
Wave packet pseudomodes of variable
coefficient differential operators

BY LLOYD N. TREFETHEN

Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford OX13QD, UK
(lnt@comlab.ox.ac.uk)

The pseudospectra of non-selfadjoint linear ordinary differential operators with variable
coefficients are considered. It is shown that when a certain winding number or twist
condition is satisfied, closely related to Hörmander’s commutator condition for partial
differential equations, 3-pseudoeigenfunctions of such operators for exponentially small
values of 3 exist in the form of localized wave packets. In contrast to related results of
Davies and of Dencker, Sjöstrand & Zworski, the symbol need not be smooth.
Applications in fluid mechanics, non-hermitian quantum mechanics and other areas are
presented with the aid of high-accuracy numerical computations.
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1. Introduction

Certain differential and pseudodifferential operators with variable coefficients
have exponentially large resolvent norms, with respect to a parameter, in regions
of the complex plane far from the spectrum. These large norms are explained by
the existence of pseudoeigenfunctions in the form of localized wave packets,
which, although they may not satisfy the eigenvalue equation or the boundary
conditions exactly, satisfy them approximately with an exponentially small error.
Another way to describe this phenomenon is to say that these operators have
3-pseudospectra that extend over regions of the complex plane far from the
spectrum, even for exponentially small values of 3. Applications in which such
effects may be important include ‘ghost solutions’ of ordinary differential
equations (Domokos & Holmes 2003), non-Hermitian quantum mechanics
(Bender & Boettcher 1998; Bender et al. 1999; Davies 1999a,b; Benilov et al.
2003), the theory of dichotomy for ordinary differential equations and their
numerical approximations (Massera & Schäfer 1966; Daleckii & Krein 1974;
Coppel 1978; Ascher et al. 1995; Chicone & Latushkin 1999), fluid dynamics
(Reddy et al. 1993; Trefethen et al. 1993; Cossu & Chomaz 1997; Chapman 2002;
Benilov et al. 2003) and the Lewy/Hörmander phenomenon of non-existence of
solutions to certain linear partial differential and pseudodifferential equations
(Lewy 1957; Hörmander 1960; Zworski 2003).

The fact that variable coefficient non-selfadjoint differential operators may
have extended pseudospectra with wave packet pseudomodes was pointed out by
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Davies (1999a,b). Shortly thereafter, Zworski observed that Davies’s discoveries
could be related to long-established solvability results in the theory of PDE by
Hörmander and others (Hörmander 1960; Zworski 2001). Later publications
stimulated by Davies’s work include Aslanyan & Davies (2000), Boulton (2002),
Pravda-Starov (2003), Zworski (2003), Dencker et al. (2004) and Davies &
Kuijlaars (2004). The most convenient framework for all of these results is a
semi-classical formulation, in which differentiated terms contain a small
parameter h or its powers (Dimassi & Sjöstrand 1999; Martinez 2002).
Depending on the problem and the method of proof, the meaning of
‘exponentially small’ for such an operator may involve terms of order O(MK1/h )
for some MO1 or of order O(hN ) for all NO0 as h/0.

The standard method of deriving results about wave packet pseudomodes is
WKBJ or microlocal analysis, in which a wave packet is constructed that is
localized with respect to both the space variables and their dual, the
wavenumber vector. This approach applies to both differential and pseudodiffer-
ential operators in any number of space dimensions, provided that the
coefficients are smooth; the typical assumption is CN. The most important
presentation of this approach to date is the recent article of Dencker et al. (2004).

For the special case of ordinary differential operators, however, an alternative
method of proof is available, based on consideration of intersections of certain
subspaces, which requires no assumption of smooth dependence on the space
variable.Thepurpose of this article is to apply thismethod to establisha fundamental
theorem about the existence of exponentially good pseudomodes for such problems.
Instead of smoothness, this theorem depends upon a condition involving winding
numbers of the symbol. One might think that this replacement of one condition by
another would simply be a technical matter, of little significance for applications,
since the conclusions reached about exponentially good pseudomodes are in the end
the same. However, we shall show that the difference is a substantial one (§7). For at
least some problems with smooth coefficients that violate the winding number
condition, the pseudospectral effects are structurally unstable and vanish when the
coefficients areperturbed inanon-smoothmanner.By contrast, the effects associated
with operators that satisfy the winding number condition are robust.

This article also has another purpose—to relate these phenomena to analogous
effects that have been investigated in the highly developed field of Toeplitz
matrices and operators and their generalizations with variable or ‘twisted’
coefficients. The consideration of winding numbers is standard in the Toeplitz
literature, as is the focus of attention on the case of one space dimension
(although there are generalizations to block Toeplitz matrices and operators and
to Berezin–Toeplitz operators on manifolds; Borthwick & Uribe 2003). The
analogy can be portrayed at a high level by considering four fundamental classes
of non-normal operators:
boundary pseudomodes wave packet pseudomodes

differential operators Reddy (1993) Davies (1999a,b)
Davies (2000) Dencker et al. (2004)

Toeplitz and twisted
Toeplitz matrices

Landau (1975) Trefethen & Chapman (2004)
Reichel & Trefethen (1992) Borthwick & Uribe (2003)
Proc. R. Soc. A (2005)



3101Wave packet pseudomodes
In all four cases, the resolvent norm grows exponentially for certain problems, as
an appropriate parameter is increased or decreased, throughout a region of the
complex plane determined by the symbol curves of the operator and their
winding numbers. For each, we have listed the two most important published
references. The present contribution belongs to the upper-right cell of this 2!2
array. Mathematically, it is an analogue for differential operators of the earlier
work for twisted Toeplitz matrices by Trefethen & Chapman (2004). Both our
formulation of the main theorem and its proof stay as close as possible to those in
Trefethen & Chapman (2004), even to the point of repeating wordings where
possible. However, the reader who compares the two papers will find that the two
developments differ in many ways.
2. An elementary example

We can see the essence of the matter in a simple example. Consider the operator

Ah : u1hux Cxu; (2.1)

where h is a small parameter, acting on a dense subspace of L2[K1,1] of
differentiable functions satisfying the boundary conditions u(K1)Zu(1)Z0. The
equation AhuZlu cannot be solved for any l2C ; the spectrum of Ah is empty.
However, the function

uðxÞZ eKx2=2h (2.2)

satisfies AhuZ0, and it satisfies the boundary conditions up to an error eK1/2h.
Alternatively, we could note that eKx2=2hKeK1=2h satisfies the boundary conditions
and satisfies AhuZ0 up to an error no greater than eK1/2h.

