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COMPUTING THE GAMMA FUNCTION USING CONTOUR
INTEGRALS AND RATIONAL APPROXIMATIONS∗

THOMAS SCHMELZER† AND LLOYD N. TREFETHEN†

Abstract. Some of the best methods for computing the gamma function are based on numerical
evaluation of Hankel’s contour integral. For example, Temme evaluates this integral based on steepest
descent contours by the trapezoid rule. Here we investigate a different approach to the integral: the
application of the trapezoid rule on Talbot-type contours using optimal parameters recently derived
by Weideman for computing inverse Laplace transforms. Relatedly, we also investigate quadrature
formulas derived from best approximations to exp(z) on the negative real axis, following Cody,
Meinardus, and Varga. The two methods are closely related, and both converge geometrically. We
find that the new methods are competitive with existing ones, even though they are based on generic
tools rather than on specific analysis of the gamma function.
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1. The gamma function. In his childhood Gauss rediscovered that the sum of
the first n positive integers is given by

n∑
k=1

k =
n (n + 1)

2
,

a formula which can be considered as an interpolation valid even for nonintegers.
Starting in 1729 Euler discussed in a series of three letters to Goldbach, well known
for the Goldbach conjecture, the problem of the product of the first n integers, which
is today known as the factorial of n, n!. Davis [6] gives details about the history of
the gamma function. We start here with the standard definition

(1.1) Γ (z) =

∫ ∞

0

tz−1e−tdt, Re z > 0,

where

tz−1 = e(z−1) log t and log t ∈ R.

The gamma function is analytic in the open right half-plane. Partial integration yields

(1.2) Γ (z + 1) = zΓ (z) ,

and since Γ (1) = 1, we have

Γ (n + 1) = n!.
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Any confusion caused by this identity dates back to Legendre. It is possible to continue
the gamma function analytically into the left half-plane. This is often done by a
representation of the reciprocal gamma function as an infinite product [1, eq. 6.1.2]:

1

Γ (z)
= lim

n→∞

n−z

n!
z (z + 1) . . . (z + n)

valid for all z. This representation shows that Γ(z) has poles for z = 0,−1,−2, . . . .
Of more practical use is the reflection formula [1, eq. 6.1.17]:

(1.3) Γ (z) Γ (1 − z) =
π

sinπz
, z /∈ Z.

This identity implies Γ (1/2) =
√
π. It is standard to approximate the gamma function

only for Re z ≥ 1/2 and to exploit (1.3) for Re z < 1/2.

2. Hankel’s representation. An alternative representation for the reciprocal
gamma function, which is an entire function, is due to Hankel [11]. Substituting
t = su in (1.1) yields

F (s) :=
Γ (z)

sz
=

∫ ∞

0

uz−1e−sudu,

which can be regarded as the Laplace transform of uz−1 for fixed complex z. Hence
uz−1 can be interpreted as an inverse Laplace transform:

uz−1 = L−1{F (s)} =
1

2πi

∫
C
ekuF (k)dk =

1

2πi

∫
C
eku

Γ(z)

kz
dk.

The path C is any deformed Bromwich contour such that C winds around the negative
real axis in the anticlockwise sense (see Figure 1). Now we substitute s = ku, which
yields

uz−1 =
1

2πi

∫
C
es

Γ(z)uz

szu
ds

and hence

(2.1)
1

Γ (z)
=

1

2πi

∫
C
s−zesds.

The numerical evaluation of integrals of the form

(2.2) I =
1

2πi

∫
C
esf(s)ds

Fig. 1. A typical Hankel contour, winding around the negative real axis (dashed) in the anti-
clockwise sense.
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has been discussed by Trefethen, Weideman, and Schmelzer [22]. The function s−z

has a branch cut on R
− = (−∞, 0] but is analytic everywhere else. Hence (2.2) is

independent of C under mild assumptions. The freedom to choose the path for inverse
Laplace transforms has aroused a good deal of research interest. Recently Weideman
and co-workers [22, 25, 24] have optimized parameters for the cotangent contours
introduced by Talbot [19] as well as for other contours in the form of parabolas and
hyperbolas. Here we focus on different numerical methods for which (2.1) is the
common basis. In particular we shall compare

1. steepest descent contours,
2. Talbot-type contours,
3. rational approximation of es on (−∞, 0].

