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Numerical Solution of the Omitted Area Problem of

Univalent Function Theory

Lehel Banjai and Lloyd N. Trefethen

Abstract. The omitted area problem was posed by Goodman in 1949: what
is the maximum area A∗ of the unit disk D that can be omitted by the image of
the unit disk under a univalent function normalized by f(0) = 0 and f ′(0) = 1?
The previous best bounds were 0.240005π < A∗ ≤ .31π. Here the problem
is addressed numerically and it is found that these estimates are slightly in
error. To ten digits, the correct value appears to be A∗ = 0.2385813248π.
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1. Introduction

One of the major branches of complex analysis is univalent function theory: the
study of one-to-one analytic functions f of the unit disk D = {z : |z| < 1}
conventionally normalized to have Taylor series

f(z) = z + a2z
2 + a3z

3 + · · · .
Many papers and books have been written about the properties of the class S
of such functions. A celebrated result in this area is Bieberbach’s Conjecture

(1916), which became de Branges Theorem (1985): for any f ∈ S, the Taylor
coefficients satisfy |ak| ≤ k [5, 10, 11].

Our subject here is another well-known problem of univalent function theory. For
each f ∈ S, let A(f) denote the area of D \ f(D). The example f(z) = z shows
that A(f) can be as small as 0. Since f(D) always contains the disk about 0 of
radius 1/4 [10], it can be no larger than 15π/16. How large can it be? That is,
what is the value of the constant

(1) A∗ = sup
f∈S

A(f) ?

Moreover, what can be said about the function or functions f ∗, if any, that
achieve this supremum? This is the omitted area problem.
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f(z) = z/(1−z)2  A(f)=0 f(z) = sin(z)  A(f)=.0679π

f(z) = ez−1  A(f)=.1484π f(z) = log(1+z)  A(f)=.1782π

Figure 1. Four examples of functions f ∈ S. The dashed curve
is the unit circle.

Figure 1 shows four functions f ∈ S and the corresponding values of A(f). From
these examples we see that A∗ is at least as large as 0.1782π. Here are all the
results we know of that have been published bounding A∗ from above and below:

Goodman 1949 [8] .2272π < A∗ ≤ .5π

Jenkins 1953 [12] .2272π < A∗ ≤ .4613π

Goodman & Reich 1955 [9] .2272π < A∗ ≤ .38π

Barnard & Pearce 1985 [4] .240005π < A∗ ≤ .38π

Barnard & Lewis 1987 [3] .240005π < A∗ ≤ .31π

These estimates result from theoretical arguments supported to varying degrees
by numerical computations, and one could discuss to what extent each should or
should not be regarded as a theorem. Our own results to be presented here are
purely numerical, and give an estimate of A∗ that we do not claim as a theorem
but believe is correct to many digits. Our number falls a fraction of a percent
below the final lower bound in the table above, which we conclude is in error.
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An almost full characterization is known of the extremal functions for the omit-
ted area problem. We trust that the following notation involving functions of
intervals [·, ·] and (·, ·) is self-explanatory.

Theorem 1. There exist functions f ∗ ∈ S that attain the supremum in (1).
If a function f ∈ S has this property, then it takes the form illustrated in

Figure 2: f is symmetric about the real axis and maps three arcs exp(i[0, θ1]),
exp(i[θ1, θ2]), and exp(i[θ2, π]) of the unit circle to [−∞,−1], to the circular arc

exp(i[α, π]) for some α ∈ (0, π), and to a curve Γ interior to the unit disk char-

acterized by a condition of constant modulus of the derivative:

(2) |f ′(z)| = const, z ∈ exp(i(θ2, π)).

Moreover, f ′ is continuous along the arc exp(i[θ2, π]), in particular at the point

exp(iθ2) that maps to eiα.

0 0 −1 

Γ 

eiα 

eiθ
2 

eiθ
1 

f* 

Figure 2. The form of the extremal function f ∗, according to
Theorem 1. f ∗ is symmetric about the real axis, and coloured
parts of the unit circle are mapped to the parts of the boundary
of the image domain of matching colour.