Thus, we can say that theGaussian (2.2) of widthO(h1/2 ) (ormore precisely, the
same function shifted by a constant) is an 3-pseudoeigenfunction corresponding to

the 3-pseudoeigenvalue 0 for a value of 3 of sizeO(MK1/h ) for someMO1 as h/0 .1

Moreover, the same is true for any number lwithK1!Re l!1, as is shown by the
pseudoeigenfunction

uðxÞZ eKðxKlÞ2=2h ZC eKðxKRe lÞ2=2heix Im l=h: (2.3)

The situation is summarized in figure 1 for hZ0.02. This and the other figures in
this article were computed numerically by spectral discretization (Trefethen 2000)
and the EigTool pseudospectra plotting system (Wright 2002); we shall not give
details. We see that the pseudospectra of Ah approximate the stripK1!Re l!1,
and for the particular value lZ1/2Ci, the optimal pseudoeigenfunction comes
1An 3-pseudoeigenvalue and corresponding 3-pseudoeigenfunction of an operator A are a scalar l

and a non-zero function u satisfying k(AKl)uk!3kuk, and the 3-pseudospectrum of A is the union
of its spectrum and the set of all of its 3-pseudoeigenvalues; that is, the set of all l2C with
resolvent norm satisfying k(lKAK1)kO3K1, if we adopt the convention of writing k(lKA)K1kZN
if l is in the spectrum (Trefethen 1997; Trefethen & Embree 2005).

Proc. R. Soc. A (2005)
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Figure 1. Above, 3-pseudospectra of the operator (2.1) with hZ0.02 (the spectrum is empty). From
outside in, the contours correspond to 3Z10K1,., 10K9. The figure confirms that the resolvent
norm k(lKAh)

K1k grows exponentially as h/0 for any l in the strip K1!Re l!1, marked by the
dashed lines. Below, an optimal pseudoeigenfunction for lZ1/2Ci (marked by a cross in the top
image) with x

*
Z1/2 and k

*
ZK1. (Both real part and envelope are shown.)
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very close to the predicted form: a wave packet centred at xZ1/2 with
wavenumber 1/hZ50 (i.e. wavelength 2p/50z0.13).

Once we have proved our main theorem and expressed it in terms of winding
numbers, this example will be interpretable as follows. We associate the operator
Ah of (2.1) with the x -dependent symbol

f ðx; kÞZKikCx; x2ðK1;1Þ; (2.4)

which maps the real k -axis onto the negatively oriented vertical line Re fZx in
the complex plane. We define the winding number of this symbol curve about
any point l2C by completing it by a large semicircle traversed counter-
clockwise in the right half-plane. Thus for each x, the winding number is 0 if
Re l!x, 1 if Re lOx, and undefined if Re lZx. As x increases from K1 to 1,
each l with K1!Re l!1 experiences a decrease in winding number when x
passes through the value Re l. Theorem 3.1 ensures that each such value of l is
an 3-pseudoeigenvalue of Ah for a value of 3 of size O(MK1/h ) for some MO1
as h/0.
Proc. R. Soc. A (2005)



3103Wave packet pseudomodes
3. Theorems

Let an interval [a,b] be given, a!b, and for a small parameter hO0, let Dh be the
scaled derivative operator

Dh Z ih
d

dx
:

For some integer nR0, let continuous coefficient functions

cjðxÞ; 0% j%n ;

be defined on (a, b), which may or may not be smooth. We consider the family of
linear operators {Ah}, hO0, defined by

ðAhuÞðxÞZ
Xn
jZ0

cjðxÞðD j
huÞðxÞ; a!x!b;

together with arbitrary homogeneous boundary conditions at xZa and xZb (the
details of the boundary conditions will not matter), acting in a suitable dense
domain in L2[a,b].

Given k2C and h, consider the function vðxÞZeKikx=h in L2[a,b]. We can write
Ahv explicitly as

ðAhvÞðxÞZ
Xn
jZ0

cjðxÞk jvðxÞ:

In other words, we have

ðAhvÞðxÞZ f ðx; kÞvðxÞ;
where f is the symbol of {Ah}, defined for x2(a,b) and k2C by

f ðx; kÞZ
Xn
jZ0

cjðxÞk j : (3.1)

Our aim is to build wave packets localized near a particular x
*
2(a,b). Let x

*
and

k
*
be given, and define lZf (x

*
, k

*
). If f were independent of x, then the function

vðxÞZ eKik�x=h (3.2)

would satisfy the eigenfunction equation for Ah with eigenvalue l,

Ahv Z lv; (3.3)

although, in general, it would not be an eigenfunction because of the boundary
conditions. If f varies with x, however, then we shall look for solutions to (3.3)
near x

*
with the form of wave packets (exact solutions, not approximate), and if

these decay exponentially away from x
*
, then they can be extended smoothly to

zero so as to make exponentially good pseudoeigenfunctions, regardless of the
boundary conditions.

Definition 3.1. The symbol fZf (x, k) satisfies the twist condition at xZx
*
2(a,b),

kZk
*
2R if at this point it is differentiable with respect to x with vf/vks0 and

Im
vf

vx

�
vf

vk

� �
O0: (3.4)
Proc. R. Soc. A (2005)
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It satisfies the antitwist condition if it has the same properties with (3.4) replaced by

Im
vf

vx

�
vf

vk

� �
!0: (3.5)

Here is our main theorem.

Theorem 3.1. Let {Ah} be a family of variable coefficient differential operators
on [a,b] with symbol f (x, k) as described above. Given x

*
2(a,b) and k

*
2R, define

lZf (x
*
, k

*
), and suppose that the twist condition is satisfied. Moreover, suppose

that f (x
*
, k)sl for all real ksk

*
and that cn(x*)s0. Then, there exist constants

C1, C2O0 and MO1 such that for all sufficiently small h, there exists a non-zero
pseudoeigenfunction v(h) that is exponentially good,

kðAh KlÞvðhÞk
kvðhÞk

%MK1=h; (3.6)

and localized,

jvðhÞðxÞj
maxx jvðhÞðxÞj

%C1 expðKC2ðxKx�Þ2=hÞ: (3.7)

A similar result applies if the antitwist condition is satisfied. In this case the
pseudoeigenfunctions are localized not at x

*
but at one or more other points in

the interior of [a,b] or at the boundaries.

Theorem 3.2. Suppose the same assumptions hold as in theorem 3.1 except that
the antitwist condition (3.5) is satisfied instead of the twist condition. Assume
also that l is not in the spectrum of Ah. Then, there exists MO1 such that for all
sufficiently small h, there exists a non-zero pseudoeigenfunction v(h) satisfying
(3.6).