The first of these methods is an existing one, and the other two are new. Methods we
do not compare are those of Spouge, Lanczos, and Stirling. Comments on these and
on what is done in practice can be found in section 7.

In addition we mention in section 6 a generalization of (2.1) for matrices and
introduce an idea for solving linear systems of the form Γ(A)x = c without computing
Γ(A).

3. Saddle point method. Saddle point methods in general are extensively dis-
cussed in the book by Bender and Orszag [3, sect. 6.6]. The reciprocal gamma function
is a standard example for this technique presented in this and many other textbooks.
We keep the details to a minimum and follow an approach of Temme [20], who ad-
vocates the numerical evaluation of the integral along a steepest descent contour.
A zero of the first derivative of an analytic function f indicates a saddle point of∣∣ef ∣∣. Through this point runs a path C where f has a constant imaginary part and
a decreasing real part. This is a very desirable property for asymptotic analysis and
numerical quadrature schemes. In order to apply these ideas here we fix the movable
saddle by a change of variable s = zt. We get

(3.1)
1

Γ (z)
=

ezz1−z

2πi

∫
C
ezφ(t)dt,

where φ(t) = t − 1 − ln t. If z is real and positive, then the integrand in (3.1)
decreases exponentially as t moves away from 1 along the steepest descent contour.
For complex z, on the other hand, the decrease becomes oscillatory, and in the limit
of pure imaginary z, there is no decrease at all. Thus let us assume that z is a positive
real number. Let t = ρeiθ be the steepest descent path parameterized by the radius
ρ and the argument θ. The vanishing imaginary part at t = 1 induces the equation

0 = Im φ(t) = ρ sin θ − θ.

Hence the path is given by ρ = θ/ sin θ. Temme [20] gives the reparameterization

1

Γ (z)
=

ezz1−z

2π

∫ π

−π

e−zΦ(θ)dθ,

where

Φ(θ) = 1 − θ cot θ + ln
θ

sin θ

with Φ(0) = 0. Note that the real part of dt/dθ =
(
cot θ − θ csc2 θ

)
+ i is an odd

function of θ.
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The integral can be approximated by the midpoint rule, which is exponentially ac-
curate. See [21] for a review of this phenomenon of high accuracy. The approximated
integral is

(3.2) IN (z) =
ezz1−z

N

N∑
k=1

e−zΦ(θk),

where the nodes are

θk = −π +

(
k − 1

2

)
2π

N
, 1 ≤ k ≤ N.

This set of nodes is exponentially accurate, but it is not optimal for large z, for the
nodes closer to −π and π contribute negligibly because of the fast decay along the
path. We could delete some of these points to make the method even more efficient,
truncating the interval to [−τ, τ ] instead of [−π, π].

4. Direct contour integration. Instead of working with saddle points, another
approach is to apply the trapezoidal rule directly to (2.1). This makes it easy to
evaluate Γ(z) for complex as well as real arguments. Let φ(θ) be an analytic function
that maps the real line R onto the contour C. Then (2.1) can be written as

(4.1) I =
1

2πi

∫ ∞

−∞
φ(θ)−zeφ(θ)φ′(θ) dθ.

Because of the term eφ(θ), the integrand decreases exponentially as |θ| → ∞ so that
one commits an exponentially small error by truncating R to a finite interval. For
simplicity we shall arbitrarily fix this interval as [−π, π]. In [−π, π] we take N points
θk spaced regularly at a distance 2π/N , and our trapezoid approximation to (2.1)
becomes

(4.2) IN = −iN−1
N∑

k=1

esks−z
k wk,

where sk = φ(θk) and wk = φ′(θk). MATLAB codes are given in Figure 2.
Note that there is still the freedom left to choose a particular path. In Program

31 of the textbook [23], a closed circle with center c = −11 and radius r = 16 is used
with 70 equidistant nodes on it. Although this contour crosses the branch cut, it does
so sufficiently far down the real axis that the error introduced thereby is less than
10−11.

