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Abstract The Fejér and Clenshaw–Curtis rules for numerical integration exhibit a
curious phenomenon when applied to certain analytic functions. When N (the number
of points in the integration rule) increases, the error does not decay to zero evenly but
does so in two distinct stages. For N less than a critical value, the error behaves like
O(�−2N ), where � is a constant greater than 1. For these values of N the accuracy
of both the Fejér and Clenshaw–Curtis rules is almost indistinguishable from that
of the more celebrated Gauss–Legendre quadrature rule. For larger N , however, the
error decreases at the rate O(�−N ), i.e., only half as fast as before. Convergence curves
typically display a kink where the convergence rate cuts in half. In this paper we derive
explicit as well as asymptotic error formulas that provide a complete description of
this phenomenon.

Mathematics Subject Classification (2000) 65D32 · 41A55

1 Introduction

In a recent paper some remarkable convergence properties of the Clenshaw–Curtis
rule for numerical integration were pointed out [21]. To elucidate this behavior we
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Fig. 1 Absolute errors when approximating the integral (1) with various N -point interpolatory quadrature
rules (N even). The tiny dots represent (a) Fejér and (b) Clenshaw–Curtis quadrature while the large dots
represent Gauss quadrature. The Fejér and Clenshaw–Curtis convergence rates start out the same as for
Gauss, but at a certain value of N (indicated by the vertical dash-dot line) a kink appears and the rate cuts
in half. The critical values of N are the solutions to the equations (27) and (28)

consider one of the examples from that paper, namely

I =
1∫

−1

dx

1 + 16 x2 . (1)

Figure 1 shows the absolute errors when this integral is approximated by the
N -point Fejér, Clenshaw–Curtis, and Gauss quadrature rules. (Here, and through-
out, the expression “Gauss quadrature” refers to the Gauss formula associated with
constant weight function, i.e., the well-known Gauss–Legendre quadrature. Perhaps
less familiar to nonspecialists are the Fejér and Clenshaw–Curtis rules and hence we
define these two rules below.) Note that Fig. 1 shows logarithmic scales on the vertical
axes: straight lines therefore represent geometric convergence rates.

The Gauss rule, in particular, converges according to O(�−2N ), where

� = 1

4

(
1 + √

17
) = 1.28 . . . , (2)

which is consistent with theory. The interesting behavior is exhibited by the Fejér and
Clenshaw–Curtis curves. For large N both these rules converge according to O(�−N ),
i.e., half as fast as the Gauss rule, which is also consistent with existing theory. The
remarkable observation of [21] is the fact that for smaller values of N the Fejér and
Clenshaw–Curtis rules converge not as O(�−N ) but as O(�−2N ). That is, the initial
convergence rate is twice the ultimate convergence rate and the error curves display
a kink where the convergence switches from one rate to the other. This means that
initially both these rules converge about as fast as the Gauss rule. Indeed, in Fig. 1
there is negligible distinction between the three error curves for smaller values of N .

The purpose of this paper is to present a quantitative explanation of this phenom-
enon. Among other things, we shall derive equations for computing the critical values
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The kink phenomenon 709

of N shown in Fig. 1. We do this by deriving explicit formulas for the error curves.
These error formulas consist of two main terms, one of which dominates for values
of N less than the critical one and the other of which dominates for larger N (see
Theorem 3). Our characterization of the kink will come from setting these two terms
equal.

The results shown in Fig. 1 correspond to even values of N . For odd N the kinks
occur at smaller values of N , as can be seen in [21]. This fact will also be explained
by our analysis.

We emphasize that our motivation is much more than simply to understand the
integrand (1) or the even simpler model (3) introduced below. The wider purpose is
that these problems serve to pinpoint the location of the “kink curve” as introduced
in Sect. 6 of [21]. This at least partially explains the phenomenon that the Clenshaw–
Curtis and Fejér formulas are as accurate as Gauss quadrature in many circumstances.

To describe the kink curve, consider a model function and its integral

fz(x) = 1

z − x
, I ( fz) =

1∫

−1

fz(x) dx, (3)

where z is a complex number not in [−1, 1]. The integral can of course be evaluated
explicitly and we call the result φ(z); see (15) below. When Fejér or Clenshaw–Curtis
quadrature is used to approximate this integral, the critical N where the kink occurs
depends on the position of the singularity z. We define the kink curve as the locus of
all z for which the kink appears at the same value of N . A perturbation analysis will
be used to show that this curve is, in the limit as N → ∞ through the even integers,
an ellipse with semiaxes 1 and 2 log N/N (Fejér) and semiaxes 1 and 3 log N/N
(Clenshaw–Curtis).

It is also known that when Fejér, Clenshaw–Curtis, or Gauss quadrature is used to
approximate the integral in (3), a rational approximation to φ(z) results; see Sect. 3.
This rational approximation problem has historical significance in the fact that it
formed the basis of Gauss’ own derivation of the quadrature formula that bears his
name [21]. This justifies us looking at the very simple integral (3) as model problem.