The remainder of this article is devoted to proving and illustrating theorem
3.1. We shall not spell out the proof of theorem 3.2 in full, which is analogous to
that of theorem 7.3 of Trefethen & Chapman (2004), but in outline, it follows
from theorem 3.1 by considering the operator Bh defined as the complex
conjugate of the adjoint A�

h of Ah; that is,

ðBhuÞðxÞZ
Xn
jZ0

ððKDhÞjðcjð$ÞuÞÞðxÞ; a!x!b;

together with boundary conditions adjoint to those of Ah. If f (x, k) is the symbol
of {Ah}, then the symbol of {Bh} has the form f (x,Kk)CO(h), an O(h)
perturbation of a function that satisfies the twist condition. It can be shown that
the arguments used to prove theorem 3.1 remain valid in the presence of
this perturbation, implying that kðlKAhÞK1kZkðlKBhÞK1kRM 1=h for all
sufficiently small h. If k(lKAh)

K1k is finite, then this implies (3.6) as required.
If k(lKAh)

K1k is infinite—that is, l is in the spectrum of Ah—then we know that
lKAh lacks a bounded inverse, but it does not necessarily have eigenfunctions or
good pseudoeigenfunctions. For example, suppose we negate the sign in (2.1) and
consider the operator

Ah : u1Khux Cxu ; (3.8)
Proc. R. Soc. A (2005)



3105Wave packet pseudomodes
acting on the space of absolutely continuous functions in L2[K1,1] with u (K1)Z
u (1)Z0. Then, Bh is the operator (2.1) but with no boundary conditions. Its
spectrum is all of C, so the same is true of Ah, but whereas Bh has an
eigenfunction (and hence good pseudoeigenfunctions) for each l2C, Ah has ‘too
many boundary conditions’ and no eigenfunctions.
4. Winding number interpretation

The condition f (x
*
, k)sl for ksk

*
of theorems 3.1 and 3.2 might easily be

overlooked, but it is important. It is the price we pay for not requiring f to
depend smoothly on x. This condition has a geometric interpretation. Given a
symbol fZf (x, k) and a particular value xZx

*
, define the symbol curve of f at x

*
to be the curve f (x

*
,R), a subset of the complex plane. Given a number

l2Cnf ðx�;RÞ, we wish to define the winding number of f with respect to l.
Because f (x

*
,R) is not a closed curve, this requires some care. A suitable

approach is to make use of contours GR consisting of the real interval [KR,R]
closed by a semicircle of radius R in the upper half complex plane. We consider
the winding number of f about l associated with this closed contour traversed in
the usual anticlockwise direction, and we define the winding number I ðf ; x�; lÞ to
be the limiting winding number of f (x

*
,GR) about l obtained for all sufficiently

large R. If l2f (x
*
,R), I ðf ; x�; lÞ is undefined.

It is readily verified that the conditions of theorem 3.1 and 3.2 have the
following geometric interpretations:

(i) the symbol curve at x
*
passes just once through l; and

(ii) as x increases through x
*
, the winding number about l decreases by 1

(theorem 3.1) or increases by 1 (theorem 3.2).

One can use these conditions to assess quickly where the pseudospectra of a
variable coefficient differential operator will lie (figure 2). One imagines the
symbol curve moving about the complex plane as x increases from a to b. The
pseudospectra fill the region swept out by this moving curve.

In fact, we can make an explicit connection between the winding number
IZI ðf ; l; xÞ at a point x where it is defined and the eigenvalues of the associated
transfer matrix C (x) introduced below in (5.1) and (5.2). By the principle of the
argument of complex analysis, the symbol polynomial f at x has exactly I zeros in
the upper half-plane. In lemmas 5.1 and 5.2, this will correspond to a space of
amplified functions of dimension I and a space of attenuated functions of
dimension nKI.
5. Proof of theorem 3.1

In this section, we prove theorem 3.1. The essential idea, involving a non-empty
intersection of subspaces of functions decaying to the left and the right that
satisfy the eigenvalue equation exactly in an interval, is summarized at the end.
The assumption of differentiability in the theorem is used in the estimates of
lemma 5.2 associated with the constant g.
Proc. R. Soc. A (2005)
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Figure 2. Winding number interpretation of theorem 3.1. If the curve f (x,R) crosses l as x
increases through x

*
in such a way that the winding number about l is decreased, then there is an

exponentially good wave packet pseudomode localized at x
*
with pseudoeigenvalue l.
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Given an n-times differentiable function v(x), define

vðjÞ ZD j
hv; 0% j%n;

and

v Z ðv; vð1Þ;.; vðnK1ÞÞT:
Then, (3.3) can be written as

Dhv Z

0 1

0 1

0 1

1 1

e0ðxÞ e1ðxÞ e2ðxÞ . enK1ðxÞ

0
BBBBBBB@

1
CCCCCCCA
v; (5.1)

or, more compactly, as

DhvðxÞZCðxÞvðxÞ; (5.2)

where ejðxÞZKcjðxÞ=cnðxÞ for 1%j%n and e0ðxÞZðlKc0ðxÞÞ=cnðxÞ. Thus, we
have a first-order vector-valued linear ordinary differential equation (ODE) with
continuous coefficients defined throughout the neighbourhood of x

*
where

cn(x)s0, with n linearly independent solutions throughout this region (e.g.
sect. 3.6 of Coddington & Levinson (1955)). We may associate equation (5.1)
frozen at the point x

*
with the characteristic polynomial

pðkÞZ
Xn
jZ0

ejðx�Þk j : (5.3)

For k2C, the frozen-coefficient ODE has a solution vðxÞZðv; vð1Þ;.; vðn�1ÞÞT
with

v Z vðxÞZ eKikx=h (5.4)

if and only if k satisfies p(k)Z0. The polynomial p has exactly n roots {k[}
counted with multiplicity for x sufficiently close to x

*
. Each root with Im kO0

corresponds to exponential growth as x increases and exponential decay as x
decreases, and for Im k!0, the pattern is reversed. As mentioned at the end of
Proc. R. Soc. A (2005)



3107Wave packet pseudomodes
the §4, if the winding number IZI ðf ; l; x�Þ of f about l at x
*
is well-defined, then

there will be I roots of the former type and nKI roots of the latter type.
Of course, the problem at hand involves variable coefficients. Our choice of l

will ensure that one root has Im kZ0 and passes from above to below the real
axis as x increases through x

*
, and thus corresponds to exponential decay in both

directions. We begin in lemma 5.1, however, with a result based on the
assumption that the roots are separated from the axis. We work with a fixed
range of values of x around x

*
, chosen narrow enough so that the coefficients

{c[ (x)} vary sufficiently little and so that cn(x)s0. We consider the variable
coefficient ODE

Dhv Z ðC CEðxÞÞv; (5.5)

with CZC (x
*
), where E (x) will be taken to be small and to depend

continuously on x, and let Sh(x) denote its solution matrix or matrizant: if
v(x

*
) is an n-vector, then vðxÞZShðxKx�Þvðx�Þ is the corresponding unique

solution of (5.5) near x
*
. (If E (x)h0, ShðxÞZexpðKiCx=hÞ.) We first show that

under suitable hypotheses, the solutions to this equation attenuate and
amplify certain vectors exponentially. This is a basic result with the flavour of
the stable manifold theorem in dynamical systems. Afterwards, we shall refine
it to the more specialized lemma 5.2, analogous to the centre manifold
theorem, which is actually the one needed to prove theorem 3.1 (Shub 1987;
Wiggins 1990).