A more systematic approach has been pursued by Weideman and co-workers
[22, 25, 24], who have proposed, in particular, parameters for parabolic, hyperbolic,
and cotangent contours:

1. Parabolic contour

(4.3) s(θ) = N
[
0.1309 − 0.1194θ2 + 0.2500iθ

]
,

2. Hyperbolic contour

(4.4) s(θ) = 2.246N [1 − sin(1.1721 − 0.3443iθ)] ,

3. Cotangent contour

(4.5) s(θ) = N [0.5017θ cot(0.6407θ) − 0.6122 + 0.2645iθ] .
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function I = ContourIntegral(z,contour,N,f)

[s,w] = feval(contour,N); % contour is a function

I = zeros(size(z)); % the different sums

for k = 1:N % quadrature via

I = I+w(k)*exp(s(k)).*feval(f,s(k),z); % evaluating f at the nodes

end

function [s,w] = contourCot(N)

t = (-N+1:2:N-1)*pi/N; % angles theta

a = 0.5017; b = 0.2645i; ct = 0.6407*t; d = 0.6122;

s = N*(a*t.*cot(ct)-d+b*t).’; % poles

w = -i*(a*cot(ct)-a*ct./sin(ct).^2+b).’; % weights

function f = IntGamma(s,z)

% for the reciprocal gamma function

f = s.^(-z);

Fig. 2. MATLAB codes to evaluate (2.2) by (4.2). The function f(s) = s−z and the contour C
are defined in separate M-files and addressed as handles.
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Fig. 3. Convergence of IN to 1/Γ(z) for the cotangent contour (4.2), (4.5), for six different
values of z. The dashed line shows 3.89−N , confirming Weideman’s analysis.

Using equidistant nodes with respect to θ, all of these contours show geometric conver-
gence at rates approximately O(3−N ). Figure 3 illustrates this behavior by showing
convergence as N → ∞ for six values of z. According to Weideman the convergence
rate for the cotangent contour is O(3.89−N ), which is shown as a dashed line in the
figure.

In Figure 4, this behavior is compared in a region of the z-plane to the conver-
gence for the parabolic and hyperbolic contours, the steepest descent contours, and
the method of rational approximation to be introduced in the next section. All the
methods are geometrically convergent (except steepest descents near the imaginary
axis), and the cotangent contours and rational approximations are the best.

For all of these Talbot-type contours we encounter the same nonoptimality effect
as for the saddle point method: The decay of the integrand is so fast that the left-
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(a) Saddle point method (3.2), N = 32.
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(b) Circular contour from [23], N =70.
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(c) Parabolic contour (4.3), N = 32.
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(d) Hyperbolic contour (4.4), N = 32.
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(e) Cotangent contour (4.5), N = 32.
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(f) CMV approximation (5.1) with no
shift, N = 16.
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(g) CMV approximation (5.1) with
shift b = 1, N = 16.

Fig. 4. Relative error in evaluating Γ(z) in various points of the z-plane. The color bar in (a)
indicates the scale for all seven plots (logs base 10). In practice, one would improve accuracy by
reducing values of z to a fundamental strip, as shown in Figures 5 and 8.
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Fig. 5. Relative error in evaluating Γ(z) using a cotangent contour (4.5), N = 32 in 1
2

≤
Re z < 3

2
and applying (1.2) and (1.3) for other points of the z-plane. The shading is the same as

in Figure 4.