This theorem is due to Barnard and Lewis [2, 3, 14] 1. All that is missing is a
statement about uniqueness. It seems likely that f ∗ is unique, but it appears
that this has not been proved. Nevertheless in what follows, for simplicity, we
shall speak of “the function f ∗ ”.

1In fact, not all of Theorem 1 as we have stated it appears in the published papers [2, 3, 14],
for these papers leave open the possibility that Γ may contain slits along the real axis. We are
informed privately by Barnard, however, that this possibility has been excluded in subsequent
work.
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2. Simplification by conformal maps

Theorem 1 establishes so much about f ∗ that one might imagine that it would
have led quickly to a numerical solution of the omitted area problem. How-
ever, it is not a straightforward matter to construct functions to high accu-
racy that satisfy the required conditions. Indeed, we approached this problem
with the confidence of hands-on numerical analysts and were surprised at how
challenging it proved. Along the way we tried a method that we shall not de-
scribe, which involved the numerical construction of Schwarz-Christoffel maps
onto polygons with many vertices by means of Driscoll’s Schwarz-Christoffel
Toolbox for Matlab [6]. We were unable to obtain more than four or five
digits of accuracy by that method, but those digits agreed with the results we
will now present from our more efficient method. This lends us confidence that
our final value is probably accurate.

Our computation is based on the construction of f as a composition of conformal
maps, each symmetric with respect to the real axis:

f(z) = f3(f2(f1(z))).

The functions f1 and f3 contain boundary singularities, but are known analyt-
ically. The function f2 is unknown, but smooth, and can be represented by a
rapidly converging Taylor series. We now describe f1, f2 and f3 in turn.

As sketched in Figure 3, f1 maps D onto the left half of the unit disk, which we
denote by C (“crescent”). In view of the real symmetry condition, there is just
one free parameter in this map, which we take to be the angle θ2, 0 < θ2 < π,
such that f1(e

iθ2) = i. The formula is

f1(z) = i

√
1− zeiθ2 −

√
z − eiθ2√

1− zeiθ2 +
√
z − eiθ2

with appropriate choices of branches.

The function f2 maps C to a region B (“bulged strip”) bounded on the right by
the line Re z = 1 and on the left by a smooth curve whose real part approaches 0
as z → ±i∞. We represent f2 in the form

f2(z) = p(z) +
2i

π
log

(

z + i

z − i

)

− 1

for some function p(z) analytic in D. The term containing the logarithm maps
the half-disk to the infinite strip bounded by Re z = 0 and Re z = 1, and p
provides the bulge on the left. Since p maps the imaginary axis into itself, its
Taylor series takes the form

p(z) = d1z + d3z
3 + d5z

5 + · · ·
for some real coefficients dj. Our construction guarantees that this representation
is valid, with the Taylor series converging throughout D, and in Section 4 we shall
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Figure 3. Construction of f as a composition of three maps.

present numerical evidence that the convergence is geometric (so that the radius
of convergence is in fact > 1).

Finally, the function f3 is chosen to map the half-strip −1 < Re z < 1, Im z > 0
to the upper half-plane minus the circular arc exp(i[α, π]), with Re z = −1
mapping to the inside of the arc and Re z = 1 to the outside of the arc together
with the interval [−∞,−1]. Note that this map is again determined by just
one parameter, for example α, but it turns out to be more convenient to have
a number a0 > 0 as the parameter, so that f3 maps 1 + ia0 to −1. The full
strip contains B as a subset, and thus f3 maps the upper half of B to a subset
of the upper half-plane minus the arc. This subset is a domain A (“arc-of-circle
domain”) of the form described by Theorem 1, except not in general satisfying
the constant-modulus condition along Γ. The curved left boundary of the upper
half of B maps to Γ, and as just mentioned, the straight right boundary maps
to [−∞,−1] and exp(i[α, π]).