Lemma 5.1. Let C be an (hCn)!(hCn) matrix (h, nR0,hCnR1) that has h
eigenvalues k with Im k!r!0 and n eigenvalues with Im kORO0, let E(x) be a
continuous matrix function with kE (x)k%3, let Sh(x) be the solution matrix for
(5.5) for x near x

*
Z0, and let DxO0 be fixed. There exist 3O0, independent of h,

such that the solution matrices {Sh(Dx)} separate C hCn into exponentially
amplified and attenuated subspaces in the following sense: for each sufficiently
small hO0, there is an h-dimensional subspace Sh4C hCn such that

kShðDxÞuk%erDx=hkuk cu2Sh; (5.6)

and a n-dimensional subspace Sn4C hCn such that

kShðDxÞukReRDx=hkuk cu2Sn: (5.7)

Proof. We shall see that Sn can be chosen independently of h, since almost all
vectors lead to exponential growth, but Sh must depend on h, since exponential
decay is more delicate.

The first step is to reduce C to block-diagonal form. There exists a non-
singular matrix X such that

XCXK1 Z
Gn 0

0 Gh

 !
; (5.8)

where Gn has dimension n and amplifies all n-vectors,

keKisGnvkResTkvk cv2C n; csO0; (5.9)

and Gh has dimension h and shrinks all h-vectors,

keKisGhwk%estkwk cw2Ch; csO0; (5.10)
Proc. R. Soc. A (2005)
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we may choose any TOR which is smaller than the imaginary parts of all the
eigenvalues of C in the upper half-plane, and any t!r which is larger than the
imaginary parts of all the eigenvalues of C in the lower half-plane. If (5.5) is left-
multiplied by X, then we obtain a new differential equation for the variable Xv

involving the matrix (5.8); the norms of X and XK1 introduce fixed constants
and thus have no effect on the small-h assertion. Because E (x) becomes
XE(x)XK1 in this process, the norm bound 3 has to be adjusted by the condition
number kðXÞZkXkkXK1k. All this is straightforward, and rather than
encumber the rest of the argument with X and associated details, let us assume
from now on, without loss of generality, that C itself has block diagonal form to
begin with,

C Z
Gn 0

0 Gh

 !
; (5.11)

with Gn and Gh satisfying (5.9) and (5.10).
We identify first a growing space Sn as in (5.7). Define d, 3O0 by

dZmin
T KR

Kt
; 1

� �
; 3Z

Ktd

4
;

and let G4C hCn denote the cone of all vectors uZðvT;wTÞT2C hCn satisfying

kwk%dkvk:
Consider what happens when Sh(x) acts on a vector uZðvT;wTÞT2G:

~v

~w

 !
Z

~vðxÞ
~wðxÞ

 !
Z ShðxÞ

v

w

� �
;

assuming (without loss of generality) that kvkZ1. At xZ0, we have, by (5.5)
and (5.11),

d

dðx=hÞ
~v

~w

 !
Z

d

dðx=hÞ ShðxÞ
v

w

� �
Z

KiGn 0

0 KiGh

 !
K iEð0Þ

" #
v

w

� �
;

from which we calculate, using (5.9),

dk~vk
dðx=hÞRT K3K3dRT K23ZT C

td

2
RT K

T KR

2
OR;

and, using (5.10),

dkwk
dðx=hÞ%tkwkC3C3kwk%tkwkC23Z t kwkK d

2

� �
:

Thus, locallySh(x) increases thev component of a vector at a rate greater thanR and
decreases the w component, if the latter has norm greater than d/2. These
observations imply that Sh(x) mapsG into itself and that (5.7) holds for sufficiently
small h for all u2G. Finally, we note that G contains the n-dimensional invariant
subspace associated with Gn; that is, the subspace spanned by the n vectors
e1; e2;.; en2C hCn. Thus, this subspace is a suitable choice for Sn.
Proc. R. Soc. A (2005)



3109Wave packet pseudomodes
To find a decaying space Sh for (5.6), we consider the inverse solution operator
Sh(Dx)

K1, with

v

w

� �
Z ShðDxÞK1

~vðDxÞ
~wðDxÞ

 !
:

By the sine argument as before, Sh(Dx)
K1 has a growing space T of dimension h,

and we take ShZShðDxÞK1T. &

The next lemma is a variant of lemma 5.1 designed for systems that have a root
passing through real axis, as occurs at the centre of a wave packet pseudomode.

Lemma 5.2. Let {C (x)} be a family of (hCnC1)!(hCnC1) matrices (h, nR0)
depending differentiably on x at xZx

*
. Assume that C

*
ZC (x

*
) has h eigenvalues

with Im k!r!0, n eigenvalues with Im kORO0, and one eigenvalue m
*
with

Im m
*
Z0. Assume further that d Im m/dx!0 at xZx

*
, where mZm(x) is the

eigenvalue of C (x) that converges to m
*
as x/x

*
. For x near x

*
and hO0,

consider the solution matrix Sh(x) as before. There exist DxO0 and MO0,
independent of h, such that these operators separate C hCnC1 into exponentially
amplified and attenuated subspaces in the following sense: for each sufficiently
small h, there is an (hC1)-dimensional subspace Sh4C hCnC1 such that

kShðDxÞuk%eKM=hkuk cu2Sh; (5.12)

and a n-dimensional subspace Sn4C hCnC1 such that

kShðDxÞukReM=hkuk cu2Sn: (5.13)

Proof. It is only (5.12) we shall need, not (5.13), so this is the claim we shall
prove. As in the final paragraph of the proof of lemma 5.1, to show that Sh(Dx)
has a decaying subspace of dimension hC1, we shall show that Sh(Dx)

K1 has a
growing subspace of this dimension. Our first step, as in the proof of lemma 5.1,
is to assume without loss of generality that KC (x

*
) has the block-diagonal form

KCðx�ÞZ
Gh 0 0

0 Km� 0

0 0 Gn

0
B@

1
CA;

where Gh has dimension h and amplifies all h-vectors as in (5.9), Gn has
dimension n and shrinks all n-vectors as in (5.10) and Im m

*
Z0, with t!0!T.

Without loss of generality we assume x
*
Z0, as in lemma 5.1.