Our paper is not primarily devoted to error estimates for Clenshaw–Curtis and Fejér
type quadrature of general analytic functions. For such results there exists a large and
impressive body of literature, a section of which is represented by [3,4,9,14]. Related
material can be found in [15–18] and we also mention the bibliography of [21], which
contains 70 entries. We are not aware, however, of any papers other than [21] that
relate directly to our subject, namely the transient behavior of Clenshaw–Curtis and
Fejér errors that results in them converging as fast as Gauss, at least until N hits
the kink.

The outline of the paper is as follows. We start with a short summary of inter-
polatory quadrature formulas in Sect. 2. In Sect. 3 we derive an explicit error for-
mula for interpolatory quadrature rules in the case where the integrand is a rational
function. In particular, we obtain explicit formulas for the error curves shown in
Fig. 1. The formulas derived in this section do not immediately lend themselves to
a characterization of the kink phenomenon, and further manipulation and asymptotic
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710 J. A. C. Weideman, L. N. Trefethen

estimation are required. This is done in Sect. 4, where we derive the equations for
computing the critical values of N . The key step here is a new formula for an integral
involving the Chebyshev polynomials that arises quite often in numerical analysis.
We derive the properties of the kink curve in Sect. 5.

2 Interpolatory quadrature formulas

For the sake of completeness we start with a quick summary of the basic formulas of
interpolatory quadrature for integrals of the form

I ( f ) =
1∫

−1

f (x) dx .

Let {x j }N
j=1 be a set of distinct nodes in [−1, 1] and define

ωN (x) = c
N∏

j=1

(x − x j ), (4)

where c is a non-zero normalization constant. (Its value is immaterial as it will cancel
in all the formulas below.) Let pN−1(x) be the polynomial of degree N − 1 that
interpolates the function f (x) at the nodes {x j }N

j=1. This interpolating polynomial
can be expressed in Lagrange form as

pN−1(x) =
N∑

j=1

ωN (x)

ω′
N (x j )(x − x j )

f (x j ). (5)

An interpolatory quadrature rule is derived by integrating this expression. That is,
we approximate I ( f ) by IN ( f ), where

IN ( f ) ≡
1∫

−1

pN−1(x) dx =
N∑

j=1

w j f (x j ),

with weights defined by

w j = 1

ω′
N (x j )

1∫

−1

ωN (x)

x − x j
dx .

Two popular choices for the nodes are (a) the set of zeros of the Chebyshev
polynomial of degree N , and (b) the set of extrema (including endpoint extrema)
of the Chebyshev polynomial of degree N − 1. The corresponding quadrature rules
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The kink phenomenon 711

are named after (a) Fejér, and (b) Clenshaw and Curtis. We summarize as follows
[with TN (x) denoting, as usual, the Chebyshev polynomial of degree N ]:

Fejér: ωN (x) = TN (x), x j = cos
( (2 j − 1)π

2N

)
, (6)

and

Clenshaw–Curtis: ωN (x) = (1 − x2) T ′
N−1(x), x j = cos

(
( j − 1)π

N − 1

)
. (7)

In both cases the weights w j can be computed explicitly; the formulas are given in [3,
Sect. IV.5] and [6, Sect. 2.5.5]. (The Fejér rule defined above is more precisely called
Fejér’s first rule; for Fejér’s second rule see [6, Sect. 2.5.5]. The first and second Fejér
rules are sometimes called the Pólya and Filippi rules, respectively; see [3, Chap. IV].)

The most famous choice of nodes is the one leading to Gauss quadrature. Here
ωN (x) = PN (x), the Legendre polynomial of degree N . Compared with the rules
based on Chebyshev points this rule has the disadvantage that the nodes are not given
by any explicit formula and some form of iteration is required for their computation.
On the other hand, it has a distinct advantage in the fact that the N -point Gauss rule
exactly integrates polynomials of degree up to 2N − 1 (inclusive). By contrast, the
N -point Fejér and Clenshaw–Curtis rules both have the property of exactness for
polynomials of degree up to N − 1 only. The 2N − 1 versus N − 1 superiority of the
Gauss rule translates into the O(�−2N ) vs. O(�−N ) advantage in convergence rate
mentioned in Sect. 1. (Note that this advantage applies only to analytic functions; for
nonanalytic functions there may be no advantage [21].)

3 Error formula for the model problem

Here we derive an explicit formula for the error in any approximation to the model
integral (3) based on interpolatory quadrature. This result is not new (similar error
formulas can be found, for example, in [3, Chap. 4]), but we nevertheless state our
own version of the formula as a theorem. The key to the proof is the Hermite contour
integral representation of the error in polynomial interpolation; see [5, p. 68] or [12,
p. 245].