In addition these maps must satisfy the two normalizing conditions:

(3) f(0) = 0, f ′(0) = 1.
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With θ2 and a0 fixed, the functions f1 and f2 are determined, and hence the
above two conditions reduce to two linear equations on the coefficients dj:

f2(f1(0)) = f−1
3 (0),(4)

f ′
2(f1(0)) =

1

f ′
3 (f2(f1(0))) f ′

1(0)
.(5)

To satisfy these conditions, we need two free parameters, and these we choose to
be d1 and d3.

An explicit specification of the function f3 is elementary, but tricky. One could
write down a single formula, but as a practical matter, for maps like this that
are to be implemented on the computer without mistakes involving branches, we
find it safest to work with compositions of elementary maps. This could be done
in various ways. Our choice has been to take

f3 = g5 ◦ g4 ◦ g3 ◦ g2 ◦ g1

with

g1(z) = sin
(πz

2

)

,

g2(z) =

(

2(z + 1)

a1 + 1
− 1

)2

,

g3(z) =
z(b− 1)

b(z − 1)
,

g4(z) = z1/2,

g5(z) =
1 + z

1− z
,

where a1 = g1(1 + ia0) and b = g2(1).

Here is a brief description of the behaviour of these maps, taking the argument
of g1 to be a point z in the upper half-plane; the lower half is obtained by reflection
(though this is never needed in our numerical solution). The function g1 maps
the upper half-strip bounded by Re z = −1 and Re z = 1 to the upper half-plane;
three particular boundary values are g1(−1, 1,∞) = (−1, 1,∞). The function g2

maps the half-plane to the whole complex plane minus the slit [0,∞), with
g2(−1, a1,∞) = (1−, 1+,∞), where 1− and and 1+ denote the numbers 1 on
the lower and upper side of the slit, respectively. The function g3 is a Möbius
transformation that maps the slit plane to the plane with two slits extending
to ∞ with a finite gap between; we have g3(0, b, 1) = (0, 1,∞), where b = g2(1).
The function g4 folds the plane with two slits back to the upper half-plane with
a single slit extending from a point along the positive imaginary axis to ∞.
Finally, g5 is another Möbius transformation that maps the slit upper half-plane
to the arc-of-circle domain A.
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3. Computing the area of an arc-of-circle domain

From Theorem 1 it follows that the area of the region bounded by the arc
f(exp(i[θ1, 2π−θ1])) and the unit circle, not containing 0, is equal to the omitted
area A(f). Hence we can use the following formula [15, p. 5]:

A(f) = −1

2

∫ 2π

θ1

Im

{

∂f(z)

∂θ
f(z)

}

dθ

= −1

2

∫ 2π

θ1

Re
{

zf ′(z)f(z)
}

dθ, z = eiθ.

The minus sign is present since when the unit circle is traced in the positive
direction, the image under f traces a curve around the omitted region in the
negative direction.

We need to be able to compute A(f) quickly and to high accuracy. Using the
symmetry property of f we get that

A(f) = −
∫ θ2

θ1

Re
{

zf ′(z)f(z)
}

dθ −
∫ π

θ2

Re
{

zf ′(z)f(z)
}

dθ.

It can be seen that the first integral is equal to twice the area of the slice of the
unit disk {reiθ : α ≤ θ ≤ π, r ≤ 1}, i.e., π − α. For the second integral, we
expect that the integrand is analytic along z = exp(i(θ2, π]) but has a singularity
at z = exp(iθ2). Hence if we choose some β > θ2 we can split the integral into
two integrals

I1 = −
∫ β

θ2

Re
{

zf ′(z)f(z)
}

dθ,

I2 = −
∫ π

β

Re
{

zf ′(z)f(z)
}

dθ,

where I1 can be evaluated using standard adaptive quadrature software and I2

can be efficiently evaluated using Gauss-Legendre quadrature. Hence

A(f) = π − α + I1 + I2.