The proof rests on an observation of linear algebra: if a diagonal matrix is
perturbed by O(3) in the off-diagonal positions, its eigenvalues of multiplicity 1
change by only O(32). (One can prove this by considering the characteristic
polynomial.) We exploit this phenomenon as follows. Our task is to consider the
solution operator associated with a set of matrices

KCðxÞZ
Gh 0 0

0 cðxÞ 0

0 0 Gn

0
B@

1
CACEðxÞ;
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with kE (x)kZO(x), where E (x) is constructed to have a zero entry in the
middle position (hC1, hC1) and c(x) is defined accordingly. Because
mðxÞZm�Cx ðdm=dxÞCo ðxÞ, it follows from the fact of linear algebra just
mentioned that c ðxÞZKm�Kxðdm=dxÞCoðxÞ. Choose g to be a constant in the
range 0!g!Kd Im m/dx, and collect the upper-left (hC1)!(hC1) block of
C (x) into a single matrix GhCl(x). Then, for some sO0 and xmaxO0, we have

KCðxÞZ
GhC1ðxÞ E1ðxÞ
E2ðxÞ GnðxÞ

 !
; kE1k; kE2k%sx; (5.14)

and

keKisGhC1ðxÞvkResgxkvk cv2C hC1; csO0; (5.15)

keKisGnðxÞwk%es~tkwk cw2C n; csO0; (5.16)

for some ~t!0 and all x%xmax. (The reasoning that establishes (5.15) is as
follows: if G is a matrix and a is the minimal imaginary part of the field of values
of G, i.e. the minimal eigenvalue of i(GKG*)/2, then keKisGvkReaskvk for any
v ; here, by the O(32) observation above, a increases faster than gx as x increases
from 0.) We now follow estimates as in the proof of lemma 5.1. Define

dZ
g

2s
; Dx Zmin xmax;

Kd~t

s

� �
:

Let G4C nChC1 be the cone of all vectors uZðvT;wTÞT2C nChC1 satisfying

kwk%dkvk:
Consider how a vector uZðvT;wTÞT2G evolves locally near a point x2[0,Dx ],
assuming, without loss of generality, that kvkZ1. We have

d

dðx=hÞ
~v

~w

 !
Z

KiGhC1ðxÞ KiE1ðxÞ
KiE2ðxÞ KiGnðxÞ

 !
v

w

� �
;

from which we calculate
dk~vk
dðx=hÞRgxKsdxR

gx

2
;

and
dk ~wk
dðx=hÞ%sDxC ~tk ~wk% ~tðk ~wkKdÞ:

These estimates show that Sh(x)
K1 maps G into itself and increases the norm of

the upper part of the vector at a rate at least gx/2h. It follows that if u2G, then
ShðDxÞK1u2G and kShðDxÞK1ukReM=hkuk for all sufficiently small h, for some
constant MzgDx/4. Finally, G contains the (hC1)-dimensional invariant
subspace associated with GhC1, which is accordingly a suitable choice of the
subspace needed. &

Proof of theorem 3.1. To establish theorem 3.1, we construct a wave packet in
an interval [x

*
KDx,x

*
CDx ] that satisfies the eigenvalue equation (3.3) exactly in

that interval and is also localized in the sense of (3.7) there. We do this by
Proc. R. Soc. A (2005)
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applying lemma 5.2 in both directions, moving both right and left from xZx
*
,

taking advantage of the equivalence between (3.3) and (5.1).
First, let us move from x

*
to the right. The hypothesis of theorem 3.1 that

f (x
*
, k)sl for all real ksk

*
ensures that the matrix C (x

*
) has just a single

eigenvalue m
*
on the real axis, as required in lemma 5.2. The twist condition

ensures that d Im m/dx!0 at xZx
*
, and the hypothesis cn(x*)s0 ensures that

C (x) is well defined for all x sufficiently close to x
*
. The matrices Sh(x) of lemma

5.2 are then the solution operators that transfer an n-vector of data
ðv; vð1Þ;.; vðnK1ÞÞ to the right a distance x. According to lemma 5.2, for some
hR0 there is an (hC1)-dimensional subspace S

ðrightÞ
h 4CmCn of such data vectors

that generate solutions in [x
*
,x
*
CDx ] that are exponentially small in the sense of

(5.12) at the end of that interval. By the same argument, although this is not
spelled out in the statement of lemma 5.2, these solutions have the Gaussian
decay behaviour described by (3.7).

Similarly, by an obvious symmetry, we can apply lemma 5.2 moving from x
*
to

the left. We conclude that with nZmCnK1Kh there is a (nC1)-dimensional
subspace S

ðleftÞ
h 4CmCn of data vectors that generate solutions in [x

*
KDx,x

*
] with

the appropriate Gaussian decay.
Now, we take the intersection of these two subspaces. Their dimensions are

hC1 and nC1ZmCnKh, and they are subspaces of CmCn. It follows that
S
ðrightÞ
h hS

ðleftÞ
h is a subspace of dimension at least 1 (in fact, it will be exactly 1) of

vectors that generate solutions of the eigenvalue equation in [x
*
KDx,x

*
CDx ]

that decay appropriately on both sides of x
*
.

Thus there exists a vector that exactly satisfies the eigenvalue equation in
[x
*
KDx,x

*
CDx ] and has the necessary decay there. Near x

*
KDx and x

*
CDx,

such a vector will be exponentially small. By extending it smoothly to 0
outside this interval, we obtain a pseudoeigenfunction v(h) satisfying both (3.6)
and (3.7). &
6. Examples

We shall present six numerical examples, the first three fitting the framework of
theorem 3.1 and the others having a double-crossing symbol curve, so that only
the theorems of Dencker et al. (2004) can be applied. The next section will
comment on the significance of this distinction.

Our first example is a variable coefficient advection-diffusion operator from a
paper of Cossu & Chomaz (1997). The operator (after some simplification) is

Ahu Z h2uxx Chux C
1

4
Kx2

� �
u; (6.1)

for x2R, and the eigenvalues and eigenfunctions are known explicitly:

ln ZKð2nC1Þh; un Z eKðxCx2Þ=2hHnðx=
ffiffiffi
h

p
Þ; (6.2)

for nZ1, 2, 3,., where Hn is the nth Hermite polynomial (Chomaz et al. 1987).
Pseudospectra for the case hZ0.02 are shown in figure 3, and we see that the
resolvent norm is exponentially large in the region of the complex plane bounded
by the parabola Re lZ1/4K(Im l)2. To explain this behaviour, we note that the
Proc. R. Soc. A (2005)
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1 l = 0.05i

Figure 3. Above, eigenvalues and 3-pseudospectra of the operator (6.4) of Cossu & Chomaz (1997)
with hZ0.02, 3Z10K2,., 10K15. By theorem 3.1, the resolvent norm k(lKA)K1k grows
exponentially as h/0 for any l lying in the region to the left of the dashed parabola. Below, an
optimal pseudoeigenfunction for lZ0.05i (marked by a cross in the top image) with central
position and wavenumber x

*
ZK5K1/2zK0.45 and k

*
Z 0.
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symbol is

f ðx; kÞZKk2K ikC 1

4
Kx2

� �
; (6.3)

which implies that the symbol curves are parabolas adjusted by the variable
offset 1/4Kx 2. The winding number about a value l decreases from 1 to 0 as this
curve crosses l from left to right, which occurs for a negative value of x, and this
explains why the pseudoeigenfunction in the figure sits in the left half of the
domain.