Theorem 1 Let fz(x) and I ( fz) be defined by (3). Let IN ( fz) denote the approxima-
tion to I ( fz) as computed by the interpolatory quadrature rule based on the nodal set
{x j }N

j=1. Then

I ( fz) − IN ( fz) = EN (z)

ωN (z)
, (8)

123



712 J. A. C. Weideman, L. N. Trefethen

where

EN (z) =
1∫

−1

ωN (x)

z − x
dx . (9)

Proof Let pN−1(x) be the polynomial interpolant of fz(x) at the nodes {x j }N
j=1.

According to the Hermite formula, the pointwise error is given by

fz(x) − pN−1(x) = ωN (x)

2π i

∫

C

dζ

ωN (ζ )(ζ − x)(z − ζ )
, (10)

where ωN (x) is defined by (4), and C is a simple closed rectifiable curve that encloses
the interval [−1, 1] but excludes the pole at ζ = z. [Proof: Evaluate the integral by
residues and use (5).]

Observe that the integrand on the right side of (10) is a rational function with the
denominator degree exceeding the numerator degree by at least 2. If one therefore
deforms the contour C into a circle |ζ | = R, the integral will vanish in the limit
R → ∞ [1, Sect. 4.2]. To adjust for the fact that the singularity at ζ = z is traversed
in the process of deforming the contour its residue is subtracted and therefore

fz(x) − pN−1(x) = ωN (x)

ωN (z)

1

z − x
.

The quadrature error (8) follows by integrating this expression. ��
For any set of nodes {x j }N

j=1 it is possible, at least in principle, to compute the
integral EN (z) defined in (9) since its integrand is a rational function. In the case of
Gauss quadrature the formula is particularly simple. With ωN (x) = PN (x) one finds
in many tables of integrals Neumann’s formula,

1∫

−1

PN (x)

z − x
dx = 2 QN (z), (11)

where QN is the Legendre function of the second kind. In the case of quadrature based
on Chebyshev points, ωN (x) is defined in (6), (7). In the Clenshaw–Curtis case, the
formula for ωN (x) can be simplified by the identity [13, p. 35]

(1 − x2) T ′
N−1(x) = N − 1

2

(
TN−2(x) − TN (x)

)
, N ≥ 2,

and hence we define

Clenshaw–Curtis: ωN (x) = TN (x) − TN−2(x), N ≥ 2.
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The kink phenomenon 713

Both the Fejér and Clenshaw–Curtis cases will therefore require the evaluation of the
integral

SN (z) ≡
1∫

−1

TN (x)

z − x
dx . (12)

This integral, which is not as well documented as the corresponding one (11) for
Legendre polynomials, holds the key to the kink phenomenon. In the next section we
record a few known results regarding this integral and contribute a few formulas we
believe to be new.

Using (11), (12) we can now specialize Theorem 1 to the three quadrature rules
considered in this paper.

Theorem 2 Let fz(x) and I ( fz) be defined by (3). Let G N ( fz), FN ( fz), and CN ( fz)

denote, respectively, the N-point Gauss, Fejér, and Clenshaw–Curtis approximations
to I ( fz). Then

I ( fz) − G N ( fz) = 2
QN (z)

PN (z)
, (13)

and

I ( fz) − FN ( fz) = SN (z)

TN (z)
, I ( fz) − CN ( fz) = SN (z) − SN−2(z)

TN (z) − TN−2(z)
, (14)

where SN (z) is defined by (12).

We postpone a discussion of the large N behavior of these error formulas to the
next section; see Theorem 3.

There is another reason for studying integrals such as (9) and (12). By explicitly
computing the quantities on the left side of (8) we obtain

φ(z) − rN (z) = EN (z)

ωN (z)
, (15)

where

φ(z) ≡ ln
( z + 1

z − 1

)
, rN (z) ≡

N∑
j=1

w j

z − x j
.

The left side of (15) represents the error in approximating the function φ(z) by a
rational function rN (z) of numerator degree N − 1, denominator degree N , and poles
at {x j }N

j=1. This idea is not new. Indeed, it goes back in essence to Gauss, whose
invention of Gauss quadrature was based on the construction via continued fractions
of rational functions that match φ(z) to as high an order as possible at z = ∞ [11].
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714 J. A. C. Weideman, L. N. Trefethen

Thus in the case of Gauss quadrature, rN (z) is the type (N −1, N ) Padé approximation
to φ(z) at z = ∞. More explicit use of the approximation problem rN (z) ≈ φ(z) was
made by Takahasi and Mori [20], who took this as the principle for analyzing and
comparing all kinds of quadrature formulas and made contour plots of |φ(z) − rN (z)|
in the complex plane. It was contour plots like this for Clenshaw–Curtis quadrature,
presented in [21], that led to the present paper.

We conclude this section by pointing out that Theorem 1 can be generalized to any
rational function of the form

r(x) =
K∑

k=0

ak xk +
M∑

k=1

bk

zk − x
,

with all poles zk distinct. Indeed, for any N -point interpolatory rule with N > K the
quadrature error is given by

I (r) − IN (r) =
M∑

k=1

bk
EN (zk)

ωN (zk)
, (16)

where EN (z) is defined by (9). (For Gauss quadrature only N > K/2 is required.) By
applying this result to the test function of Fig. 1 explicit formulas for the error curves
shown in that figure can be derived. This is summarized in the following example.

