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Abstract

The pseudospectra of banded, nonsymmetric Toeplitz or circulant matrices with

varying coefficients are considered. Such matrices are characterized by a symbol

that depends on both position (x) and wave number (k). It is shown that when

a certain winding number or twist condition is satisfied, related to Hörmander’s

commutator condition for partial differential equations, ε-pseudoeigenvectors of

such matrices for exponentially small values of ε exist in the form of localized

wave packets. The symbol need not be smooth with respect to x , just differen-

tiable at a point (or less). c© 2004 Wiley Periodicals, Inc.

1 Introduction

For a positive integer N , define

(1.1) sj = 2 sin xj , xj = 2π j

N
, 1 ≤ j ≤ N ,

and consider the N × N “Scottish flag” matrix that in the case N = 5 takes the

form

(1.2) A =




s1 1 −1

−1 s2 1

−1 s3 1

−1 s4 1

1 −1 s5


 .

This is an example of what we shall call a twisted Toeplitz matrix: a matrix whose

diagonals are either constant or (usually continuously or piecewise continuously in

a sense to be made precise) varying.

The diagonal part of A is symmetric, with real eigenvalues {sj }, and the off-

diagonal part is skew-symmetric, with imaginary eigenvalues {isj }. Thus both of
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FIGURE 1.1. Eigenvalues and ε-pseudospectra of the “Scottish flag”

matrix (1.2) for N = 101 and ε = 10−1, 10−2, . . . , 10−12. From outside

in, we see the level curves ‖(λ − A)−1‖ = ε−1 for these values of ε.

these pieces of A are normal matrices with well-conditioned eigenvalue problems.1

A itself, however, is strongly nonnormal. Figure 1.1 shows its eigenvalues and 2-

norm pseudospectra,2 computed with the Matlab package EigTool [46, 47], for the

case N = 101. Evidently the eigenvalues are neither real nor imaginary, lying in-

stead on a cross at angle π/4 in the square −2 ≤ Re λ, Im λ ≤ 2. But whereas there

are only N eigenvalues, the figure reveals that every number −2 < Re λ, Im λ < 2

is an ε-pseudoeigenvalue for a small value of ε.3

Figure 1.2 shows a pseudospectrum of A in another way by superimposing

the eigenvalues of 100 matrices A + E , where each E is a dense random matrix

(independent, normally distributed complex entries) of norm 10−4.

1 A matrix A is normal if A∗ A = AA∗, where A∗ is the conjugate transpose, or equivalently, if

it has a complete set of orthogonal eigenvectors. If A is normal, its eigenvalues are well-conditioned

in the sense that each eigenvalue of any perturbed matrix A + E differs from an eigenvalue of A by

at most ‖E‖, where ‖ · ‖ is the matrix 2-norm.
2 For each ε > 0, the ε-pseudospectrum of A is the set of complex numbers λ for which ‖(λ −

A)−1‖ ≥ ε−1, or equivalently, which are eigenvalues of some matrix A + E with ‖E‖ ≤ ε [40, 41].

(Throughout this article we take ‖ · ‖ = ‖ · ‖2. If λ is an eigenvalue of A, we define ‖(λ− A)−1‖ =
∞.) Extensive information about pseudospectra, including a list of applications and a bibliography

of several hundred papers, is available online at the Pseudospectral Gateway [18].
3 The spectrum and pseudospectra of A are exactly fourfold symmetric, as one can prove by

showing that A is unitarily similar to iA via a discrete Fourier transform matrix: iA = F AF∗ with

f jk = N−1/2ω( j−1)(k−1), 1 ≤ j, k ≤ N , where ω = exp(−2π i/N ). This symmetry is a special

feature of this example and is not present in general for the matrices considered in this article.
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FIGURE 1.2. Superposition of the eigenvalues of 100 matrices A + E ,

where each E is a random complex matrix of norm 10−4.
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FIGURE 1.3. A pseudoeigenvector v of A corresponding to the pseu-

doeigenvalue λ = 1, with ‖(A − λ)v‖/‖v‖ ≈ 5.688 × 10−6. Here and

in subsequent such pictures the real part, absolute value, and negative of

the absolute value are shown. The data in question are discrete vectors

of length N , but the dots are connected and thus may appear as smooth

curves. The horizontal coordinate is taken as xj , ranging from 2π/N to

2π as j ranges from 1 to N .

Figure 1.3 shows one of the wave packet pseudomodes that is the subject of this

paper. An ε-pseudoeigenvector or ε-pseudomode of A, for given ε-pseudoeigen-

value λ, is a nonzero vector v such that ‖(A − λ)v‖ ≤ ε‖v‖. For this particular

vector v and λ = 1, we have

‖(A − λ)v‖
‖v‖ = 5.688 · · · × 10−6 ≈ ‖(λ − A)−1‖−1 .

The wave packet is centered at x = x∗ = π − sin−1( 1
2
) ≈ 2.618 and has wave

number centered at k = k∗ = π , that is, a sawtoothed behavior with two points per

wavelength. We shall see that k∗, x∗, and λ are related by the condition

f (x∗, k∗) = λ ,

where f (x, k) = 2 sin x − 2i sin k. Figure 1.4 shows the corresponding narrower

wave packet for a matrix of approximately doubled dimension.

The subject of this paper is the analysis of pseudomodes and pseudospectra

of matrices like A, nonnormal matrices that combine dependence on x and on k.

We shall define the symbol f (x, k) of such a matrix and show that every λ in a

subset of C determined by f (x, k) is an ε-pseudoeigenvalue for a value of ε that

shrinks exponentially as N → ∞. Associated with these pseudoeigenvalues are

pseudoeigenvectors in the form of localized wave packets. In an application, these
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FIGURE 1.4. Same as Figure 1.3 but with the dimension N increased

from 101 to 201. The value of ε is approximately squared, with ε ≈
9.949 × 10−11, and the width of the wave packet is reduced by a factor

of approximately
√

2.

pseudomodes might prove effectively indistinguishable from the true eigenmodes

(which typically have the same wave packet form) and of equal physical signifi-

cance.

There is a literature of pseudospectra of nonnormal true Toeplitz matrices,

whose symbol f is independent of x [6, 28, 29, 34]. For a matrix of this kind,

the nonnormality is introduced only at the boundaries, since if the matrix were

circulant instead of Toeplitz, it would be normal. Nevertheless, we again have

ε-pseudoeigenvalues for exponentially small values of ε, with the associated pseu-

doeigenvectors decaying exponentially away from the left or right boundary. In

Corollary 7.6 of Section 7 we obtain the main result of [34] as a special case of the

more general theorems in this article.

The pseudospectra of non-Hermitian Toeplitz matrices with variable coeffi-

cients were considered in Section 5 of [34] but without any analysis and without

noting that the pseudomodes have the form of wave packets. The classic paper

on the spectra of variable-coefficient Toeplitz matrices in the Hermitian case is by

Kac, Murdock, and Szegö [27].

A close analogue of our results appears in the literature of microlocal analy-

sis of differential and pseudodifferential operators [38]. In several papers begin-

ning in 1996, E. B. Davies has shown that a Schrödinger operator with a com-

plex potential may have wave packet ε-pseudomodes for rapidly decreasing val-

ues of ε [11, 12, 13]. M. Zworski has pointed out that Davies’ example and

its generalizations are instances of a general theory of variable-coefficient partial

differential and pseudodifferential operators developed by Hörmander and others

decades ago, originally motivated by the analysis of Lewy’s phenomenon of nonex-

istence of solutions to certain partial differential equations with smooth coefficients

[17, 22, 24, 30, 48, 49].

The methods of microlocal analysis can also be applied in the discrete case

that is the subject of this paper. After considering a draft of the present article,

Borthwick and Uribe have pointed out that the matrices we are investigating can

be regarded as Berezin-Toeplitz operators on the two-dimensional torus, operators

that arise in geometric quantization of compact symplectic manifolds, and that

microlocal methods imply the existence of wave packet pseudomodes for these
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operators [5]. These results and those mentioned in the last paragraph, however,

depend upon smoothness with respect to x of the underlying matrix or operator.