This example illustrates some behaviour of widespread physical importance.
The operator (6.1) can be interpreted as a standard advection–diffusion process
coupled with a factor that introduces exponential amplification for jxj!1/2 and
exponential attenuation for jxjO1/2. It is clear that the associated time-
dependent process utZAhu must be susceptible to transient growth of order
O(C 1/h ) on a time-scale O(hK1) for some CO1, for a pulse will grow
exponentially during the time of order O(hK1) that it spends passing through
the amplification region. Cossu and Chomaz relate this transient effect to the
local convective instability of fluid flows in unbounded domains, including wakes,
jets, and boundary layers. Alternatively, it is implied by the appearance of
exponentially large resolvent norms in the right half-plane (see theorem 5 of
Trefethen 1997).

Our second example is a more exotic advection–diffusion operator investigated
by Benilov et al. (2003). These authors consider the instability of a thin viscous
Proc. R. Soc. A (2005)
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Figure 4. Above, eigenvalues and 3-pseudospectra of the operator (6.4) of Benilov et al. (2003) with
hZ0.1 and 3Z10K1,., 10K7. By theorem 3.1, k(lKAh)

K1k grows exponentially as h/0 for all l
in the region between the two dashed parabolas. Below, an optimal pseudoeigenfunction for lZ1C
1.5i (marked by a cross) with central position and wavenumber x�ZsinK1ð4=9ÞKpzK2:68 and
k
*
ZK1.5.
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liquid film on the inner surface of a rotating cylinder in an approximation in
which gravitational effects are included but inertial and capillary effects are
ignored. They reduce their problem (again after some simplification) to the
operator

Ahu Z h2 sinðxÞuxx Chux ; (6.4)

with periodic boundary conditions on [Kp,p], with symbol f ðx; kÞZ
KsinðxÞk2K ik. An unusual feature here is that for two values of x, the coefficient
of the quadratic term passes through zero. For each x, the symbol curve is the
parabola Re zZKsinðxÞðIm zÞ2 described in the direction of decreasing
imaginary part. Completing this curve in the usual manner by a semicircle at
infinity, we see that its winding number is 1 about points to its right and 0
about points to its left. For any l in the domain bounded by the two parabolas
Re zZG(Im z)2, the winding number accordingly decreases by 1 at some value of
x in the interval (Kp,Kp/2) or (p/2,p), leading to an exponentially good wave
packet pseudoeigenfunction. Figure 4 confirms this geometry for the case hZ0.1.

From a dynamical point of view, a distinctive feature of (6.4) is that although
the pseudospectra fill unbounded expanses of the right half-plane, all the
eigenvalues lie on the neutrally stable imaginary axis. Benilov et al. (2003) argue
that the underlying fluid mechanical problem is susceptible to a phenomenon of
‘explosive instability’.

For a higher-order example, consider the fourth-order differential operator,

Ahu Z h4uxxxx Kh sinðxÞux ; x2ðKp;pÞ; (6.5)
Proc. R. Soc. A (2005)
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Figure 5. Above, eigenvalues and 3-pseudospectra of the fourth-order operator (6.5) with hZ0.04,
3Z10K2,., 10K10. By theorem 3.1, k(lKAh)

K1k grows exponentially as h/0 for any l lying in
the quartic region marked by the dashed line. Below, an optimal pseudomode for lZ1 (cross), with
x
*
Z0 and k

*
taking both values 1 and K1.
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with periodic boundary conditions and symbol f ðx; kÞZk4C i sinðxÞk. For
xZKp/2, the symbol curve is the quartic k4Kik, enclosing each point l inside
with winding number 3 (once by the quartic itself, twice more by the fourth
power of a large semicircle at N). As x increases, for any l in this region, the
winding number decreases to 2 when the curve crosses once and then to 1 as it
crosses a second time. Thus, for each such l, we expect exponentially good
pseudomodes consisting of a pair of wave packets (figure 5). In the special case
Im lZ0, both crossings occur at the same value of x

*
. (Theorem 3.1 as written

does not apply in this case, but that is an accident of wording, for in fact its proof
is valid in such cases of multiple crossings so long as there is a net decrease in
winding number.) In this special case, there will be pseudomodes consisting of
two wave packets superimposed at the same x

*
and with opposite values of k

*
.

This explains the lack of a smooth envelope in the figure.
We now move to a different type of example, in which the symbol curve at a

particular value x
*
passes through the value l of interest for two different

wavenumbers k
*
. In such cases, theorem3.1does not apply, but since our coefficients

depend analytically on x, we can appeal instead to theorem 1.2 of Dencker et al.
(2004),which ensures as before the existence of pseudoeigenfunctions, now localized
in k as well as x, that are exponentially good in the sense of (3.6).
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Figure 6. Above, eigenvalues and 3-pseudospectra of the Davies example (6.6) with hZ1/10,
3Z10K1,., 10K13. By the results of Dencker et al. (2004), k(lKAh)

K1k grows exponentially as
h/0 for any l lying in the first quadrant of the complex plane. Below, an optimal
pseudoeigenfunction for lZ3C2i (cross), with x�ZG

ffiffiffi
2

p
and k�ZG

ffiffiffi
3

p
.
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Our fourth example is Davies’s non-selfadjoint harmonic oscillator (1999a,b).
Written with a small parameter h, we have

Ahu ZKh2uxx C ix2u; x2ðKN;NÞ; (6.6)

with symbol f ðx; kÞZk2C ix2. For any fixed x
*
2R, the symbol curve is the

half-line ix2�C ½0;NÞ in the complex plane traversed from N to ix2� and back again
to N. For each l along this half-line and corresponding choice of x

*
, there are two

values of k
*
, one of which satisfies the twist condition (the one whose sign is the

same as that of x
*
). We can see this either by calculating the twist ratio

ðvf =vxÞ=ðvf =vkÞZ ix=k, or by thinking of sections of the symbol curve. We
conclude that every l2C with Re lO0, Im lO0 is an 3-pseudoeigenvalue of Ah

for an exponentially small value of 3, as shown in figure 6. There are two values of
x
*
for each l, which explains why the optimal pseudomode in the figure consists

of two wave packets rather than one.
It is worth commenting further on the significance of a case like figure 6 in which

two wave packets appear in a computed pseudomode. The arguments in this paper
and in (Dencker et al. 2004) construct exponentially good pseudomodes in the form
of singlewave packets, not double ones. The present case is special because there are
Proc. R. Soc. A (2005)
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two values of x
*
that are equally good for this construction. In some sense, the

multiplicity of the pseudoeigenvalue is two rather than the usual value of one.Thus,
it would be equally valid to show a pseudomode with just one wave packet on the
left, or on the right; except that the optimal pseudomode, less than 0.003% better
than these, is the odd function with two bumps. (Orthogonal to this would be
another function with two bumps, but even instead of odd, and little different to
the eye.)