% gammatalbot - Thomas Schmelzer & Nick Trefethen November 2005

%

% For real arguments this is around 20 times slower than Matlab’s

% gamma, a factor roughly equal to the product of:

% 5 since this is an M-file rather than a .mex file

% 2 since it uses Talbot quadrature rather than best approximation

% 2 since the real symmetry is not exploited in the sum

function g = gammatalbot(z) % complex Gamma function

r = find(real(z)<0.5); % reflect to real(z)>=0.5

z(r) = 1-z(r);

shift = floor(real(z)-0.5); % shift to fundamental strip

zz = z-shift;

g = 1./ContourIntegral(zz,@contourCot,32,@IntGamma);

while any(shift)>0

f = find(shift>0);

g(f) = g(f).*zz(f);

shift(f) = shift(f)-1;

zz(f) = zz(f)+1;

end

g(r) = -pi./(g(r).*sin(pi*(z(r)-1))); % reflect back

j = find(imag(z)==0); g(j) = real(g(j)); % real inputs -> real outputs

Fig. 6. A MATLAB routine for computing the gamma function. The fundamental identities
(1.2) and (1.3) are used to reduce all arguments to the strip 1

2
≤ Re z < 3

2
. The code makes use of

the functions listed in Figure 2.

most nodes make a negligible contribution. The source of this phenomenon is the fact
that Weideman’s analysis considers only the factor es in (2.1), treating the factor s−z

as of order 1, whereas in fact, when z has a large real part, s−z is very small. This
effect is ubiquitous when computing with a fixed path and fixed nodes for all z ∈ C.
We could take advantage of it by fine-tuning Weideman’s parameters in a manner
specific to the gamma function, but we shall not do that here since our interest is in
the application of generic methods for integrals of the form (2.2). Also, it is simpler
and just as effective to use the fundamental identities (1.2) and (1.3) to reduce all
arguments to the strip 1

2 ≤ Re z < 3
2 . The effect of such reductions is illustrated for

the cotangent contour in Figure 5. A MATLAB routine implementing this strategy
is given in Figure 6.



COMPUTING THE GAMMA FUNCTION 565

5. Rational approximation. In a recent paper we, along with Weideman,
interpreted the trapezoidal rule on a Hankel contour as a rational approximation
of exp(z) on the negative real axis [22]. The analysis of best Chebyshev approx-
imations of this kind is a problem made famous by Cody, Meinardus, and Varga
(CMV) [5]; the errors are known to decrease asymptotically at the rate O(HN ),
where H = 1/9.28903 . . . is known as Halphen’s constant [10]. As shown in [22],
these approximations can be used directly to evaluate integrals (2.2), bypassing the
consideration of Talbot contours and the trapezoid rule. Given N , we define the best
type (N,N) approximation to exp(s) to be the unique real rational function r∗N of
type (N,N) such that

sup
s∈R−

|r∗N (s) − exp(s)| = inf
r∈RN

sup
s∈R−

|r(s) − exp(s)| ,

where RN denotes the set of all rational functions of type (N,N). The coefficients of
the polynomials in the numerator and denominator of r∗N are given to very high accu-
racy in a paper by Carpenter, Ruttan, and Varga [4]. A practical way of determining
these approximants on the fly is the Carathéodory–Fejér (CF) method. (In principle,
the CF approximation is not best but near-best, but its difference from the true best
approximation is negligible for N ≥ 2 [22].) The function r∗N can be represented in
a partial fraction representation, i.e., by N poles p1, . . . , pN and residues c1, . . . , cN
such that

r∗N (s) =

N∑
k=1

ck
s− pk

+ c0.

We define r̃N (s) to be the portion of this expression in the sum, i.e., r̃N (s) = r∗N (s)−
r∗N (∞), a rational function of type (N − 1, N) whose deviation from exp(s) on R

−

decreases at the same asymptotic rate as that of r∗N as N → ∞.
These rational approximants can be used as the basis of another method for

evaluating 1/Γ(z). We simply replace es in (2.1) by r̃N to obtain, with the aid of
residue calculus,

(5.1) IN =
1

2πi

∫
C
r̃N (s)s−zds = −

N∑
k=1

ckp
−z
k ,

which converges for Re z > 0 as the decay of the integrand at infinity is fast enough.
For Re z > 1 we also have

(5.2) IN =
1

2πi

∫
C
r∗N (s)s−zds.