Here we take a different approach in which smoothness is not required.

2 Twisted Toeplitz Matrices

We now define the class of matrices for which we shall first establish the exis-

tence of exponentially good wave packet pseudomodes. Our theorems assume that

the matrices are banded; we do not know to what extent this hypothesis could be

weakened.

A Toeplitz matrix is a matrix that is constant along diagonals: for some coeffi-

cients {cj },
aj,� = cj−� , 1 ≤ j, � ≤ N .

A circulant matrix is a Toeplitz matrix that extends periodically around the bound-

aries:

aj,� = c( j−�)(mod N ) , 1 ≤ j, � ≤ N .

For integers m and n with −n ≤ m, we define an (m, n)–banded matrix to be a

matrix whose nonzero entries all lie within a band extending m entries below the

main diagonal and n entries above:

aj,� 
= 0 only if − n ≤ j − � ≤ m.

An (m, n)–periodic matrix is the same except that the nonzero entries wrap around

periodically:

aj,� 
= 0 only if − n ≤ j − � ≤ m(mod N ) .

The symbol of an (m, n)–banded Toeplitz matrix or an (m, n)–periodic circulant

matrix is the 2π-periodic trigonometric polynomial

(2.1) f (k) = c−ne−nik + · · · + cmemik .

These definitions apply to individual matrices and are reasonably standard. We

now move to the less familiar territory of families of matrices of dimension N →
∞ obtained by sampling fixed functions along the diagonals. Given integers m

and n with −n ≤ m, suppose we have m + n + 1 real or complex 2π-periodic

coefficient functions

c�(x) , −n ≤ � ≤ m ;
we make no assumptions about continuity or smoothness of c�(x) except as stated

explicitly. Here is the class of matrices we shall initially work with.4

4 Tilli has defined a more general class of “locally Toeplitz” matrices in [39], building on related

work by Tyrtyshnikov [43], in which matrices are investigated that can be represented locally as

perturbations of Toeplitz matrices by matrices of small rank plus matrices of small norm. We take a

step in this direction in Theorem 7.2.



1238 L. N. TREFETHEN AND S. J. CHAPMAN

DEFINITION 2.1 Let c−n, . . . , cm be 2π-periodic coefficient functions. The as-

sociated family of twisted Toeplitz matrices is the set of (m, n)–periodic matrices

{A(N )}N≥1 with coefficients

(2.2) aj,� = c( j−�)(mod N )(xj ) ,

where

(2.3) xj = 2π
j

N
, 1 ≤ j ≤ N .

Note that although we use the word Toeplitz, the matrices are in fact periodic at

this stage of the discussion, and so the term twisted circulant might seem more ac-

curate. However, since nothing has been assumed about continuity of the functions

{cj (x)}, the periodicity in our definition is mainly just formal. The phenomena to

be considered and the conditions of our theorems are localized in x , applying re-

gardless of whether the matrices are periodic in a more substantive sense, and in

Section 7 we shall loosen the definitions to require only the local structure that is

the essence of the matter (Definition 7.1).

Given k ∈ C and N , consider the vector

v = (e−ik, e−2ik, . . . , e−N ik)T.

Away from the boundaries (m +1 ≤ j ≤ N −n), the j th entry of the matrix-vector

product A(N )v can be written

(A(N )v)j = [
c−n(xj )e

−nik + · · · + cm(xj )e
mik

]
vj .

In other words, we have

(A(N )v)j = f (xj , k)vj ,

where f is the x-dependent symbol defined as follows. (The term “symbol” is

standard in the literature of pseudodifference or pseudotranslation operators [9, 31,

36, 44].)

DEFINITION 2.2 The symbol of the family of twisted Toeplitz matrices associated

with the coefficient functions c−n, . . . , cm is the function

(2.4) f (x, k) = c−n(x)e−nik + · · · + cm(x)emik ,

defined for x ∈ R and k ∈ C.

By definition, f (x, k) is 2π-periodic in both x and k. The assumption of band-

edness implies that for each fixed x , f (x, k) depends smoothly on k. Indeed, it is a

trigonometric polynomial and thus an entire function of k, that is, analytic through-

out the complex k-plane. As for the dependence of f on x , in Theorems 4.1, 7.2,

and 7.3 we shall need nothing more than differentiability at a single point x∗, and

in Theorems 7.4 and 7.5 we shall require even less. To construct pseudomodes ex-

plicitly by WKBJ expansion or related methods, more derivatives would be needed

(see Section 8).
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3 Wave Packets and the Twist Condition

Suppose that {A(N )} is a family of (m, n)–periodic twisted Toeplitz matrices

with symbol f (x, k). Let x∗ and k∗ be real numbers, and define λ = f (x∗, k∗). If

f were independent of x , then A(N ) would be a circulant matrix and the vector

(3.1) v = (e−ik∗, e−2ik∗, . . . , e−N ik∗)T

would be an eigenvector of A(N ) with eigenvalue λ provided that Nk∗/2π is an

integer. This is, of course, not a wave packet but a global vector.

If f varies with x , however, (3.1) is no longer an eigenvector. We could attempt

to modify it by the method of WKBJ analysis [4], as follows: Let a vector v be

defined by

(3.2) vj = α(xj )e
−iNφ(xj ) ,

where α is continuous and φ is twice continuously differentiable. Then if v is an

eigenfunction of A(N ) with eigenvalue λ, it will satisfy

(A(N )v)j =
m∑

p=−n

cp(xj )α(xj+p)e
−iNφ(xj+p) = λα(xj )e

−iNφ(xj )

away from the boundaries as before. Expanding this equation for large N we find

that at leading order φ must satisfy the eikonal equation

(3.3)

m∑
p=−n

cp(xj )e
−ipφ′(xj ) = f (xj , φ

′(xj )) = λ .

This result confirms that locally, the wave number k = φ′ must satisfy f (x, k) = λ.

Now for (3.2) to be a localized wave packet at a point x∗, Im(φ) must have a

minimum there, which will happen if Im(φ′(x∗)) = 0 (implying that k∗ = φ′(x∗)
is real) and Im(φ′′(x∗)) < 0. Differentiating (3.3) with respect to x (or expanding

the differences about x∗) gives

∂ f

∂x
(x∗, k∗) + ∂ f

∂k
(x∗, k∗)φ′′(x∗) = 0

so that

φ′′(x∗) = −∂ f

∂x

/
∂ f

∂k
.

Thus we see that if Im(
∂ f

∂x
/

∂ f

∂k
) > 0, then v has a local maximum at x∗ and forms

a localized wave packet, whereas if Im(
∂ f

∂x
/

∂ f

∂k
) < 0, then it has a local minimum

and grows exponentially away from x∗.

We formalize these conditions as follows (Figure 3.1).

DEFINITION 3.1 Let f (x, k) be a function of x ∈ R and k ∈ C that is 2π-periodic

in both variables, and let x∗ and k∗ be real numbers. Then f satisfies the twist
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) > 0

FIGURE 3.1. For a wave packet localized at x ≈ x∗, k ≈ k∗, the symbol

f (x, k) must satisfy the twist condition (3.4).

condition at x = x∗, k = k∗, if at this point it is differentiable with respect to x

with ∂ f/∂k 
= 0 and

(3.4) Im

(
∂ f

∂x

/
∂ f

∂k

)
> 0 .

It satisfies the antitwist condition if it has the same properties with (3.4) replaced

by

(3.5) Im

(
∂ f

∂x

/
∂ f

∂k

)
< 0 .

Our twist and antitwist conditions are matrix analogues of Hörmander’s com-

mutator condition for differential and pseudodifferential operators [22, 23, 24],

which in the general form used in microlocal analysis becomes a condition involv-

ing the Poisson bracket of a principal symbol, {Re( f ), Im( f )}; see, for example,

[23, theorem 3.37]. Connections with pseudospectra are pointed out in [14, 48, 49],

and for the discrete case of Berezin-Toeplitz operators mentioned in the introduc-

tion, see [5]. In Section 6 we shall reformulate the twist and antitwist conditions

in terms of winding numbers of the symbol f (x, k) acting on k ∈ [0, 2π] for each

fixed x .