Example 1 Consider

ga(x) ≡ a2

a2 + x2 = ai

2

( 1

ai + x
+ 1

ai − x

)
.

An application of (16) yields

I (ga) − IN (ga) = ai
EN (ai)

ωN (ai)
,

where we have assumed a symmetric node distribution, i.e., ωN (x) is an even
(resp. odd) function when N is even (resp. odd). Therefore,

I (ga) − G N (ga) = 2ai
QN (ai)

PN (ai)
,

and

I (ga) − FN (ga) = ai
SN (ai)

TN (ai)
, I (ga) − CN (ga) = ai

SN (ai) − SN−2(ai)

TN (ai) − TN−2(ai)
, (17)

which define the error curves of Fig. 1 (where a = 1/4).
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The kink phenomenon 715

4 Formulas for SN(z)

In order to explain the kinks in Fig. 1, our first priority is to examine the behavior
of the integral SN (z) that appears in the error formulas (14) and (17). We start by
summarizing existing results from the literature. The main contribution of this section
is a new expression for SN (z) that makes it possible to determine the location of the
kink precisely.

In what follows E� denotes the ellipse

z = 1

2

(
ξ + ξ−1

)
, ξ = � eiθ , 0 ≤ θ ≤ 2π,

with foci at z = ±1 and the sum of its semi-major and -minor axes equal to � (>1).
This means that if z ∈ E�,

ξ = z +
√

z2 − 1,

with the branch cut of the square root taken to be consistent with |ξ | > 1.

Lemma 1 (Chawla 1968 [4]) Let SN (z) be defined by (12) with z ∈ E�; then

SN (z) = 4 ξ−N−1
∞∑

k=−�N/2


(2k + N + 1) ξ−2k

(2k + 2N + 1)(2k + 1)

where �k
 denotes the greatest integer less than or equal to k.

The following formula is more recent.

Lemma 2 (Notaris 2006 [14]) For even N,

SN (z) = TN (z) ln
( z + 1

z − 1

)
− 4

�(N+1)/2
∑
k=1

TN−2k+1(z)

2k − 1
,

while for odd N the last term in the sum should be halved.

We derived the following formula independently of the above two lemmas. Since
it can be obtained from Lemma 1 using partial fraction decomposition we omit the
details of our derivation.

Lemma 3 Let z ∈ E�; then for even N

SN (z) = 2

ξ

( ∞∑
k=0

ξ−2k

2k + N + 1
+

∞∑
k=0

ξ−2k

2k − N + 1

)
. (18)

For odd N,

SN (z) = 1

2z

(
SN+1(z) + SN−1(z)

)
. (19)
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716 J. A. C. Weideman, L. N. Trefethen

[The formula for odd N follows from inserting the three-term recurrence relation for
Chebyshev polynomials into (12) and then proceeding as in [22].]

None of the above three lemmas is particularly suited for explaining the kink
phenomenon. In fact, in [4] Chawla obtains a bound on the error in Clenshaw–Curtis
quadrature by estimating the series in Lemma 1, which led to the remark “…these
estimates are poor if � is near 1.” Notaris makes a similar comment in the last para-
graph of [14]. The error estimate for Clenshaw–Curtis quadrature presented by Brass
[3, Satz 80] does not display a sharp kink either. Here is a new formula for SN (z) that
gives a better estimate.

Lemma 4 Let z ∈ E�; then

SN (z) = σξ−N π i +
{

WN (ξ), Neven
1
2z

(
WN+1(ξ) + WN−1(ξ)

)
, Nodd,

(20)

where σ is defined by

σ ≡
⎧⎨
⎩

−1, Im z > 0,

0, Im z = 0,

+1, Im z < 0,

(21)

and

WN (ξ) ≡ 2

⎛
⎝ξ−N

ξ∫

0

wN

1 − w2 dw + ξ N

1/ξ∫

0

wN

1 − w2 dw

⎞
⎠ . (22)

When z is real (i.e., ξ > 1 or ξ < −1) the first integral in (22) should be interpreted
in the principal value sense.

Proof Consider the formula in Lemma 3, with N even. Starting with the second
series in (18), note that it can be split into a finite sum with negative integers in the
denominator and an infinite series with positive integers. This yields

∞∑
k=0

ξ−2k

2k − N + 1
= −ξ1−N

N/2∑
k=1

ξ2k−1

2k − 1
+ ξ1−N

∞∑
k=0

ξ−(2k+1)

2k + 1
.

