorem 6ε. Λε(A) depends continuously on A, with condition number κA(Λε(A))
= 1 if A is normal.

Proof. The continuity of Λε(A) in the Hausdorff metric follows from the analogous
continuity of Λ(A). Suppose now that A is normal, so that its ε-pseudospectrum is
the union of ε-disks centered at each eigenvalue. For any δ ≥ 0 and D ∈ C

N×N with
‖D‖ ≤ δ, we have maxs∈Λε(A+D) d(s,Λε(A)) ≤ δ and similarly maxs∈Λε(A) d(s,Λε(A+
D)) ≤ δ. Thus,

sup
‖D‖≤δ

d(Λε(A + D),Λε(A)) ≤ δ.

Since ∪‖D‖≤δΛε(A + D) = Λε+δ(A), there always exists some D with ‖D‖ ≤ δ such
that maxs∈Λε(A+D) d(s,Λε(A)) = δ, and for such a D we must have ‖D‖ = δ, since
the pseudospectra are strictly nested sets. It follows that

κA(Λε(A)) ≡ lim sup
δ→0

(
δ−1 sup

‖D‖≤δ

d(Λε(A + D),Λε(A))

)
= 1.

Eigenvalues can change dramatically with small perturbations, a warning that
analysis based on them can be misleading. The following theorem hints that pseu-
dospectra may be more robust.

Theorem 7. Λ(A + E) ⊆ Λ‖E‖(A).
Theorem 7ε. Λε(A + E) ⊆ Λε+‖E‖(A).
Proof. If z ∈ Λε(A + E), then there exists a matrix F with ‖F‖ ≤ ε such that

(A+E +F )u = zu for some u �= 0. Since ‖E +F‖ ≤ ε+ ‖E‖, z ∈ Λε+‖E‖(A).
We now turn to the problems of estimating the behavior of a matrix from its

spectrum and pseudospectra.
Theorem 8. λ ∈ Λ(A) =⇒ ‖A‖ ≥ |λ|.
Theorem 8ε. λε ∈ Λε(A) =⇒ ‖A‖ ≥ |λε| − ε.
Proof. If λε ∈ Λε(A), then Au = λεu + εv for some vectors u, v ∈ C with

‖u‖ = ‖v‖ = 1. It follows that ‖Au‖ ≥ |λε| − ε.
The convergence analysis of stationary iterative methods is based on the behavior

of powers of the iteration matrix. It has long been known that transient growth can
occur even when the spectral radius of the iteration matrix is less than one (see,
e.g., [27, p. 63]). The following two theorems use pseudospectra to describe this
transient growth. The first is the “easy half of the Kreiss matrix theorem,” that is,
the half of that theorem that does not depend on N and whose proof is elementary [11].

Theorem 9. maxλ∈Λ(A) |λ| > 1 =⇒ supk>0 ‖Ak‖ = ∞.

Theorem 9ε. maxλε∈Λε(A) |λε| > 1 + Cε =⇒ supk≥0 ‖Ak‖ > C.
Proof. Since ‖A0‖ = 1, the result is trivial for C < 1, so assume C ≥ 1. If

maxλ∈Λ(A) |λ| > 1, then the conclusion certainly holds, so assume maxλ∈Λ(A) |λ| ≤ 1,
in which case we have the convergent series representation

(z −A)−1 = z−1(I + z−1A + z−2A2 + · · ·),
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which is valid for all z with |z| > 1. We now argue the contrapositive. If ‖Ak‖ ≤ C
for all k ≥ 0, then

‖(z −A)−1‖ ≤ |z−1|C
1 − |z−1| =

C

|z| − 1

for any z with |z| > 1. This implies that Λε(A) is contained in the disk about the
origin of radius 1 + Cε, i.e., maxλε∈Λε(A) |λε| ≤ 1 + Cε.

Theorem 10. λ ∈ Λ(A) =⇒ ‖Ak‖ ≥ |λ|k for all k.

Theorem 10ε. λε ∈ Λε(A) =⇒ ‖Ak‖ ≥ |λε|k − kε‖A‖k−1

1−kε/‖A‖ for all k such that

kε < ‖A‖.
Proof. Pick E such that ‖E‖ ≤ ε and λε ∈ Λ(A + E). Then ‖(A + E)k‖ ≥ |λε|k,

which implies

‖Ak‖ ≥ |λε|k − kε‖A‖k−1 −
(
k

2

)
ε2‖A‖k−2 − · · ·

≥ |λε|k − kε‖A‖k−1
(
1 + kε/‖A‖ + (kε)2/‖A‖2 + · · ·) .

Provided kε < ‖A‖, the series in this last equation converges, giving

‖Ak‖ ≥ |λε|k − kε‖A‖k−1

1 − kε/‖A‖ .

Theorems 9 and 9ε have exact analogues for continuous time (see [14, 15]).
Theorem 11. maxλ∈Λ(A) Reλ > 0 =⇒ supt>0 ‖etA‖ = ∞.
Theorem 11ε. maxλε∈Λε(A) Reλε > Cε =⇒ supt>0 ‖etA‖ > C.
Proof. As in the proof of Theorem 9ε, the conclusion is immediate if C < 1 or if

maxλ∈Λ(A) Reλ > 0, so we assume that C ≥ 1 and maxλ∈Λ(A) Reλ ≤ 0 and use the
Laplace transform identity

(z −A)−1 =

∫ ∞

0

e−ztetAdt,

which is valid for Rez > 0. Again arguing the contrapositive, we note that if ‖etA‖ ≤
C for all t > 0, then ‖(z−A)−1‖ ≤ C/Rez for z with Rez > 0, implying that Λε(A)
is contained in the half-plane defined by Rez ≤ Cε.