4 Main Theorem

Our purpose is to show that if the twist condition is satisfied at x∗ and k∗, to-

gether with some other conditions, then there exist exponentially good wave packet

pseudomodes there. No smoothness of the symbol with respect to x is required be-

yond the differentiability at a point that is part of the twist condition. Here is our

main theorem; it will be generalized considerably in Section 7.

THEOREM 4.1 Let {A(N )} be a family of (m, n)–periodic twisted Toeplitz matrices

with symbol f (x, k). Let x∗ and k∗ be real numbers, define λ = f (x∗, k∗), and

suppose that the twist condition (3.4) is satisfied at x = x∗, k = k∗. Suppose,

moreover, that f (x∗, k) 
= λ for all real k 
≡ k∗(mod 2π) and that the extreme

coefficients are nonzero in the following sense: if n > 0, c−n(x∗) 
= 0; if m > 0,

cm(x∗) 
= 0; if m = 0 or n = 0, c0(x∗) 
= λ; if n < 0 or m < 0, λ 
= 0. Then there
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exist constants C1, C2 > 0 and M > 1 such that for all sufficiently large N there

exists a nonzero pseudoeigenmode v(N ) that is exponentially good,

(4.1)
‖(A(N ) − λ)v(N )‖

‖v(N )‖ ≤ M−N ,

and localized,

(4.2)
|v(N )

j |
maxj |v(N )

j |
≤ C1 exp

(−C2 N (xj − x∗)2)(mod 2π) .

The condition that f (x∗, k) 
= λ for all real k 
≡ k∗(mod 2π) might easily be

overlooked, but it is important: as will become clear in Sections 6 through 8, it is

the price we pay for not requiring f to be smooth. The meaning of “mod 2π” in

(4.2) is that the inequality holds with xj adjusted by multiples of 2π as necessary

so that xj − x∗ ∈ [−π, π].
The proof of Theorem 4.1 occupies the remainder of this section. The essen-

tial idea, involving a nonempty intersection of subspaces of local solutions to the

eigenvalue equation decaying to the left and the right, is summarized in the proof

of Theorem 4.1 presented at the end of this section and reappears throughout Sec-

tion 7; see, in particular, Figure 7.3 and the proof of Theorem 7.5.

Suppose v = (v1, . . . , vN )T is an eigenvector of A(N ) with eigenvalue λ, that is,

(A(N ) − λ)v = 0. Then assuming m, n ≥ 0 for each j away from the boundaries,

we have

(4.3) cm(xj )vj−m + · · · + c−n(xj )vj+n = λvj .

(For m < 0 or n < 0 the bookkeeping must be modified in straightforward ways

that we do not spell out.) This is an (m + n + 1)–term recurrence relation with

variable coefficients. We may associate it with a characteristic polynomial

(4.4) p(x, z) = cm(x) + cm−1(x)z + · · · + c−n(x)zm+n − λzm

with coefficients dependent on x . Note that p(xj , z) = 0 is the eikonal equation

(3.3) with eiφ′(xj ) = z. For any fixed j , p(xj , · ) has m + n roots {ζ�} counted with

multiplicity, if we include as many roots ζ = ∞ as there are leading coefficients

equal to 0. Each root with |ζ | > 1 corresponds to exponential growth of vj as j

increases and exponential decay as j decreases; for |ζ | < 1 the pattern is reversed.

Our choice of λ will ensure that one root (and only one) has |ζ | = 1 and passes

from outside to inside the unit circle as x increases through x∗ and thus corresponds

to decay in both directions. We begin in Lemma 4.2, however, with a result based

on the assumption that the roots are separated from the unit circle.

Our proof will work with a fixed range of values of x , chosen narrow enough

so that the coefficients {c�(x)} vary sufficiently little so that, by the assumptions on

cm(x∗) and c−n(x∗), there are no roots at 0 or ∞. With this destination in mind, let
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us first consider the problem of a recurrence relation (4.3) with constant coefficients

and c−n 
= 0. We can write such a recurrence in matrix form as

(4.5)




vj+1

vj+2

vj+3

...

vj+m+n


 =




0 1

0 1

0 1
. . .

. . .

e0 e1 e2 . . . em+n−1







vj

vj+1

vj+2

...

vj+m+n−1




where e� = −cm−�/c−n (with the special case em = (λ − c0)/c−n), or more com-

pactly, with v( j) = (vj , . . . , vj+m+n−1)
T,

(4.6) v( j+1) = Cv( j) ,

where C is the “transfer” matrix of (4.5). For ζ 
= 0, such an equation has a

solution of the form

(4.7) vj = ζ j ∀ j ,

implying

(4.8) v( j) = ζ j v(0)

if and only if ζ satisfies

p(ζ ) = 0 ,

where p is the polynomial p(x, z) of (4.4) but with the first argument omitted since

the coefficients are constant.

Now consider (4.6) but with varying coefficients. Specifically, let Ej be a se-

quence of (m + n) × (m + n) matrices, which we shall eventually require to have

sufficiently small entries, and consider

(4.9) v( j) = (C + Ej ) · · · (C + E1)v
(0) .

We first show that under suitable hypotheses, these products attenuate and amplify

certain vectors exponentially. This is a basic result with the flavor of stable and

unstable manifolds in dynamical systems; see [25] and [35, app. II]. Afterwards

we shall refine it to a more specialized result, Lemma 4.3, that is actually the one

needed to prove Theorem 4.1. Lemma 4.2 itself will be applied later in the proof

of Theorem 7.4.

LEMMA 4.2 Let C be a nonsingular (η+ν)× (η+ν) matrix (η, ν ≥ 0, η+ν ≥ 1)

that has η eigenvalues with |ζ | < ρ < 1 and ν eigenvalues with |ζ | > R > 1, and

consider products of the form

(4.10) S(J ) = (C + EJ ) · · · (C + E1)

with ‖Ej‖ < ε for each j . There exists ε > 0, independent of J , such that these

products separate C
η+ν into exponentially amplified and attenuated subspaces in
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the following sense: for each sufficiently large J , there is an η-dimensional sub-

space Sη ⊆ C
η+ν such that

(4.11) ‖S(J )u‖ ≤ ρ J ‖u‖ ∀u ∈ Sη

and a ν-dimensional subspace Sν ⊆ C
η+ν such that

(4.12) ‖S(J )u‖ ≥ R J ‖u‖ ∀u ∈ Sν .

PROOF: We shall see that Sν can be chosen independently of J , since almost

all vectors lead to exponential growth, but Sη must depend on J , since exponential

decay is more delicate.

The first step is to reduce C to block diagonal form. There exists a nonsingular

matrix X such that

XC X−1 =
(

Dν 0

0 Dη

)
,

where Dν has dimension ν and amplifies all ν-vectors,

(4.13) ‖Dνv‖ ≥ T ‖v‖ ∀v ∈ C
ν ,

and Dη has dimension η and shrinks all η-vectors,

(4.14) ‖Dηw‖ ≤ τ‖w‖ ∀w ∈ C
η ;

we may choose any T > R that is smaller than the eigenvalues of C outside the unit

circle, and any τ < ρ that is larger than the eigenvalues of C inside the unit circle.

If each term C+Ej in (4.10) is transformed to X (C+Ej )X−1, then the intermediate

pairs X−1 X cancel so that only the leftmost X and rightmost X−1 remain, which

have no effect on the large-J assertion. Since Ej becomes X Ej X−1 in this process,

the norm bound ε has to be adjusted by the condition number κ(X) = ‖X‖‖X−1‖.

All this is straightforward, and rather than encumber the rest of the argument with

X and associated details, let us assume from now on, without loss of generality,

that C itself has block diagonal form to begin with,

C =
(

Dν 0

0 Dη

)
,

with Dν and Dη satisfying (4.13) and (4.14).

We identify first a growing space Sν . Define δ, ε > 0 by

δ ≤ T − R

T
, ε = δ(T − τ)

4
,

and let G ⊆ C
η+ν denote the cone of all vectors u = (vT, wT)T ∈ C

η+ν with

‖w‖ ≤ δ‖v‖ .