Davies & Kuijlaars (2004) have analysed the operator (6.6) in detail (with i
replaced by an arbitrary complex constant), basing their arguments on the
theory of polynomials orthogonal with respect to a complex weight function.
Among other results, their theorem 3 implies that the condition numbers k(ln) of
the eigenvalues of (6.6) grow exponentially at the rate

lim
n/N

kðlnÞ1=n Z 1C
ffiffiffi
2

p
;

with eigenvalues indexed with increasing distance from the origin. Such a precise
estimate goes beyond the results presented here or in Dencker et al. (2004), where
the constants are not specified.

Our next example is closely related to Davies’s, the only difference being that the
coefficient ix 2 is replacedby ix 3.This ‘complex cubic oscillator’ is a representative of
a class of operators that have been discussed by Bender and others, starting from
unpublished work of D. Bessis in 1995, for applications in non-Hermitian quantum
mechanics (Bender & Boettcher 1998; Bender et al. 1999; Delabaere & Trinh 2000;
Mezincescu 2000; Handy 2001). The equation is

Ahu ZKh2uxx C ix3u; x2ðKN;NÞ; (6.7)

with symbol f ðx; kÞZk2C ix3.Mathematically, this ismuch the same as theDavies
example, but the pseudospectra fill the right half-plane instead of the first quadrant
since x 3 ranges over all ofR rather than just [0,N) (figure 7). Most of this literature
is concerned with establishing properties of the eigenvalues of (6.7) and related
operators and does not question their physical significance. Again, the results of
Dencker et al. apply to this operator, but theorem 3.1 does not.

Another operator with the same flavour as those of Davies and Bender is

Ahu Z h2uxx Cax2Kgx4; x2ðKN;NÞ; (6.8)

where a and g are parameters. This has no particular physical significance, but
the pseudospectra, for aZ3C3i and gZ1/16, are explored in Trefethen (1999).
As with the Cossu–Chomaz operator, there are significant transient effects, with
all eigenvalues in the left half-plane but large resolvent norms in the right half-
plane.

None of the examples we have presented were the first examples of variable
coefficient differential operators whose pseudospectra were computed numeri-
cally. That distinction belongs to the Orr–Sommerfeld and Airy operators,
whose pseudospectra were computed together by Reddy et al. (1993). The
Orr–Sommerfeld operator is in generalized eigenvalue form and does not quite fit
the framework of this paper. The Airy operator is

Ahu Z h2uxx C ixu; x2½K1;1�; (6.9)
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Figure 7. Above, eigenvalues and 3-pseudospectra of the complex cubic oscillator (6.7) of Bender &
Boettcher (1998) and Bender et al. (1999) with hZ0.1, 3Z10K1,., 10K13. By the results of
Dencker et al., k(lKAh)

K1k grows exponentially as h/0 for any l lying in the right half-plane.
Below, an optimal pseudoeigenfunction for lZ2Ci (cross), with x

*
Z1 and k�Z
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2

p
.
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with boundary conditions u(K1)Zu(1)Z0 and symbol f ðx; kÞZKk2C ix.
Figure 8 presents results corresponding to hZ0.02. This operator has also been
investigated by Stoller et al. (1991), Shkalikov (1997) and Redparth (2001).
7. Robustness and structural stability

For all of our six examples, we have a theorem to explain why exponentially
good wave packet pseudoeigenfunctions had to appear: theorem 1.2 of Dencker
et al. (2004) for all six, and theorem 3.1 of this paper for just the first three,
because the others had double-crossing symbol curves. Now, the theorem of
Dencker et al. requires smoothness of the symbol, whereas theorem 3.1 does
not. Therefore, one might expect that the first three examples should be
robust in the sense that the exponentially good pseudomodes persist if the
operator coefficients undergo a non-smooth perturbation, whereas the other
three may be fragile.

We found confirming this prediction numerically to be challenging, for
the computations underlying figures 1–5 are based on spectral methods
(Trefethen 2000), a technology that relies on smooth functions for its power,
Proc. R. Soc. A (2005)



– 2 – 1 0

– 1

0

1

Airy

– 1.0 – 0.5 0 0.5 1.0
– 1

0

1
l = –1 + 0.5i

Figure 8. Above, eigenvalues and 3-pseudospectra of the Airy operator (6.9) with hZ0.02,
3Z10K1,., 10K13. By the results of Dencker et al., k(lKAh)

K1k grows exponentially as h/0
for any l lying in the dashed half-strip. Below, an optimal pseudoeigenfunction for lZK1C0.5i
(cross), with x

*
Z0.5 and k

*
ZK1.
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whereas if one reverts to simpler finite differences or finite elements, based on
weaker smoothness assumptions, the accuracy is usually too low to resolve
3-pseudospectra for small values of 3.2 The compromise we eventually reached
was to continue to use spectral methods but to choose perturbations that have
five continuous derivatives—enough smoothness so that the numerical method is
still quite accurate, but enough roughness to excite the effects of interest. In a
typical case, we perturbed one coefficient of the ODE by multiplying it by the
variable coefficient

1C0:1 sinð7xÞ5jsinð7xÞj;
and the other coefficient by multiplying it by

1C0:1 sinð13xÞ5jsinð13xÞj:

2 Indeed, a further difficulty arises here. Suppose one discretizes a smooth differential equation by a
finite difference approximation on a uniform grid. The result is a twisted Toeplitz matrix as in
Trefethen & Chapman (2004). However, if the symbol curve for the differential equation has no
crossings f (x

*
, k)Zf (x

*
, k

*
) for ksk

*
, so that theorem 3.1 is applicable, then this does not imply the

same property for the matrix approximation. Thus, even when a differential equation has
pseudospectra that are robust with respect to perturbations, those of its finite difference
approximations will often be fragile.
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Figure 9. A repetition of our six examples with each operator coefficient modified by a C 5

multiplicative perturbation. The first three have simply crossing symbol curves, and the
perturbation has little effect on the pseudospectra (theorem 3.1). For the next three, it changes
them completely.
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The results appear in figure 9. As predicted, three of the cases shown are
robust and three are fragile, with pseudospectra distorted almost beyond
recognition by this C 5 perturbation. Theorem 3.1 ensures that the robust cases
would in fact stand up to far rougher perturbations; it is just difficult to verify
such cases numerically.