By manipulating geometric series both summations on the right can be expressed in
terms of integrals, which yields

∞∑
k=0

ξ−2k

2k − N + 1
= −ξ1−N

ξ∫

0

1 − wN

1 − w2 dw + ξ1−N

1/ξ∫

0

1

1 − w2 dw.
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The kink phenomenon 717

For the first series in (18) one obtains likewise

∞∑
k=0

ξ−2k

2k + N + 1
= ξ1+N

1/ξ∫

0

wN

1 − w2 dw.

Adding these two expressions and multiplying by the factor 2/ξ in (18) yields

SN (z) = 2 ξ−N

⎛
⎝

1/ξ∫

0

1

1 − w2 dw −
ξ∫

0

1 − wN

1 − w2 dw

⎞
⎠ (23)

+ 2 ξ N

1/ξ∫

0

wN

1 − w2 dw.

When ξ �∈ (−∞,−1] ∪ [1,∞) the second integral on the right can be split into
two to give

SN (z) = ξ−N
(

log
(ξ + 1

ξ − 1

)
− log

(1 + ξ

1 − ξ

))
+ WN (ξ),

with WN (ξ) defined by (22). The term in parentheses is +π i when Im ξ > 0 and −π i
when Im ξ < 0. This yields (20) in the case N even. The formula for N odd follows
from (19).

When ξ ∈ (−∞,−1] ∪ [1,∞), the term in parentheses in (23) can be expressed
as a principal value integral, namely

1/ξ∫

0

1

1 − w2 dw −
ξ∫

0

1 − wN

1 − w2 dw = −
ξ∫

0

wN

1 − w2 dw.

This follows from standard formulas from the theory of singular integrals; see for
example [6, Sect. 2.12.8]. ��

Remark 1 The integrals in (22) can be evaluated for N ≥ 2 with the recurrence

ξ∫

0

wN

1 − w2 dw =
ξ∫

0

wN−2(w2 − 1 + 1)

1 − w2 dw

= − 1

N − 1
ξ N−1 +

ξ∫

0

wN−2

1 − w2 dw,
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718 J. A. C. Weideman, L. N. Trefethen

which yields, for even N ,

ξ∫

0

wN

1 − w2 dw = 1

2
log

(1 + ξ

1 − ξ

)
−

N/2∑
k=1

ξ2k−1

2k − 1
.

By inserting this formula (and the analogous one with ξ replaced by ξ−1) into (22)
one can express the function WN (ξ) also in terms of finite sums rather than integrals.
By using the identity TN (z) = (ξ N + ξ−N )/2 the corresponding formula for SN (z)
can be reduced to the finite sum formula of Lemma 2.

Remark 2 Alternatively, the integrals in (22) can also be expressed in terms of special
functions. The software package Maple yields

ξ∫

0

wN

1 − w2 dw = 1

2
ξ N+1Φ

(
ξ2, 1,

1

2
(N + 1)

)
,

where Φ is the Lerch transcendent; see [8, Sect. 1.11]. Therefore,

WN (ξ) = ξ Φ
(
ξ2, 1, 1

2 (N + 1)
) + ξ−1Φ

(
ξ−2, 1, 1

2 (N + 1)
)
. (24)

Mathematica, on the other hand, produces

ξ∫

0

wN

1 − w2 dw = 1

N + 1
ξ N+1

2 F1

(
1,

1

2
(N + 1); 1

2
(N + 3); ξ2

)
,

where 2 F1 is the Gauss hypergeometric function; see [8, Chap. II]. (The equivalence
of the Φ and 2 F1 representations follows from formula (10) in [8, Sect. 1.11].) For
numerical computations these formulas should be used with care, however, as the
special functions are multi-valued.

Remark 3 Concerning large N behavior, asymptotic expansions of the integrals in
(22) can be derived by repeated integration by parts. Alternatively, one could use the
connection with the Φ function summarized in (24). López and Ferreira derived in
[10, Thm. 1] a full asymptotic expansion, including error term, for the Φ function in
the situation where its third argument is large. This theorem can be applied directly to
obtain the full asymptotic behavior of WN (ξ), but we just cite leading order behavior
here. For the case N even and ξ �∈ (−∞,−1] ∪ [1,∞),

WN (ξ) = −4

(
ξ2 + 1

)
ξ(

ξ2 − 1
)2 N−2 + O(N−4), (25)
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The kink phenomenon 719

relevant for Fejér, and

WN (ξ) − WN−2(ξ) = 16

(
ξ2 + 1

)
ξ(

ξ2 − 1
)2 N−3 + O(N−5), (26)

relevant for Clenshaw–Curtis. For odd N the formulas on the right should be multiplied
by 1/z. Note that these formulas cease to be valid when ξ is near ±1.

Having obtained the asymptotics of SN (z) we can now return to the error formulas
given in Theorem 2. The asymptotic behavior of the other quantities in that theorem
is well-known and can be summarized as follows: For z ∈ E� with N → ∞,

TN (z) ∼ 2−1 ξ N ,

PN (z) ∼ π−1/2(2N
)−1/2(

z2 − 1
)−1/4

ξ N+1/2,

QN (z) ∼ π1/2(2N
)−1/2(

z2 − 1
)−1/4

ξ−(N+1/2);

see [19, Chap. VIII]. (For the conditions of validity of the latter two approximations
we refer to [19, p. 188].)