Consider what happens when C + Ej , with ‖Ej‖ ≤ ε, multiplies a vector u =
(vT, wT)T ∈ G: (

v′

w′

)
= (C + Ej )

(
v

w

)
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assuming (without loss of generality) ‖v‖ = 1. We calculate

‖v′‖ ≥ T − 2ε = T − δ

2
(T − τ)

=
(

1

2
− δ

2

)
(T − τ) + 1

2
(T + τ) >

1

2
(T + τ)

whereas, using the fact that δ < 1,

‖w′‖ ≤ τδ + 2ε = τδ + δ

2
(T − τ) = δ

2
(T + τ) .

Thus we have ‖w′‖ ≤ δ‖v′‖, showing that C + Ej maps G into itself. Moreover,

since ‖v′‖ > T − T δ/2 we have

‖v′‖ − R > T − R − T δ + T δ

2
≥ T δ

2

since T δ ≤ T − R, which implies that each time a term (C + Ej ) multiplies a

vector u = (vT, wT)T ∈ G, the norm of the upper part increases by a factor of at

least R + T δ/2. Putting these observations together we find that if u ∈ G, then

S(J )u ∈ G for all J and ‖S(J )u‖ ≥ R J ‖u‖ for all sufficiently large J . Finally,

we note that G contains the ν-dimensional invariant subspace associated with Dν ,

that is, the subspace spanned by the ν vectors e1, e2, . . . , eν ∈ C
η+ν . Thus this

subspace is a suitable choice of Sν .

Next we find a decaying space Sη. For this we invert the product (4.10) to get

(S(J ))−1 = (C + E1)
−1 · · · (C + EJ )

−1 = (
C−1 + Ẽ1

) · · · (C−1 + Ẽ J

)
with

Ẽ j = −(C + Ej )
−1 Ej C

−1 .

(It is here that we have used the assumption that C is nonsingular, which implies

that C + Ej is nonsingular too if ε is sufficiently small.) By the same argument

as before, (S(J ))−1 has a growing space T of dimension η, and we take Sη =
(S(J ))−1T . �

Other papers that have considered perturbed powers of matrices include [21]

and [37], though the details are quite different from ours.

The next lemma is a more specialized variant of Lemma 4.2 designed for recur-

rences that have a root passing through the unit circle, as occurs at the center of a

wave packet pseudomode.

LEMMA 4.3 Let {C(x)} be a family of nonsingular (η + ν + 1) × (η + ν + 1)

matrices (η, ν ≥ 0) depending differentiably on x at x = x∗. Assume that C(x∗)
has η eigenvalues with |ζ | < ρ < 1, ν eigenvalues with |ζ | > R > 1, and one

eigenvalue µ∗ with |µ∗| = 1. Assume further that d|µ|/dx < 0 at x = x∗, where
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µ = µ(x) is the eigenvalue of C(x) that converges to µ∗ as x → x∗. For any

�x > 0 and J ≥ 1, consider the product

(4.15) S(J ) = C

(
x∗ + (J − 1)

�x

J

)
· · · C

(
x∗ + �x

J

)
C(x∗) .

There exist �x > 0 and M > 1, independent of J , such that these products sep-

arate C
η+ν+1 into exponentially amplified and attenuated subspaces in the follow-

ing sense: for each sufficiently large J , there is an (η + 1)-dimensional subspace

Sη ⊆ C
η+ν+1 such that

(4.16) ‖S(J )u‖ ≤ M−J ‖u‖ ∀u ∈ Sη

and a ν-dimensional subspace Sν ⊆ C
η+ν+1 such that

(4.17) ‖S(J )u‖ ≥ M J ‖u‖ ∀u ∈ Sν .

PROOF: It is only (4.16) that we shall need, not (4.17), so this is the claim we

shall prove. As in the final paragraph of the proof of Lemma 4.2, to show that S(J )

has a decaying subspace of dimension η + 1, we shall show that

(4.18) (S(J ))−1 = C(x∗)−1 · · · C

(
x∗ + (J − 1)

�x

J

)−1

has a growing subspace of this dimension. Our first step, as in the proof of Lem-

ma 4.2, is to assume, without loss of generality, that C(x∗)−1 has the block diagonal

form

C(x∗)−1 =

Dη 0 0

0 µ−1
∗ 0

0 0 Dν


 ,

where Dη has dimension η and amplifies all η-vectors,

(4.19) ‖Dηv‖ ≥ T ‖v‖ ∀v ∈ C
η ,

Dν has dimension ν and shrinks all ν-vectors,

(4.20) ‖Dνw‖ ≤ τ‖w‖ ∀w ∈ C
ν ,

and |µ−1
∗ | = 1. Here τ < 1 < T .

Without loss of generality, we simplify the discussion by assuming x∗ = 0.

The proof rests on an observation of linear algebra: if a diagonal matrix is

perturbed by O(ε) in the off-diagonal positions, its eigenvalues of multiplicity 1

change by only O(ε2). (One can prove this by considering the characteristic poly-

nomial.) We can exploit this phenomenon as follows. Our task is to consider the

product of a set of matrices

C(x)−1 =

Dη 0 0

0 c(x) 0

0 0 Dν


 + E(x)

with ‖E(x)‖ = O(x), where E(x) is constructed to have a zero entry in the middle

position (η + 1, η + 1) and c(x) is defined accordingly. Since µ(x)−1 = µ−1
∗ +
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x(dµ−1/dx)(x∗) + o(x), it follows from the fact of linear algebra just mentioned

that c(x) = µ−1
∗ + x(dµ−1/dx)(x∗) + o(x) too. Choose γ to be a constant in the

range 0 < γ < (d|µ−1|/dx)(x∗), and collect the upper-left (η+1)× (η+1) block

of C(x)−1 into a single matrix Dη+1(x). Then for some σ > 0 and xmax > 0 we

have

(4.21) C(x)−1 =
(

Dη+1(x) E1(x)

E2(x) Dν(x)

)
, ‖E1‖, ‖E2‖ ≤ σ x ,

and

‖Dη+1(x)v‖ ≥ (1 + γ x)‖v‖ ∀v ∈ C
η+1,(4.22)

‖Dν(x)w‖ ≤ τ̃‖w‖ ∀w ∈ C
ν,(4.23)

for some τ̃ with 0 < τ̃ < τ and all x with 0 ≤ x ≤ xmax.

We now follow estimates as in the proof of Lemma 4.2. Define

δ ≤ γ

2σ
, �x = min

{
xmax,

δ(1 − τ̃ )

σ

}
.

Let G ⊆ C
η+ν+1 be the cone of all vectors u = (vT, wT)T ∈ C

η+ν+1 with the

property

‖w‖ ≤ δ‖v‖ .

Consider what happens when C(x)−1 multiplies a vector u = (vT, wT)T ∈ G:(
v′

w′

)
=

(
Dη+1(x) E1(x)

E2(x) Dν(x)

) (
v

w

)
,

assuming without loss of generality ‖v‖ = 1. We calculate

‖v′‖ ≥ 1 + γ x − σδx ≥ 1 + γ x

2

and

‖w′‖ ≤ σ�x + τ̃ δ ≤ δ(1 − τ̃ ) + τ̃ δ = δ .