We choose β = θ2+0.01 and evaluate I1 using adaptive Simpson quadrature (the
Matlab function quad) with tolerance set to 10−14, which requires about 70
evaluations of the integrand. We evaluate I2 using Gauss-Legendre quadrature
with 80 nodes which appears to give accuracy on the order of 10−15.

4. Numerical methods and results

For any real parameters d5, d7, . . . , d2N−1, θ2 and a0, 0 < θ2 < π, a0 > 0, we have
constructed an analytic function f in the unit disk with the properties (3). The
construction is such that, provided the coefficients dj are small enough so that
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f ′(z) 6= 0 for z ∈ D, this will be a univalent function mapping D conformally onto
an arc-of-circle domain A. We now face a numerical problem: choosing these N
parameters so that A(f) is maximal. There are two natural approaches to this:
either maximize A(f) directly, or make use of the characterization (2) to enforce
the constant modulus condition along a circular arc. We have tried both.

Let f be our solution to the omitted area problem using the above construction.
From the construction it is not clear if f is univalent. Certainly the maps f1

and f3 are univalent inside their domains of definition. As a sum of an analytic
function in C and a polynomial, f2 is certainly analytic in C. Hence f is analytic
on the open unit disk. Let exp(iθ) trace the unit circle in the positive direction
with θ strictly increasing. Then by construction, f(exp(iθ)) traces the boundary
of A once in the positive direction. If the image of exp(i[θ1, 2π−θ1)) under f is a
simple curve, then by the argument principle, f is univalent. We check whether
this last condition holds by discretizing the curve.

As just mentioned, we have implemented two methods for finding the extremal
function for the omitted area problem. In the first method we set up an opti-
mization problem with parameters d5, d7, . . . , d2N−1, θ2, a0. We iterate to max-
imize A(f) using the Matlab program fminsearch, based on a direct search
method described in [13]. At every iteration, given all the parameters, coef-
ficients d1 and d3 are determined so that the linear equations (4) and (5) are
satisfied.

In the second method we search for functions satisfying the constant-modulus
condition. The set of unknowns is slightly enlarged by the addition of a parame-
terM representing the value of |f ′| on exp(i[θ2, π]). We set up an over-determined
system and minimize the following expression

L
∑

k=1

(

(

|f ′(eiγk)| −M
)2
)

for θ2 < γk < π with L = 50N . The points γk are chosen so as to be denser
near θ2. For this computation, which is entirely independent of the first, we used
the Matlab program lsqnonlin, a large-scale trust region method described
in [7]. Here as in the first computation, the case N = 2 is handled with an
arbitrary initial guess, while for larger N , the initial guess is taken from the
case N − 1.

Both methods work, and their results agree. The second method proves to be
more efficient. Its results suggest that the correct value of A∗ is 0.2385813248π
to ten digits. The convergence to this number using the two different methods
is shown in Figure 4. Results of the two methods are shown in Tables 1 and 2.
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N omitted area (π)

2 0.23830377896845

3 0.23854060029864

4 0.23857325048507

5 0.23857972028678

6 0.23858098546805

7 0.23858125225852

8 0.23858130840494

Table 1. Results for Method 1.

N omitted area (π) maxθ∈[θ2,π] |f ′(eiθ)| −M

2 0.23719466292381 5.6e− 2

3 0.23838494717525 2.5e− 2

4 0.23854792113829 1.2e− 2

5 0.23857485970016 5.6e− 3

6 0.23858001311453 2.7e− 3

7 0.23858103791058 1.3e− 3

8 0.23858126165609 6.7e− 4

9 0.23858130994730 3.4e− 4

10 0.23858132142118 1.7e− 4

11 0.23858132397435 8.9e− 5

12 0.23858132463176 4.5e− 5

13 0.23858132477544 2.4e− 5

14 0.23858132481692 1.2e− 5

Table 2. Results for Method 2. The final value for the omitted
area seems to be correct to 10 digits.
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Figure 4. Convergence of the omitted area to the number
0.2385813248π using the two methods. These data points were
calculated as the difference between the computed area for each N
and the number 0.2385813248300π.