Our next result is a pseudospectral generalization of Gerschgorin’s theorem, which
we believe to be new. It implies that if Λε(A) contains points distant from Λ(A) for
sufficiently small ε, then the bounds given by Gerschgorin’s theorem will be more
sharply descriptive of the pseudospectra than of the spectrum. Coupling this with
Theorems 9ε and 10ε, one sees that Gerschgorin eigenvalue estimates may sometimes
lead to more accurate predictions of transient behavior of iterative matrix processes
than would be obtained from the exact eigenvalues! As has been pointed out in [13],
this curious robustness phenomenon is of practical importance, for it sheds light on
how it is that iterations such as GMRES may sometimes converge handily even when
the associated Ritz values or harmonic Ritz values are far from accurate eigenvalue
estimates. For these theorems, define dj = ajj and rj =

∑
k �=j |ajk|, and for any

complex number z and real number r ≥ 0, let D(z, r) denote the closed disk about z
of radius r.

Theorem 12. Λ(A) ⊆ ⋃
j D(dj , rj).

Theorem 12ε. Λε(A) ⊆ ⋃
j D(dj , rj +

√
Nε).
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Proof. Applying Gerschgorin’s theorem to A + E with ‖E‖ ≤ ε yields inclusion
disks centered at dj + ejj with radius

∑
k �=j |ajk + ejk| ≤ rj +

∑
k �=j |ejk|. Each such

disk is contained in the disk centered at dj with radius rj +
∑N

k=1 |ejk| = rj +‖Ej‖∞,
where Ej denotes the matrix equal to E in the jth row and zero elsewhere. The term√

Nε comes from the inequality ‖Ej‖∞ ≤ √
N‖Ej‖2 ≤ √

N‖E‖2.
The next result concerns the numerical range or field of values, which we denote

by W (A). In the context of iterative methods, the theorem indicates how analysis
based on the field of values (see, e.g., [2]) relates to pseudospectral analysis. We
write conv(S) for the convex hull in C of a set S ⊆ C. The notation “S \ ε-border”
also requires some explanation. By this we mean the set of points z ∈ C such that
D(z, ε) ⊆ S. Perhaps Reddy, Schmid, and Henningson were the first to formulate this
result in the language of pseudospectra [15, Thm. 2.2].

Theorem 13. W (A) ⊇ conv(Λ(A)).
Theorem 13ε. W (A) ⊇ conv(Λε(A)) \ ε-border.
Proof. This result follows from a familiar result in functional analysis: that W (A)

is the intersection of all convex sets S that satisfy the condition

‖(z −A)−1‖ ≤ 1

dist(z, S)
.

See, for example, Kato [9, p. 268].
The spectral mapping theorem (see, e.g., [9, p. 45]) is a jewel in the crown of

eigenvalue theorems; it is theoretically appealing and practically relevant, forming
the basis for rational transformation techniques for computing eigenvalues. The nu-
merical range obeys a similar, though one-sided, mapping theorem [8]. Theorems 13
and 13ε suggest that a similar result might hold for pseudospectra. Our next theorem
is a modest step in this direction, a precise mapping theorem for linear transforma-
tions [26, Thm. 2.4].

Theorem 14. Λ(α + βA) = α + βΛ(A) for α, β ∈ C.
Theorem 14ε. Λε|β|(α + βA) = α + βΛε(A) for α, β ∈ C.
Proof. The result is trivial when β = 0. Otherwise, note that

|β| ‖(z − (α + βA))−1‖ = ‖(β−1(z − α) −A)−1‖.

For Theorems 15 and 16, let V denote an N×k rectangular matrix with orthonor-
mal columns for some k ≤ N , as might be obtained by Arnoldi or subspace iteration,
and let H denote a k × k square matrix. In the Arnoldi iteration, H would have
Hessenberg form, but this is not necessary for these theorems. First, we assume that
the columns of V exactly span an invariant subspace of A. The resulting theorem
forms the basis for algorithms that compute pseudospectra by projecting A onto a
carefully chosen invariant subspace [15, 25, 29].

Theorem 15. AV = VH =⇒ Λ(H) ⊆ Λ(A).
Theorem 15ε. AV = VH =⇒ Λε(H) ⊆ Λε(A).
Proof. If ‖Hu− zu‖ ≤ ε for some u ∈ C

N with ‖u‖ = 1, then ‖V Hu− V zu‖ ≤ ε
too, and this implies ‖AV u− zV u‖ ≤ ε.

Practical algorithms such as the implicitly restarted Arnoldi method [18] or sub-
space iteration (see, e.g., [16, section V.1]) may not easily yield an exact basis for
the invariant subspace. Rather, the columns of V form an orthonormal basis for
some approximate invariant subspace of A. Let H denote the generalized Rayleigh
quotient this basis forms, H ≡ V ∗AV . With this notation, eigenvalue Theorem 15
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has an alternative, more practical pseudospectral generalization. This theorem is a
fundamental result in the perturbation theory of invariant subspaces; see [20] and
references therein.

Theorem 16. AV = VH =⇒ Λ(H) ⊆ Λ(A).
Theorem 16ε. AV = VH + R =⇒ Λ(H) ⊆ Λε(A) for ε = ‖R‖.
Proof. Consider the square matrix E = −RV ∗. Then (A+E)V = AV −R = VH,

so by Theorem 15, the eigenvalues of H are eigenvalues of A+E and hence ε-pseudo-
eigenvalues of A for ε = ‖−RV ∗‖ = ‖R‖.

For an Arnoldi factorization with k basis vectors, V ∈ C
n×k, Theorem 16ε reduces

to a well-known result: ε = ‖R‖ = |hk+1,k|, where hk+1,k is the (k +1, k) entry in the
extended upper Hessenberg matrix (see, e.g., [17, Lem. 2.1]).
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