These estimates show that C(x)−1 maps G into itself and increases the upper part

of the vector by ‖v′‖/‖v‖ ≥ 1+γ x/2. Putting a product of such matrices together,

we find that if u ∈ G, then (S(J ))−1u ∈ G for all J and ‖(S(J ))−1u‖ ≥ M J ‖u‖ for

all sufficiently large J , for some constant M ≈ exp(γ�x/4). Finally, G contains

the (η + 1)–dimensional invariant subspace associated with Dη+1, and (S(J ))−1

times this subspace is a suitable choice of Sη. �

PROOF OF THEOREM 4.1: In order to establish Theorem 4.1, we construct a

wave packet in an interval [x∗−�x, x∗+�x] that satisfies the eigenvalue condition

(4.3) exactly in that interval and is also localized in the sense of (4.2) there. We

do this by applying Lemma 4.3 in both directions, moving both right and left from

the grid point nearest x = x∗, taking advantage of the equivalence between the

variable-coefficient recurrence relation (4.3) and the variable-coefficient analogue

of the transfer matrix equation (4.5).
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First, let us move from x∗ to the right. The hypothesis of Theorem 4.1 that

f (x∗, k) 
= λ for all real k 
≡ k∗(mod 2π) ensures that the transfer matrix C(x∗)
has just a single eigenvalue µ∗ on the unit circle, as required in Lemma 4.3. The

twist condition ensures that d|µ|/dx < 0 at x = x∗, and the hypotheses on the

extreme coefficients ensure that C(x) is well-defined and nonsingular for all x

sufficiently close to x∗. The matrices S(J ) of Lemma 4.3 are then the solution

operators that transfer an (m + n)–vector of data (vj , . . . , vj+m+n−1) to the right

J steps, that is, to (vJ+ j , . . . , vJ+ j+m+n−1). According to Lemma 4.3, for some

η ≥ 0 there is an (η + 1)–dimensional subspace S
(right)
η ⊆ C

m+n of such data

vectors that generate solutions in [x∗, x∗ + �x] that are exponentially small in the

sense of (4.16) at the end of that interval. The value of J will grow proportionally

to N (J ≈ N�x/2π), and thus the M−J of (4.16) is equivalent to the M−N needed

in (4.1). By the same argument, though this is not spelled out in the statement of

Lemma 4.3, these solutions have the Gaussian decay behavior described by (4.2).

Similarly, by an obvious symmetry, we can apply Lemma 4.3 moving from x∗
to the left. We conclude that with ν = m +n −1−η there is a (ν +1)–dimensional

subspace S (left)
η ⊆ C

m+n of data vectors that generate solutions in [x∗ − �x, x∗]
with the appropriate Gaussian decay.

Now we take the intersection of these two subspaces. Their dimensions are

η + 1 and ν + 1 = m + n − η, and they are subspaces of C
m+n . It follows that

S
(right)
η ∩ S (left)

η is a subspace of dimension at least 1 (in fact, it will be exactly 1) of

vectors that generate solutions of the eigenvalue equation in [x∗ − �x, x∗ + �x]
that decay appropriately on both sides of x∗.

Thus there exists a vector that exactly satisfies the eigenvalue equation in [x∗ −
�x, x∗ + �x] and has the necessary decay there. Near x∗ − �x and x∗ + �x ,

such a vector will be exponentially small. By extending it by values 0 outside this

interval, we obtain a pseudoeigenvector v(N ) that satisfies both conditions (4.1)

and (4.2). �

5 Examples

In this section we illustrate Theorem 4.1 with four examples computed numer-

ically with EigTool [46, 47]. We abbreviate the twist ratio by

(5.1) P(x, k) = ∂ f

∂x

/
∂ f

∂k
(x, k)

and note that the twist condition (3.4) is that P(x, k) is well-defined at (x∗, k∗) and

has positive imaginary part.

First, let A(N ) be the N × N “Mt. Fuji” matrix that is 0 everywhere except that

the first superdiagonal contains the entries 1/N , 2/N , . . . , (N − 1)/N , continued

around periodically to the entry aN1 = 1. The symbol is

(5.2) f (x, k) = xe−ik

2π
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FIGURE 5.1. ε-pseudospectra of the “Mt. Fuji” matrix (5.2) with N =
100, ε = 10−2, . . . , 10−12 (from outside in toward the circle of eigen-

values, or from 0 out). Here and in the following figures, the dashed

curve bounds the region in which ‖(λ− A(N ))−1‖ grows exponentially as

N → ∞. Below, the optimal ε-pseudoeigenvector for λ = i/2 (cross),

with x∗ = π , k∗ = −π/2, ε ≈ 3.53 × 10−10.

with m = −1 and n = 1, and as x and k range over [0, 2π], f ranges over the

unit disc. The twist ratio is P(x, k) = i/x , and since ImP(x, k) is positive for all

x > 0, we conclude from Theorem 4.1 that every point λ in the punctured unit disc

is an exponentially good pseudoeigenvalue. Figure 5.1 confirms this prediction.

The lower part of Figure 5.1 shows a pseudoeigenvector of A(N ) corresponding

to a particular choice of λ, namely, λ = i/2. Here and in our subsequent such

figures (unlike in Figures 1.3 and 1.4), the pseudoeigenvector is an optimal one,

a vector v that minimizes ‖(A − λ)v‖/‖v‖. (This is readily computed by means

of the singular value decomposition and is the vector produced by EigTool when a

pseudomode is requested.) In the figure, we see that the pseudoeigenvector has the

form of a wave packet. To relate the packet quantitatively to Theorem 4.1, we note

that from (5.2), f (x, k) = λ = i/2 will be achieved with x = π and k = −π/2,

and only for these values. This is why the wave packet in Figure 5.1 lies at the

center of the interval with four points per wavelength.

Figure 5.2 confirms that, as predicted by (4.1), the resolvent norm at this point

in the punctured disc grows exponentially as N → ∞.
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FIGURE 5.2. ‖(λ − A(N ))−1‖ against N for the same matrices and λ as

in Figure 5.1. The exponential growth confirms (4.1).
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FIGURE 5.3. The absolute value of the pseudoeigenvector of Figure 5.1,

plotted again on a logarithmic scale.

Theorem 4.1 does not guarantee that an optimal pseudoeigenvector has the form

of a wave packet, merely that there exists an exponentially good pseudoeigenvec-

tor in that form. Figure 5.1 suggests, however, that in this case the optimal pseu-

doeigenvector does have the shape of a wave packet. We can see its shape more

fully by looking at this vector on a logarithmic scale. The downward-pointing

curve of Figure 5.3, locally a parabola, is just the kind of structure described by

(4.2). We see that the curve reaches a smallest value at x ≈ 0.3 and then climbs

abruptly up again.

Our second example, shown in Figure 5.4, is a 150 × 150 “Wilkinson” matrix,

consisting of 1/N , . . . , (N − 1)/N on the main diagonal and 1 on the first super-

diagonal and also in the (N , 1) position. (Wilkinson proposed a multiple of the

nonperiodic version of this matrix with N = 20 as an example of a matrix with

ill-conditioned eigenvalues [45], and pseudospectra were considered in [40].) The

symbol is f (x, k) = x/(2π) + e−ik , with m = 0 and n = 1, and the twist ratio

is P(x, k) = ieik/(2π). This has positive imaginary part for −π/2 < k < π/2,

that is, whenever e−ik lies on the right half of the unit circle C . By Theorem 4.1,

each point λ in the crescent-shaped region bounded by C , C + 1, and the lines
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FIGURE 5.4. “Wilkinson” matrix (see text) with N = 150, ε =
10−2, 10−3, . . . , 10−7. The ε-pseudoeigenvector for λ = 1.2 (cross)

has x∗ = 0.2, k∗ = 0, and ε ≈ 0.0073.

Im λ = ±1 is accordingly an exponentially good pseudoeigenvalue. For the se-

lected value λ = 1.2 we calculate k∗ = 0 and x∗ = 0.4π ≈ 1.26, and this explains

why the lower part of Figure 5.4 has a wave packet in the left of the interval with

no oscillations inside the envelope—the wave packet is purely real.

It is clear from Figure 5.4 that the pseudospectra crescent in the half-plane

Re λ ≥ 1
2

reflects to an identical pseudospectra crescent in the half-plane Re λ ≤ 1
2
.

Theorem 4.1 does not explain this, because the twist condition is not satisfied in

this region, but as we shall see in Section 7 (Theorem 7.3; see also Figure 7.4), it

is enough for the antitwist condition to be satisfied instead.

Our third example, shown in Figure 5.5, is a 150 × 150 “target” matrix, con-

sisting of −1 + xj/π on the first subdiagonal and 1 on the first superdiagonal, with

these patterns continued periodically to aN1 = 1 and a1N = x1. The symbol is

(5.3) f (x, k) = e−ik +
(

−1 + x

π

)
eik = x

π
cos k + i

(
x

π
− 2

)
sin k .