5. The optimal function f ∗

The error is decreasing exponentially, which suggests that the function p(z) which
we approximate by a truncated Taylor series, is analytic in the closed unit disk.
Indeed the coefficients dj suggest that the radius of convergence of the Taylor
expansion is about 1.6. The two methods converge at the same rate, but for any
fixed N , Method 1 gives a slightly better result. This is to be expected since
at any stage the first method is finding the maximum area whereas the second
method is finding the best approximation to the extremal function. Yet the
optimization problem in the first method is much more difficult to solve. The final
result took 7 hours to compute in Matlab on a Pentium III 800 MHz processor,
whereas all the data obtained using the second method can be computed on the
same machine within an hour.

Our methods converge to the same number. Indeed the best two approximations
to the extremal function using the two methods are equal within an error of
5.7×10−5 along the arc exp(i[θ2, π]). As a result of our computations we propose
the following value of A∗:

A∗ = 0.2385813248π.

We believe that this number is probably accurate to the full ten digits displayed.
The extremal domain is plotted in Figures 5 and 6. We also show images of
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concentric circles around 0 and radial lines under f ∗ in Figure 7. Figure 8 plots
(f ∗)′(z) near z = eiθ2 . The values of the parameters of our best approximation
to the extremal function are the following: M = 0.44074691, a0 = 0.5787293,
θ2 = 0.5575142 and the coefficients dj are shown in Table 3.
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Figure 5. The omitted area domain for the extremal function f ∗.
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Figure 6. Closeup near the point eiα = f ∗(eiθ2), showing conti-
nuity of the derivative there.
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f* 

Figure 7. Images under f ∗ of circles of radius r =
.2, .4, .6, .8, .9, .95 centred at 0, and of radial lines at angles θ =
0,±π/12,±π/6,±π/3,±2π/3, π. In the lower plot, one can see
from the uniform spacing of the curves near the boundary arc Γ
that (f ∗)′ has constant modulus there.
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Figure 8. Plot of (f ∗)′(eiθ) for θ near θ2.

j dj

1 0.66674444254256

3 0.10151497157267

5 0.02603062412472

7 0.00831506726776

9 0.00289083802642

11 0.00112217881059

13 0.00044351035572

15 0.00019260405260

17 0.00008045133385

19 0.00003819142146

21 0.00001585332461

23 0.00000850626700

25 0.00000308999675

27 0.00000218932186

Table 3. The coefficients dj for our best approximation to the
extremal function f ∗. Note that the even coefficients are 0.
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Appendix A. Code to compute the extremal function

function f = extremal(z) % Evaluate f(z) for |z|<=1

if any(imag(z)<0) % Im z<0 handled by reflection

L = imag(z)<0;

f(~L) = extremal(z(~L));

f(L) = conj(extremal(conj(z(L))));

return

end

theta2 = .5575142;

a0 = .5787293;

d = [ 0.6667444425 0.1015149716 0.0260306241 0.0083150673 0.0028908380...

0.0011221788 0.0004435104 0.0001926041 0.0000804513 0.0000381914...

0.0000158533 0.0000085063 0.0000030900 0.0000021893 ];

p = kron(fliplr(d),[1 0]);

a1 = real(sin((pi*(1+a0*i))/2));

b = (4/(a1+1)-1)^2;

f0 = (1-z*exp(i*theta2))./(z-exp(i*theta2));

J = abs(abs(z)-1) <= 1e-15;

f0(J) = real(f0(J));

f1 = i*(sqrt(f0)-1)./(sqrt(f0)+1);

f2 = polyval(p,f1)+(2i/pi)*(log(f1+i)-log(f1-i))+3;

g1 = sin((pi*f2)/2);

g2 = (2*(g1+1)/(a1+1)-1).^2;

g3 = (1-1/b)*g2./(g2-1);

K = real(g1)<(a1-1)/2;

g4(K) = -sqrt(g3(K)); g4(~K) = sqrt(g3(~K));

f = (1+g4)./(1-g4);
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