Comparing the three error formulas in Theorem 2 one concludes that the
denominators all have essentially the same behavior, namely O(�N ), with � = |ξ |.
Any differences in convergence rate, as seen in Fig. 1 for example, will therefore
have to come from the numerators. That is, we need to compare the behavior of
QN (z), SN (z), and SN (z)− SN−2(z), as N → ∞. By the above asymptotic estimates
these quantities behave like O(�−N ), O(N−2) and O(N−3). Together with the factor
O(�−N ) contributed by the denominator, this indicates convergence rates of O(�−2N ),
O(N−2�−N ), and O(N−3�−N ), respectively, for Gauss, Fejér, and Clenshaw–Curtis
quadrature. (More precise formulas are given in Theorem 3 below.) These convergence
rates are consistent with Fig. 1 (where � ≈ 1.28). We remark that these results are not
new—similar convergence estimates can be found for example in [3, Sect. IV.6].

What is new, however, is the factor ±ξ−N π i in Lemma 4. This transient term is
responsible for producing the kinks in Fig. 1. The asymptotic estimates O(N−2�−N )

and O(N−3�−N ) mentioned in the previous paragraph are obtained under the assump-
tion that the term ±ξ−N π i in (20) is negligible compared to the factors involving the
WN (ξ) function (which are of leading order O(N−2) or O(N−3)). When |ξ | is near
1, however, this term may not be negligible and it may in fact dominate. Therefore, for
N less than some critical value the convergence rates do not look like O(N−2�−N ) or
O(N−3�−N ) but rather like O(�−2N ) in both the Fejér and Clenshaw–Curtis cases,
which is essentially the convergence rate of Gauss quadrature.

The kink in Fig. 1 is therefore characterized by the fact that the ±ξ−N π i term in
Lemma 4 is of the same magnitude as the terms involving the WN (ξ) function. For a
given ξ the kink is accordingly located at the value of N that satisfies

Fejér: π
∣∣ξ ∣∣−N = ∣∣WN (ξ)

∣∣, (27)
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720 J. A. C. Weideman, L. N. Trefethen

and

Clenshaw–Curtis: π
∣∣1 − ξ2

∣∣∣∣ξ ∣∣−N = ∣∣WN (ξ) − WN−2(ξ)
∣∣. (28)

With ξ = 1
4 (1 + √

17) i ≈ 1.28 i a numerical solution of these equations yields
approximately N = 36.83 (Fejér) and N = 54.17 (Clenshaw–Curtis). These values
pinpoint the locations of the kinks quite well as we have seen in Fig. 1. For odd N
these two formulas should be modified according to the factor in the right-hand side
of (20). In this case we get N = 29.40 (Fejér) and N = 46.74 (Clenshaw–Curtis).
These values are consistent with the observation that for odd N the kink is located at
smaller values of N than for even N .

For computations such as these one has to be able to evaluate WN . Several compu-
tational strategies suggest themselves: numerical quadrature applied to the integrals
in (22), the finite sum formulas mentioned in Remark 1, and the special functions of
Remark 2. For the computations mentioned in the previous paragraph we have used
(24) and Maple’s function LerchPhi. For the computations of the next section,
however, we have computed the Φ function in MATLAB using its series expansion
(formula (1) in [8, Sect. 1.11]), the convergence of which we accelerated with the ep-
silon algorithm. As an alternative to these numerical approaches one could, for large
N , replace the right-hand sides of (27), (28) with their leading order asymptotic ap-
proximations as given in Remark 3. This strategy yields approximations to the critical
values of N that differ only in the second decimal digit from those given in Fig. 1.

The large N approximation also enables one to extract asymptotic information on
the location of the kink. For example, if one assumes z = εi , with 0 < ε � 1, one
can use asymptotic iteration rather than numerical methods to solve (27), (28) [with
right-hand sides replaced by the leading terms in (25), (26)]. Thus one finds that the
critical values of N are related to ε by

ε ∼ 3 log N

N
, and ε ∼ 4 log N

N
, N → ∞, (29)

respectively, for Fejér and Clenshaw–Curtis. These details, and other properties of the
kink phenomenon, are presented in the next section.

We conclude by summarizing the asymptotic behavior of the error formulas of
Theorem 2.