For even N the poles come in conjugate pairs and (5.1) simplifies for real z to

IN = −
N/2∑
k=1

2Re
(
ckp

−z
k

)

provided the first N/2 poles are all in the upper half-plane or all in the lower half-
plane.
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Fig. 7. Convergence for the near-best rational approximation (5.1) of type (N − 1, N) with no
shift. The convergence is about twice as fast as in Figure 3, with fifteen integrand evaluations suffic-
ing to produce near machine precision. The dashed line shows 9.28903−N , confirming Theorem 5.2.

0 5 10 15
0

2

4

6

8

Re z

Im
 z

Fig. 8. Relative error in evaluating Γ(z) using a CMV approximation, N = 16 with no shift
solely in 1

2
≤ Re z < 3

2
, and applying (1.2) and (1.3) for other points of the z-plane. The shading

is the same as in Figure 4.

For each z satisfying Re z > 0 or Re z > 1 as appropriate, IN appears to converge
to 1/Γ(z) at a geometric rate controlled by the same constant H = 1/9.28903 . . . as
indicated in Figures 7 and 8. A proof of this claim would follow from the following
result, which we believe is true but have not yet proved.

Conjecture 5.1. Let {r∗N} be the best approximations over R
− as defined above,

let K be a compact set in C, and let ‖·‖K denote the supremum norm over K. Then

lim sup
N→∞

‖exp(s) − r∗N (s)‖1/N
K ≤ H =

1

9.28903 . . .
.

Here is the result that follows from the conjecture.
Theorem 5.2. Let {r̃N} and {r∗N} be the rational approximations defined above

and let z be fixed with Re z > 0. Then the approximations (5.1) and (5.2) (provided
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Re z > 1) satisfy

lim sup
N→∞

∣∣∣∣ 1

Γ(z)
− IN (z)

∣∣∣∣
1/N

≤ H =
1

9.28903 . . .
.

Partial proof, assuming the validity of Conjecture 5.1. We introduce a special
Hankel contour Cρ. It consists of a circle of radius ρ enclosing the origin and two rays
joining ρe−iπ and ρe+iπ with the point −∞. An upper bound for the error is deduced
on Cρ. For the case of r∗N , for example, we get by using (2.1) and (5.2)∣∣∣∣ 1

Γ(z)
− IN (z)

∣∣∣∣ ≤ 1

2π
‖r∗N (s) − exp(s)‖Cρ

∫
Cρ

∣∣s−z
∣∣ |ds| ,

and we note that for any s, |s−z| ≤ |s|−a
eπ|b| for z = a + bi with a > 1. From here

we readily obtain ∫
Cρ

∣∣s−z
∣∣ |ds| ≤ (

2π +
2

a− 1

)
e|b|πρ1−a.

The convergence of r∗N (s) to exp(s) on the circle of radius ρ can be estimated by
Conjecture 5.1, and therefore

lim sup
N→∞

∣∣∣∣ 1

Γ(z)
− IN (z)

∣∣∣∣
1/N

≤ H.

It remains to show that the result just proved for r∗N and Re z > 1 also holds for r̃N
and Re z > 0. To do this split up the integral to obtain the estimate∣∣∣∣ 1

Γ(z)
− IN (z)

∣∣∣∣ ≤ 1

2π
‖s (r̃N (s) − exp(s))‖Cρ

∫
Cρ

∣∣s−z−1
∣∣ |ds| .

The function s (r̃N − exp(s)) in the left-hand term of this estimate approaches a con-
stant as s → −∞ for each N , since r̃N − exp(s) decreases at the rate O(s−1). The
essential point in showing that these Nth roots approach H as required is to make
sure that the leftmost extremum of r̃N (s) − exp(s) does not occur at a value of s
that is exponentially large, in which case the Nth root of this value of s might fail to
converge to 1. In fact, the results of Aptekarev [2] and Magnus [13] appear to confirm
numerical evidence that the location of this extremum grows just algebraically, but
we will not attempt a rigorous proof here.