As x ranges over [0, 2π], this function traces all ellipses centered at 0 with axes

aligned with the real and imaginary axes and of lengths summing to 4. For λ =
0.6 + 0.6i, the value of x that satisfies the twist condition is the one corresponding

to an ellipse taller than it is wide. A little calculation shows that x∗/π is the root

≈ 0.67 of 25x4 − 100x3 + 82x2 + 36x − 36, leading to x∗ ≈ 2.11317 and k∗ ≈
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FIGURE 5.5. “Target” matrix (5.3) with N = 150, ε = 10−2, 10−3,

. . . , 10−8. The ε-pseudoeigenvector for λ = 0.6 + 0.6i (cross) has x∗ ≈
2.11, k∗ ≈ −0.47, and ε ≈ 5.30 × 10−4.

−0.46904. This explains why the wave packet in Figure 5.5 is located where it is

with about |2π/k| ≈ 13.4 points per wavelength.

Finally, our fourth example illustrates the feature of Theorem 4.1 that the co-

efficients need not be smooth. We take the same Mt. Fuji matrix as in Figures 5.1

through 5.3 but add normally distributed random noise of mean 0 and standard

deviation 0.1 to both the main diagonal and the first superdiagonal (and also the

(N , 1)–entry). The pseudospectra of the perturbed matrix (not shown) look much

like those of the original, and Figure 5.6 shows that the optimal pseudomode has

roughly the same overall form as before, too, though it is now quite irregular lo-

cally. This random perturbation does not fit the assumptions of Theorem 4.1: it

does not correspond to a well-defined twisted Toeplitz family {A(N )}, let alone one

with a differentiable symbol at x = x∗. The fact that there is a wave packet pseu-

domode anyway illustrates how robust this effect is. We shall consider this matter

of robustness further in Sections 7 and 8.

6 Winding Number Interpretation

In the theory of Toeplitz matrices and operators, a key role is played by the

winding number of the symbol with respect to a point λ ∈ C [8, 19, 34]. We
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FIGURE 5.6. Optimal ε-pseudomode with λ = i/2 (linear and log

scales) for the Mt. Fuji matrix of Figures 5.1 through 5.3, but now with

random noise added to the main diagonal and the first superdiagonal.

The value of ε is 4.22 × 10−10.

define this quantity, I ( f, λ), to be the number of times that the curve f ([0, 2π])
winds around λ in the positive sense, where f is the symbol; I ( f, λ) is undefined

if f ([0, 2π]) passes through λ. Theorem 4.1 can be interpreted in these terms

(Figure 6.1). For a twisted Toeplitz matrix, we define I ( f, λ, x) for each x to be

the winding number corresponding to coefficients frozen at that value of x . Now

suppose λ ∈ C satisfies λ = f (x∗, k∗) for some x∗, k∗ ∈ [0, 2π]. Then the curve

f (x∗, [0, 2π]) passes through λ, and thus I ( f, λ, x) is not defined at x = x∗.

Typically, however, it will be defined for all values of x sufficiently close to x∗ to

the left and right. The twist condition together with the k 
≡ k∗(mod 2π) condition

of Theorem 4.1 amounts to the statement that the curve crosses through λ in such

a way that as x increases through x∗, I ( f, λ, x) decreases by 1. It is easily verified

that if Im(
∂ f

∂x
/

∂ f

∂k
) > 0, then the curve moves in the direction that decreases the

winding number. For the antitwist condition, similarly, it moves in the direction

that increases the winding number.

Thus Theorem 4.1 asserts that if the winding number about λ decreases as

x increases through x∗, λ is an exponentially good pseudoeigenvalue. Winding

numbers have appeared previously in work related to ours—see, for example, [14,

lemma 3.2′].
In fact, we can make an explicit connection between the winding number I =

I ( f, λ, x) at a point x where it is defined and the eigenvalues of the associated

transfer matrix C(x) of (4.5). By (2.4), the rational function z �→ f (x, k) with

z = e−ik is a Laurent polynomial with a pole of order m at z = 0. (We assume

m ≥ 0 for simplicity.) By the principle of the argument of complex analysis, this

function of z has exactly m − I zeros in the unit disc. It follows that in Lemma 4.2,

the attenuated and amplified spaces associated with the matrix C = C(x) and its

perturbations will have dimensions

(6.1) η = m − I , ν = n + I .
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f (x∗ + �x, [0, 2π ])

FIGURE 6.1. Winding number interpretation of Theorem 4.1. If the

curve f (x, [0, 2π ]) crosses λ as x increases through x∗ in such a way

that the winding number about λ is decreased, then there is an exponen-

tially good wave packet pseudomode centered at x∗ with pseudoeigen-

value λ.

Since our results for twisted Toeplitz matrices depend on winding numbers and

so do those of [34] for true Toeplitz matrices, one may wonder if there is a con-

nection between the two. Indeed there is: the boundary conditions that make a

matrix Toeplitz rather than circulant can be viewed as a special discontinuous case

of a “twist.” Theorem 7.4 of the next section makes use of winding numbers to

generalize Theorem 4.1 to discontinuous symbols, and Corollary 7.6 exhibits the-

orem 3.2 of [34] as a consequence of our Theorem 7.5.

7 Generalizations

Theorem 4.1 captures the essence of the matter of wave packet pseudomodes,

perhaps, but when one comes to concrete examples, it is surprising how often this

theorem fails to apply in cases where it “ought” to. Fortunately, it can be extended

in many ways.

The most basic generalization, in analogy to the definitions of Tilli [39], is to

consider matrices that are not exactly of twisted Toeplitz form as in Definition 2.1

but close to that form, at least locally near a point x∗. The following theorem is

a second indication (Figure 5.6 was the first) that the exponentially strong effects

identified in Theorem 4.1 are structurally stable: they persist under small pertur-

bations. This underlines the fact that Theorem 4.1 does not depend on smoothness

of the symbol.

In the following definition, “near x∗” means throughout some real neighbor-

hood of the form x∗ − �x < x < x∗ + �x(mod 2π), where �x is independent

of N .

DEFINITION 7.1 Let {A(N )} be a family of matrices of degree N → ∞, let x∗ ∈
[0, 2π] be fixed, and let m and n be integers with −n ≤ m. We say that {A(N )} is
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(m, n)–periodic near x∗ if for all sufficiently large N , the rows of A(N ) correspond-

ing to row indices j with xj near x∗ are 0 outside the (m, n)–band. We say that

{A(N )} is asymptotically (m, n)–twisted Toeplitz near x∗ with symbol f (x, k) =
c−n(x)e−nik + · · · + cm(x)emik for some fixed functions c−n(x), . . . , cm(x) defined

near x∗ if it is (m, n)–periodic near x∗ and for all j with xj near x∗ and all � the

coefficients of A(N ) satisfy

(7.1) aj,� = c( j−�)(mod N )(xj ) + o(1)

uniformly as N → ∞.

THEOREM 7.2 Let {A(N )} be a family of matrices that are asymptotically (m, n)–

twisted Toeplitz near x∗ ∈ [0, 2π] with symbol f (x, k) satisfying λ = f (x∗, k∗)
and the other conditions of Theorem 4.1 at x = x∗. Then the conclusions (4.1) and

(4.2) of Theorem 4.1 hold.

PROOF: At the heart of our proof of Theorem 4.1 are the quantitative estimates

of Lemma 4.3 involving products of matrices C(x) for x ≈ x∗, and in particular,

the bounds (4.21)–(4.23) on the norms of E1, E2, Dη+1, and Dν . These bounds still

hold for matrices {A(N )} satisfying (7.1), and the proof remains valid in this more

general case. �

An important special case of Theorem 7.2 is the situation where the various di-

agonals of a matrix have different “offsets” from the one implicit in the strict def-

inition (2.2) of twisted Toeplitz matrices. For example, one may index the matrix

entries by columns instead of rows, or diagonally. An example of a family of matri-

ces of this kind is shown in Figure 7.1. The Ehrenfest matrix has 1/(N−1), 2/(N−
1), . . . , 1 on the first superdiagonal and 1, (N − 2)/(N − 1), . . . , 1/(N − 1) on the

first subdiagonal, with symbol5

(7.2) f (x, k) = e−ik

(
x

2π

)
+ eik

(
1 −

(
x

2π

))
.