Theorem 3 With the notation of Theorem 2 and ξ �∈ (−∞,−1]∪[1,∞), the N → ∞
behavior of the quadrature errors is given by

I ( fz) − G N ( fz) ∼ 2πξ−2N−1,

and, for N even,

I ( fz) − FN ( fz) ∼ −8

(
ξ2 + 1

)
(
ξ2 − 1

)2

ξ1−N

N 2 , I ( fz) − CN ( fz) ∼ 32

(
ξ2 + 1

)
(
ξ2 − 1

)3

ξ3−N

N 3 .
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The kink phenomenon 721

(For odd N an additional factor 1/z should multiply the right-hand sides.) For N less
than the critical value defined by (27), (28), however, the latter two errors behave
instead like

I ( fz) − FN ( fz) ≈ 2iσπξ−2N , I ( fz) − CN ( fz) ≈ −2iσπξ2−2N ,

which is essentially the same rate as for Gauss quadrature. [Here σ = ±1 as defined
by (21).]

5 The kink curve

In the previous section we fixed z (and ξ ) and computed the corresponding value of
N that defines the kink. One can look at this from the other direction: fix N and ask
what z this corresponds to. This determines a curve in the complex z-plane, defined
by (27), (28), that we shall call the kink curve. That is, for any value of z inside the
curve the Fejér and Clenshaw–Curtis rules are about as accurate as the Gauss rule for
that particular value of N .

In Fig. 2 we plot these curves for N = 16. Also shown, as the dots, are the roots of
the function φ(z)− rN (z) as defined in (15). (In the Clenshaw–Curtis case these roots
have also been plotted in [21].) As in [21], a winding number argument can be used to
establish that there are 16 (resp. 14) finite roots for the Fejér (resp. Clenshaw–Curtis)
approximation when N = 16. We remind the reader that because of (9), (12), and (15),
the roots of φ(z) − rN (z) are located exactly on this curve; there is no approximation
here (other than machine roundoff error).

In order to obtain more information on these curves, we now switch to the asymptotic
approximations summarized in Remark 3. We show details only for the Fejér case.
(The analysis for Clenshaw–Curtis is analogous and we omit the particulars.)

−1 −0.5 0 0.5 1

−0.5

0

0.5

(a) Fejer

Re z 

Im
 z

 

−1 −0.5 0 0.5 1

−0.5

0

0.5

(b) Clenshaw−Curtis

Re z 

Fig. 2 The kink curves as defined by (27), (28), with N = 16. The dots are the roots of φ(z) − rN (z)
defined by (15), or equivalently, the roots of EN (z) defined by (9)
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For reasons that will become clear shortly, it is best to start with the case N odd. In
this case the definition of the kink curve (27) is modified to

π
∣∣ξ ∣∣−N = ∣∣2z

∣∣−1∣∣WN+1(ξ) + WN−1(ξ)
∣∣, (30)

where we have used (20). Using the leading term in the asymptotic approximation
(25) we find that this curve is given to first order by

π
∣∣ξ ∣∣−N = 8N−2

∣∣ξ − ξ−1
∣∣−2

. (31)

We investigate this with an informal perturbation analysis. Near the interval z ∈
[−1, 1], assume

ξ = eiθ (1 + ε), 0 ≤ θ ≤ 2π, (32)

where |ε| � 1. We compute

ξ − ξ−1 = 2
(
i sin θ + ε cos θ

) + O(ε2)

and therefore (31) can be approximated by

π
∣∣1 + ε

∣∣−N = 2N−2
∣∣i sin θ + ε cos θ

∣∣−2
.

By taking logarithms and disregarding constants like log π and log 2 in comparison
to log N , one gets

N log
∣∣1 + ε

∣∣ = 2 log N + 2 log
∣∣i sin θ + ε cos θ

∣∣. (33)

The term involving θ can be neglected in comparison to the other two terms, except
when θ = O(N−1) (and similarly for θ near π and 2π ). But θ → 0, π, 2π implies that
ξ is near ±1, and the asymptotic approximations that we have used so far cease to be
valid (see the last sentence of Remark 3). We shall deal with this situation separately.
Therefore, ignoring the θ term on the right and using the approximation log |1+ε| ∼ ε

on the left yields the estimate

ε ∼ 2 log N

N
.

Away from ξ = ±1 we have therefore obtained the approximation

ξ = eiθ
(

1 + 2 log N

N

)
.
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−1 −0.5 0 0.5 1

−0.5

0

0.5

(a) Fejer

Re z

Im
 z

−1 −0.5 0 0.5 1

−0.5

0

0.5

(b) Clenshaw−Curtis

Re z

Fig. 3 The kink curves (27), (28) are shown as the solid curves in the right half of each figure; the
approximate ellipses (34), (35) derived here are the dash-dot curves on the left. Note the good agreement.
Here N = 51

Switching to the variable z = x + iy, it means that the kink curve can be approximated
by

z = cos θ + i
(2 log N

N

)
sin θ,

which defines the ellipse

x2 +
( N

2 log N

)2
y2 = 1. (34)

In the Clenshaw–Curtis case this is modified to

x2 +
(

N

3 log N

)2

y2 = 1. (35)

Figure 3 shows that these two approximations match the actual kink curves (27), (28)
very well.

Equations (34), (35) are not to be compared with the estimates (29), as those were
obtained under the assumption that N is even. In this case the perturbation analysis is
slightly different. Again we present the details only for the Fejér case.