The fundamental property exp(a+ b) = exp(a) exp(b) for any two complex argu-
ments can be exploited in our algorithm. Given a positive parameter b, the function
r̃bN (s) = exp(b)r̃N (s−b) can be regarded as an approximation of exp(s) in the interval
(−∞, b]. In particular, (5.1) is the special case of this approximation for b = 0:

(5.3) IbN =
1

2πi

∫
C
r̃bN (s)s−zds = −

N∑
k=1

ebck(pk + b)−z.

It is easily proved that the shifted rational approximation r̃bN (s) still converges with
the same asymptotic rate HN . In experiments we have observed that a shift of O(1)
gives better results especially for real arguments, as illustrated in Figures 7 and 9 and
4(f) and 4(g), where we used a shift of b = 1.
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Fig. 9. Convergence for the near-best rational approximation (5.1) of type (N−1, N) with shift
b = 1. Though the asymptotic behavior is the same, the constants are better than in Figure 7, and
the use of such a shift might be a good idea in practice.

6. Matrix arguments. Hankel’s contour integral (2.1) can be generalized to
square matrices A, and one can apply the methods introduced here to compute Γ(A)−1

or to compute the solution vector x in a linear system Γ(A)x = c without computing
Γ(A). We have confirmed this by numerical experiments not reported here. A draw-
back of such methods is that it is expensive to compute s−A

k c for every node; methods
based on the algorithms of Spouge [18] and Lanczos [12] might be more efficient. We
are currently not aware of applications where Γ(A) is used for matrix arguments.

7. Other methods and existing software. There are a variety of existing
methods for computing the gamma function. Are our methods competitive with
these? As far as we can tell, the answer seems to be yes; they are “in the ballpark”
in the sense of coming within a factor of 1–10 of the best methods, notably

• the method of Lanczos [12],
• the method of Spouge [18],
• the asymptotic Stirling series [1, eq. 6.1.37].

We emphasize that these methods are specialized algorithms designed for computing
the gamma function and its close relatives, whereas our ideas are applicable in a much
larger framework.

7.1. The method of Spouge. The method of Spouge [18] is attractive because
of its simplicity and precise error estimates. Spouge introduced the approximation

Γ(z + 1) ≈ (z + γ)z+1/2e−(z+γ)
√

2π

[
c0 +

N∑
k=1

ck(γ)

z + k

]
,

which is valid for Re (z + γ) > 0 and dependent on a positive real parameter γ with
N = 
γ� − 1, which converges to an equality as γ → ∞. Here c0 = 1, and the other
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coefficients are given by

ck(γ) =
1√
2π

(−1)k−1

(k − 1)!
(−k + γ)k−1/2e−k+γ , 1 ≤ k ≤ N.

The absolute error for this approximation can be bounded [18, Thm. 1.3.1] by

EN (z) ≤
∣∣∣∣γ(z)

1√
N + 1(2π)N+3/2

∣∣∣∣ .
Note that the relative error does not depend on z, making Spouge’s method especially
attractive for uniform approximations in the right half-plane. The above inequality
implies that the method converges at least as fast as (6.28−N ), a rate lying midway
between (3.89−N ) for Talbot contours and (9.29−N ) for best rational approximations.
Actually, experiments suggest a better convergence rate, closer to O(10−N ).

7.2. The method of Lanczos. The method of Lanczos [12] is closely related
to that of Spouge. Lanczos’s method is based on the fast evaluation of the integral

Fγ(z) =

∫ e

0

[v(1 − log v)]
z
vγdv,

where γ is a positive free parameter. The integral is approximated by a rational
function

FN,γ(z) = a0 +

N∑
k=1

ak/(z + k).