As in Figure 5.5, the set of values covered by f (x, k) is a superposition of el-

lipses. As x increases from 0 to 2π , we start with the unit circle with winding

number 1, which then flattens to ellipses with winding number 1. At x = π the el-

lipse reduces to the interval [−1, 1], whereupon it begins to fatten again to ellipses

now with winding number −1 until reaching the unit circle once more at x = 2π .

The result is that each point λ in the unit disc corresponds to two values x∗ at which

the twist condition is satisfied—first when the winding number jumps from 1 to 0,

then when it jumps again from 0 to −1. This accounts for the appearance of two

wave packets in the optimal pseudomode in the figure.

Theorem 7.2 also makes it possible for us to extend our results to the antitwist

condition.

5 The nonnormal behavior of this matrix has been of interest in connection with the “cutoff phe-

nomenon” of transient behavior of Markov chains [15, 16, 26].
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FIGURE 7.1. “Ehrenfest” matrix (7.2) with N = 100, ε = 10−2, 10−3,

. . . , 10−10. The ε-pseudoeigenvector for λ = 0.5 + 0.3i (cross) has

ε ≈ 5.71 × 10−6. We get a double wave packet because as x increases

from 0 to 2π , the symbol crosses λ at two different values of x .

THEOREM 7.3 Let {A(N )} be a family of matrices as in Theorem 4.1 or Theorem 7.2

but such that f (x, k) satisfies the antitwist condition at (x∗, k∗) instead of the twist

condition. Then λ = f (x∗, k∗) is again an exponentially good pseudoeigenvalue;

the estimates (4.1) and (4.2) hold with A(N ) replaced by A(N )T
.

PROOF: This is immediate provided we note the fine point that if {A(N )} is

a twisted Toeplitz family, then {A(N )T} in general is not, because its diagonals are

indexed by columns instead of rows. However, it is asymptotically twisted Toeplitz

near any point x∗ of interest, so Theorem 7.2 gives the desired conclusion. �

Theorem 7.3 explains the left half of Figure 5.4, where it is the antitwist rather

than the twist condition that is satisfied. Of course, for such a simple example, one

could also devise ad hoc explanations based on the symmetries of the matrix.

Up to here, we have obtained wave packets of type exp(−N (x − x∗)2) from

eigenvalues of a variable-coefficient transfer matrix that cross into the unit disc

at a point x = x∗ where the symbol is continuous and differentiable. However,

the behavior at x = x∗ need not be continuous for localized pseudomodes to ap-

pear. One also gets exponentially good pseudomodes, now of the sharper type
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exp(−N |x − x∗|), if the transfer matrix is discontinuous at x∗ but well-behaved on

both sides, with fewer eigenvalues inside the unit disc on the left side than on the

right, or equivalently, a larger winding number of the symbol.

THEOREM 7.4 Let {A(N )} be a family of matrices as in Theorem 4.1, 7.2, or 7.3

whose symbol f (x, k) is discontinuous at x∗ but has left and right limits f (x−
∗ , k)

and f (x+
∗ , k) with band widths (m−, n−) and (m+, n+), and suppose that the value

λ ∈ C is not taken by f (x−
∗ , R) or f (x+

∗ , R), so that I ( f, λ, x−
∗ ) and I ( f, λ, x+

∗ )

are defined. Suppose also that the extreme coefficients of f (x−
∗ , R) and f (x+

∗ , R)

are nonzero in the same sense as in Theorem 4.1. If I ( f, λ, x−
∗ ) > I ( f, λ, x+

∗ ),

then there exist constants C1, C2 > 0 and M > 1 such that for all sufficiently large

N there exists a nonzero pseudoeigenmode v(N ) with

(7.3)
‖(A(N ) − λ)v(N )‖

‖v(N )‖ ≤ M−N

and

(7.4)
|v(N )

j |
maxj |v(N )

j |
≤ C1 exp(−C2 N |xj − x∗|) (mod 2π) .

If I ( f, λ, x−
∗ ) < I ( f, λ, x+

∗ ), then the same conclusions hold with A(N ) replaced

by A(N )T
.

PROOF: Let us abbreviate the winding numbers by I − on the left and I + on the

right and assume I − > I +; the case I − < I + follows by taking the transpose. We

assume m−, m+ ≥ 0 for simplicity. Following (6.1) and the notation of the proof

of Theorem 4.1, Lemma 4.2 gives us spaces S
(right)
η of dimension m+ − I + and

S (left)
η of dimension n− + I −. Now the band structure of our variable-coefficient

recurrence relation is such that the solution near x∗ is determined by the (m++n−)–

dimensional linear space of values taken in the m+ points to the left and the n−

points to the right of the discontinuity. Since m+ − I + + n− + I − > m+ + n−, it

follows that S
(right)
η and S (left)

η must have a nontrivial intersection, and this gives us

our pseudomode as in the proof of Theorem 4.1, but with the stronger localization

(7.4) since the eigenvalues are separated from the unit circle. �

An example of a matrix with a discontinuous symbol is shown in Figure 7.2.

Here A is a 140 × 140 periodic tridiagonal matrix: the superdiagonal has value 2

and the subdiagonal is −1 in rows 2 through 71 and +1 in rows 72 through 140

and in the corner position a1,140. Thus the symbol has a jump at x∗ = π :

(7.5) f (x, k) =
{

− exp(ik) + 2 exp(−ik) for x < x∗
+ exp(ik) + 2 exp(−ik) for x > x∗;

as x and k range over all real values, the symbol describes two ellipses but not the

region interior to them. The selected value λ = 1.6 lies between the two, with a

jump in winding number from 0 to −1 as x passes through x∗, and the figure shows
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−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

0 π/2 π 3π/2 2π

−1

0

1

λ = 1.6

0 π/2 π 3π/2 2π
10

−10

10
−5

10
0

FIGURE 7.2. “Two ellipses” matrix (7.5) with N = 140, ε =
10−2, 10−3, . . . , 10−10. The ε-pseudoeigenvector for λ = 1.6 (cross)

has x∗ = π and ε = 8.84 × 10−7 (shown on linear and log scales).

The left and right lobes of the pseudospectra correspond to wave packet

pseudomodes of A(N ), and the top and bottom lobes to wave packet pseu-

domodes of A(N )T
.

the resulting localized wave packet. This matrix is a discontinuous analogue of the

target matrix of Figure 5.5.

Although Theorem 7.4 covers this example, it would not apply to a similar

kind of a matrix in which the discontinuity between f (x−
∗ , k) and f (x+

∗ , k) oc-

curred over several rows, corresponding, for example, to an “antidiagonal” rather

than “horizontal” discontinuity in the matrix. In seeking a generalization in this

direction, one might expect that detailed attention to the nature of the discontinuity

would be needed in order to ensure that the exponentially good wave packet pseu-

domodes persist. In fact, the opposite is true: they persist under arbitrary matrix

alterations of any kind whatsoever, provided they are confined to a finite number of

rows near the discontinuity. The following result sets forth this surprising state of
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n
−
 + I

−
 decaying solutions m

+
 − I

+
 decaying solutionsJ modified rows

LEFT INTERFACE RIGHT

FIGURE 7.3. Setup for the proof of Theorem 7.5.

affairs. This conclusion is consistent with the findings of [1] and [7] (see, e.g., [7,

fig. 4]) that whereas alterations of certain entries of large, nonsymmetric, banded

Toeplitz matrices may add anomalous eigenvalues to the spectrum, they have little

effect on the pseudospectra.

THEOREM 7.5 Let J ≥ 0 be fixed. Let {A(N )} be a family of matrices of any of

the kinds described in Theorems 4.1, 7.2, 7.3, or 7.4, except that for each N, the

J rows of A(N ) closest to x∗ are modified arbitrarily, not only inside the band but

potentially in any and all positions. (In the case of Theorem 7.3, replace “rows” by

“columns.”) Then the conclusions of those theorems still hold.