For N even the formula (31) becomes

π
∣∣ξ ∣∣−N = 4N−2

∣∣ξ + ξ−1
∣∣∣∣ξ − ξ−1

∣∣−2
.

Proceeding as in (32), (33) we see that (33) has to be modified to

N log
∣∣1 + ε

∣∣ = 2 log N + 2 log
∣∣i sin θ + ε cos θ

∣∣ − log
∣∣ cos θ + εi sin θ

∣∣. (36)

The final term on the right is new. This term cannot be neglected in comparison with
the terms containing N when θ = π/2 + O(N−1) (and similarly for θ near 3π/2).
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−1 −0.5 0 0.5 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03
(a) Fejer

Re z

Im
 z

−1 −0.5 0 0.5 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03
(b) Clenshaw−Curtis

Re z

Fig. 4 The kink curves (27), (28) are shown as solid curves, the approximating ellipses (34), (35) as dash-
dot curves. Near the imaginary axis there is a deviation between the two as explained below (36). This
occurs for even values of N ; here N = 1,000. (Note that in this figure we have used unequal scales on the
real and imaginary axes to reveal more detail; in Figs. 2, 3 the scales were equal)

This means that the ellipse (34) ceases to be a valid approximation to the kink curve
when z is near the imaginary axis.

Near θ = π/2 and 3π/2 equation (36) can be approximated by

Nε = 2 log N − log |ε|.

Substitute into this equation the ansatz

ε ∼ c log N

N
,

with c a positive constant. This yields, to leading order, c = 3, and for Clenshaw–
Curtis, c = 4. This is how the estimates (29) were derived.

Figure 4 shows the curves (27), (28) for a large, even value of N . As predicted,
the kink curves deviate from the approximating ellipses (34), (35) near the imagi-
nary axes, resulting in little “humps” of width O(N−1) on the curves. In the Fejér
case (resp. Clenshaw–Curtis), the approximating ellipse (34) [resp. (35)] intersects
the positive imaginary axis at z = 2 i log N/N (resp. 3 i log N/N ). The kink curve,
however, turns away towards z = +i∞ and intersects the imaginary axis at the larger
value z = 3 i log N/N (resp. 4 i log N/N ), approximately, as predicted by our analy-
sis. Figure 4 also explains why the kinks in Fig. 1 occur at larger values of N when N
is even.

The final topic we would like to address is the situation near z = ±1. Numerical
experiments reveal that the curve intersects the real axis at

x = 1 + O(N−2) (37)

(and its negative). We now offer heuristic arguments leading to the value of the implied
constant on the right.
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Let the positive constants α and β be defined by

x ∼ 1 + αN−2, ξ ∼ 1 + βN−1,

where, to leading order, α = β2/2. This ansatz for ξ is inserted into the formula for
SN (x) given in Lemma 4. The value of β follows from setting the leading terms in the
asymptotic expansion of SN (x) to zero.

We begin with the second integral in (22),

2 ξ N

1/ξ∫

0

wN

1 − w2 dw = 2ξ

1∫

0

uN

ξ2 − u2 du,

where we have substituted u = ξw. The integrand on the right can be expanded in
partial fractions involving 1/(ξ − u) and 1/(ξ + u). Since ξ → 1 as N → ∞, the
leading contribution will come from the term involving 1/(ξ − u), and therefore

2 ξ N

1/ξ∫

0

wN

1 − w2 dw ∼
1∫

0

uN

ξ − u
du.

Let ξ ∼ 1 + βN−1 and define s by u = 1 − s N−1. Then, using the fact that
(
1 −

s/N )N → e−s as N → ∞, one obtains

2 ξ N

1/ξ∫

0

wN

1 − w2 dw ∼
∞∫

0

e−s

β + s
ds = eβ E1(β), (38)

where E1 is the exponential integral. A similar calculation produces for the first integral
in (22)

2 ξ−N −
ξ∫

0

wN

1 − w2 dw ∼ −e−βEi(β). (39)

(Our notation for E1 and Ei is consistent with the definitions in [2, Chap. 5].)
Substitute (38) and (39) into SN (x) = 0. This gives, to leading order, the following

equation for β:

eβ E1(β) − e−βEi(β) = 0.

A numerical solution produces, to eight place accuracy,

β = 0.87908775, α = 1

2
β2 = 0.38639764.
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We offer the following table as numerical verification of this result. The values of
x shown in the middle column are the numerically computed roots of SN (x), or
equivalently, the roots of φ(x) − rN (x) in the Fejér case.

N x (x − 1)N 2

32 1.00037708 0.386129
64 1.00009432 0.386330
128 1.00002358 0.386381
256 1.00000590 0.386393

A similar analysis for Clenshaw–Curtis quadrature would require higher order asymp-
totics, something we have not pursued. Numerical results suggest that the value of α

is about 1.73 in this case.
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