A variety of methods for computing the coefficients are discussed in a recent thesis by
Pugh [16]. Their rate of decay depends strongly on a good choice for γ. However, it is
unclear if it makes sense to ask about the asymptotic behavior for N → ∞. Little is
known about the decay of the error |Fγ(z) − FN,γ(z)| [16, Chap. 11]. Lanczos claimed
that the higher γ becomes, the smaller is the value of the coefficients at which the
convergence begins to slow down. At the same time, however, we have to wait longer
before the asymptotic stage is reached. Pugh [16] calls this behavior the Lanczos shelf
and is interested in finding good pairs of γ and N in order to guarantee a certain
precision in the right half-plane. Godfrey [9] gives a 15-term expansion that provides
an accuracy of about 15 significant digits along the real axis and about 13 digits in the
rest of the complex plane. Because of the simple form of FN,γ(z), Lanczos’s method
is particularly suitable for matrix arguments.

7.3. Stirling’s method. The asymptotic series that generalizes Stirling’s for-
mula1 is still a standard and powerful method for evaluating the gamma function.
There is a great deal of literature discussing efficient strategies and error estimates
for these series (see the references in [14]). The goal here is to minimize the number
of terms used to achieve the desired accuracy. This can be done in two ways, by
either shifting the argument to the right or enforcing a faster asymptotic decay of the
relative error using more terms in the series. (For fixed z and N → ∞ the series does
not converge.) The method is especially attractive for arguments with a large real
part working in an arbitrary precision environment. Using an asymptotic series for
log Γ(z), the error is bounded for Re z ≥ 0 by |B2N/(2N − 1)| |z|1−2N

, where B2N

denotes a Bernoulli number. This simple error estimate is due to Spira [17].

1Stirling was a student at the same Oxford college we both belong to, Balliol.
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7.4. Software. Software libraries and programming environments for scientific
computing all have routines to compute the gamma function, although quite a few do
not deal with complex arguments. For our small survey we explored online documen-
tation for various products, and yet it often remains unclear exactly which methods
are used. For real arguments, a popular trick is to work with a rational Chebyshev
approximation on the interval [1, 2] and map this interval by the recurrence relation
(1.2) to larger regions of the real line. The routine in the NAG library seems to map
this interval to the whole real line, whereas MATLAB2 uses a Stirling approximation
for arguments larger than 12. On the fundamental interval, MATLAB uses a rational
Chebyshev approximation of type (8, 8). As the MATLAB routine was originally de-
signed for Fortran, we imagine that many Fortran libraries use essentially the same
method.

None of the above products provides a function for complex arguments. For
Fortran the IMSL library has a routine of this kind. As there are no references
to the work of Lanczos and Spouge in the IMSL documentation, we presume that
it is based on asymptotic series. The Gnu Scientific Library provides a C function
gsl_sf_lngamma_complex_e that evaluates log Γ(z) via the complex Lanczos method.

Mathematica uses the asymptotic Binet formula, which is another name for the
Stirling series. We presume Maple uses the same method since the Maple documen-
tation gives a reference to the classic book on special functions [7], which appeared
before the methods of Lanczos and Spouge were introduced. Somewhat more inter-
esting are the comments in [15]:

There are a variety of methods in use for calculating the function
Γ(z) numerically, but none is quite as neat as the approximation
derived by Lanczos. This scheme is entirely specific to the gamma
function, seemingly plucked from thin air.

8. Conclusions. We have shown that Γ(z) can be evaluated with geometric
accuracy by two types of generic related methods:

• applying the trapezoidal rule on Talbot contours.
• using best rational approximations on the negative real axis.

Typically the second method is about twice as fast as the first. However, the first is
simpler to implement as the construction of the best rational approximation is not
trivial.

Amongst the Talbot contours, the cotangent contour has the best results. Using
a shift from (−∞, 0] to (−∞, 1], one can improve the results for the best rational
approximation a bit. For smaller values of z in the right half-plane, the approximations
are excellent, and using the fundamental recurrence relation for the gamma function,
one can extend the region of accuracy.

Even though the methods we have introduced are based on generic tools rather
than on specific analysis of the gamma function, they are competitive with existing
ones. The gamma function is just one of many special functions that have integral
representations which can be evaluated efficiently by Talbot-type contours and ratio-
nal approximations (see [8] for further examples). We believe that these methods can
be useful in many areas of scientific computing.
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