The same distinction between robust and fragile pseudospectra arises for
twisted Toeplitz matrices and is discussed in Trefethen & Chapman (2004; see
figs 7.4 and 8.1 of that paper). We must emphasize, however, that the
experiments of this section only go far enough to suggest that this distinction is a
real one for variable coefficient differential operators. Because of the challenges in
these numerical simulations as indicated, further study would be needed to
elucidate more of the details of these effects and to establish whether they are
indeed generic.
8. Discussion

The results we have presented are restricted to ordinary differential operators in
one space dimension. If the symbol is smooth, the WKBJ/microlocal approach of
Dencker et al. (2004) generalizes to partial differential or pseudodifferential
operators, and their results are presented in this framework. On the other hand,
it is not clear whether our results for non-smooth symbols can be generalized in
this way.
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Another kind of generalization would concern discontinuities of coefficients or
boundaries of the domain. For twisted Toeplitz matrices, such generalizations
are considered at length in Trefethen & Chapman (2004), where it is pointed out
that earlier results of Reichel & Trefethen (1992) on pseudomodes pinned at
boundaries can be derived as a special case of the wave packet theory for
discontinuous coefficients. For differential operators, one could presumably work
out analogous results, deriving the results of Reddy (1993) and Davies (2000) for
boundary pseudomodes from a wave packet theory. Such an approach would
make it clear that the existence of boundary pseudomodes does not depend upon
constant coefficients, a matter first taken up in Davies (in press).

Related to boundaries and discontinuities is the matter of the antitwist
condition, which we have mentioned in theorem 3.2 but not illustrated in our
examples. Suppose one has a family of operators such that as x increases, the
symbol curves sweep across l2C to decrease the winding number but do not
sweep back again to increase the winding number. Then l will be an
exponentially good pseudoeigenvalue with wave packet pseudoeigenfunctions,
whereas for the complex conjugates of the adjoint operators, the pseudoeigen-
functions will be localized elsewhere, often at the boundary.

We believe that the existence of exponentially good pseudoeigenmodes will
prove to have applications to many non-selfadjoint dynamical problems in the
mathematical sciences involving variable coefficients, not just those listed in the
first paragraph of this article. We hope that the theory and examples presented
here will help to bring these phenomena to wider attention.

Much of this article was completed during a visit to the National University of Singapore in
December 2003; I thank Toh Kim-Chuan and Lee Seng-Luan and the other stimulating
mathematicians at the NUS for supporting this visit. Concerning the mathematics of wave packet
pseudomodes, I have benefited from interactions with many people, of whom three have been
especially important: Jon Chapman of Oxford University, Brian Davies of King’s College London
and Maciej Zworski of the University of California, Berkeley.
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Massera, J. L. & Schäfer, J. J. 1966 Linear differential equations and function spaces. New York:

Academic Press.

Mezincescu, G. A. 2000 Some properties of eigenvalues and eigenfunctions of the cubic oscillator

with imaginary coupling constant. J. Phys. A 33, 4911–4916.

Pravda-Starov, K. 2003 A general result about the pseudo-spectrum of Schrödinger operators.

Proc. R. Soc. A 460, 471–477. (doi:10.1098/rspa.2003.1194.)

Reddy, S. C. 1993 Pseudospectra of Wiener–Hopf integral operators and constant-coefficient

differential operators. J. Int. Eqs. Appl. 5, 369–403.

Reddy, S. C., Schmid, P. J. & Henningson, Dan S. 1993 Pseudospectra of the Orr–Sommerfeld

operator. SIAM J. Appl. Math. 53, 15–47.

Redparth, P. 2001 Spectral properties of non-self-adjoint operators in the semi-classical regime.

J. Diff. Eqs. 177, 307–330.

Reichel, L. & Trefethen, L. N. 1992 Eigenvalues and pseudo-eigenvalues of Toeplitz matrices.

Linear Alg. Appl. 162/164, 153–185.

Shkalikov, A. 1997 The limit behavior of the spectrum for large parameter values in a model

problem. Math. Notes 62, 950–953.

Shub, M. 1987 Global stability of dynamical systems. New York: Springer.
Proc. R. Soc. A (2005)

http://dx.doi.org/doi:10.1098/rspa.1999.0325
http://dx.doi.org/doi:10.1098/rspa.2002.1091
http://dx.doi.org/doi:10.1098/rspa.2003.1194


L. N. Trefethen3122
Stoller, S. D., Happer, W. & Dyson, F. J. 1991 Transverse spin relaxation in inhomogeneous
magnetic fields. Phys. Rev. A 44, 7459–7477.

Trefethen, L. N. 1997 Pseudospectra of linear operators. SIAM Rev. 39, 383–406.
Trefethen, L. N. 1999 Computation of pseudospectra. Acta Numerica 8, 247–295.
Trefethen, L. N. 2000 Spectral methods in MATLAB. Philadelphia: SIAM.
Trefethen, L. N. & Chapman, S. J. 2004 Wave packet pseudomodes of twisted Toeplitz matrices.

Comm. Pure Appl. Math. 57, 1233–1264.
Trefethen, L. N. & Embree, M. 2005 Spectra and pseudospectra: the behavior of nonnormal

matrices and operators. Princeton, NJ: Princeton University Press.
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability

without eigenvalues. Science 261, 578–585.
Wiggins, S. 1990 Introduction to applied nonlinear dynamical systems and chaos. Berlin: Springer.
Wright, T. G. 2002 EigTool software package. Available at http://www.comlab.ox.ac.uk/

pseudospectra/eigtool/.
Zworski, M. 2001 A remark on a paper of E. B. Davies. Proc. Am. Math. Soc. 129, 2955–2957.
Zworski, M. 2003 Numerical linear algebra and solvability of partial differential equations. Comm.

Math. Phys. 229, 293–307.

As this paper exceeds the maximum length normally permitted,
the authors have agreed to contribute to production costs.
Proc. R. Soc. A (2005)

http://www.comlab.ox.ac.uk/pseudospectra/eigtool/
http://www.comlab.ox.ac.uk/pseudospectra/eigtool/

	Wave packet pseudomodes of variable coefficient differential operators
	Introduction
	An elementary example
	Theorems
	Winding number interpretation
	Proof of theorem 3.1
	Examples
	Robustness and structural stability
	Discussion
	Much of this article was completed during a visit to the National University of Singapore in December 2003; I thank Toh Kim-Chuan and Lee Seng-Luan and the other stimulating mathematicians at the NUS for supporting this visit. Concerning the mathematic...
	References