PROOF: The situation is indicated schematically in Figure 7.3. (We consider

the wave packet case of Theorems 4.1, 7.2, and 7.4; for Theorem 7.3 one takes the

transpose as usual.) Our wave packet pseudomode will be a grid function v that

satisfies the eigenvalue equation Av = λv exactly throughout a region x∗ − �x <

x < x∗ + �x (i.e., in O(N ) points to either side of the interface). In this region,

following (6.1), consider the vector space of dimension (n− + I −) + J + (m+ −
I +) consisting of grid functions composed of an arbitrary decaying solution to the

variable-coefficient recurrence relation on the left, an arbitrary decaying solution

on the right, and arbitrary values in the J points of the interface. Now consider

what is required for such a grid function to satisfy the eigenvalue equation. At the

right edge of the left region there are n− homogeneous equations to be satisfied,

and similarly there are m+ homogeneous equations to be satisfied at the left edge

of the right region. In addition, there are J homogeneous equations of entirely

arbitrary form to be satisfied in the middle region. All together, we have a linear

problem involving n− + m+ + J homogeneous equations in a space of dimension

n− + m+ + J + (I − − I +). Since I − − I + > 0 by assumption, the problem has a

nonzero solution, and this is our exponentially good wave packet. �

Figure 7.4 illustrates this striking robustness of wave packet pseudomodes.

As a corollary of Theorem 7.5, we may derive the main result (theorem 3.2) of

Reichel and Trefethen [34].

COROLLARY 7.6 Let {T (N )} be a family of banded Toeplitz matrices with symbol

f (k). Let λ be a complex number with f (k) 
= λ for all k ∈ R, and let I ( f, λ)

be the winding number of f ([0, 2π]) about λ. If I ( f, λ) < 0, then there exist

constants C1, C2 > 0 and M > 1 such that for all sufficiently large N there exists
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FIGURE 7.4. Repetition of Figures 5.4 and 7.2, but now with four rows

in the middle of each matrix replaced by rows of independent random

numbers from the standard normal distribution. As established by Theo-

rem 7.5, the lobes of each figure corresponding to wave packet pseudo-

modes of A(N ) are hardly affected, while the other lobes, corresponding

to wave packet pseudomodes of A(N )T
, are entirely undone. These ef-

fects are reversed if columns rather than rows are altered.

a nonzero pseudoeigenmode v(N ) with

(7.6)
‖(T (N ) − λ)v(N )‖

‖v(N )‖ ≤ M−N

and

(7.7)
|v(N )

j |
maxj |v(N )

j |
≤ C1 exp(−C2 N |xj |) .

If I ( f, λ) > 0, then the same conclusions hold with (7.7) replaced by

(7.8)
|v(N )

j |
maxj |v(N )

j |
≤ C1 exp(−C2 N |2π − xj |) .

PROOF: Consider the family of twisted Toeplitz matrices {A(N )} where for each

N , A(N ) is the 2N × 2N matrix with T (N ) in the upper-left N × N block and 0

elsewhere. This is a twisted Toeplitz family whose symbol has discontinuities at

x∗ = 0 and x∗ = π , where the winding numbers change from 0 to I ( f, λ) and then

back again. Theorem 7.5 does the rest. �
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8 Double Crossings and Structural Stability

The reader may have noticed that we have not applied our theorems to the

example of Figures 1.1 and 1.4 with which we began this paper. The reason is

that our theorems do not apply. For this example, as one root of the recurrence

relation crosses into the unit disc, another crosses out, causing the dimensionality

arguments we have used to fail. Instead, to explain this example and others like it,

one must make use of the smoothness of the symbol.

Let us identify the problem algebraically. For the family of twisted Toeplitz

matrices (1.2), the symbol is f (x, k) = 2 sin x − 2i sin k and the twist ratio (5.1) is

P(x, k) = i cos x/ cos k. For any choice of λ with −2 < Re λ, Im λ < 2, there are

two choices of x∗ and two choices of k∗. For example, for λ = 1 as in Figures 1.3

through 1.4, we have

x∗ = sin−1

(
1

2

)
≈ 0.5236 or π − sin−1

(
1

2

)
≈ 2.618

and k∗ = 0 or π . Now the appearance of two values of x∗ is no problem; The-

orems 4.1, 7.2, 7.3, and 7.4 apply locally near any appropriate value x∗, and we

have already seen in Figure 7.1 an example with two values of x∗. The appear-

ance of two values of k∗, however, is a problem indeed. Their effect will be that

in Lemma 4.3, as one eigenvalue of the matrix C(x) crosses the unit circle from

outside to inside, another will cross from inside to outside. The winding number

will accordingly not change, and we will not have subspaces of solutions decaying

in each direction of sufficient dimension to conclude that there must be a nonempty

intersection of solutions that decay in both directions. In terms of the statements

of Theorems 4.1, 7.2, and 7.3, we have a failure of the condition that f (x∗, k) 
= λ

for all real k 
≡ k∗(mod 2π).

The problem is not an artifact of our proofs but genuine. In general, if a family

of twisted Toeplitz matrices has a symbol with a double crossing, by which we

mean two or more values of k∗ for a single value of x∗ associated with some number

λ = f (x∗, k∗), then exponentially good wave packet pseudomodes need not exist

for this λ. Figure 8.1 illustrates this numerically by repeating Figures 1.1 and 5.5,

but now with each entry of each matrix increased or decreased by 10%, at random.

We see that the pseudospectra of Figure 1.1 are largely destroyed, while those of

Figure 5.5 hardly change at all. The former depend on smoothness of the symbol,

and the latter do not.

To account for Figures 1.1 through 1.4, one would have to go beyond the the-

orems of this paper. In a general sense, the idea would be as follows: If a func-

tion is smooth with respect to x , then its transform is localized with respect to k.

Thus it should be possible to construct good wave packets entirely from energy at

wave numbers close to k∗, avoiding any other values k ′
∗ at which f (x∗, k∗) takes

the same value λ. Borthwick and Uribe [5] present an argument of this kind that

establishes the existence of rapidly (but not necessarily exponentially) decreasing

pseudomodes under the assumption that the symbol is smooth.
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FIGURE 8.1. Repetition of Figures 1.1 and 5.5, but now with each entry

of the matrix multiplied by 1.1 or 0.9 at random. The loss of smooth-

ness destroys the pseudospectra in the first case, where there is a double-

crossing symbol, but has little effect in the second, which could be said

to be structurally stable.

9 Discussion

As mentioned in the introduction, the phenomena we have discussed for ma-

trices have analogues for differential and pseudodifferential operators, which have

been investigated by Davies, Zworski, and others [11, 12, 13, 14, 48, 49]. The

analogy is close. For constant-coefficient, non-self-adjoint differential operators,

one finds exponentially good pseudoeigenvectors localized at a boundary [13, 32],

just as for non-Hermitian Toeplitz matrices, whereas when the coefficients become

variable, wave packet pseudoeigenvectors appear. In [14] and [48] it is shown that

if the symbol is holomorphic, then the pseudoeigenvectors are exponentially or

nearly exponentially good. Our theorems show that smoothness of the symbol is

an unnecessary assumption in the matrix case, except in cases of a double-crossing

symbol, and we hope to present analogous theorems for differential operators in

forthcoming work.

We hope that in the future, a greater understanding will be developed of the

physical significance of wave packet pseudomodes for both matrices and differen-

tial operators. Such pseudomodes have already been studied for fluid mechanics

problems related to the Orr-Sommerfeld operator by Reddy, Schmid, and Henning-

son [33] and Chapman [10]. Davies has considered wave packet pseudomodes of

complex harmonic oscillators [11, 12, 13], and a similar complex differential op-

erator was considered in [42]. Bender and colleagues have investigated strongly

nonnormal “PT -symmetric” and “CPT -symmetric” quantum mechanical opera-

tors that have wave packet pseudomodes, though their analysis of them considers

just the true eigenmodes without questioning their physical significance [2]; no

doubt there are also other examples of operators with wave packet pseudomodes in
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the literature. In an era when a field called “non-Hermitian quantum mechanics”

is becoming established [3, 20], we expect that further applications will emerge in

which the physics is determined not by eigenmodes but by wave packet pseudo-

modes.
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