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Abstract. Gauss and Clenshaw–Curtis quadrature, like Legendre and Chebyshev spectral meth-
ods, make use of grids strongly clustered at boundaries. From the viewpoint of polynomial approx-
imation this seems necessary and indeed in certain respects optimal. Nevertheless such methods
may “waste” a factor of π/2 with respect to each space dimension. We propose new nonpolynomial
quadrature methods that avoid this effect by conformally mapping the usual ellipse of convergence
to an infinite strip or another approximately straight-sided domain. The new methods are com-
pared with related ideas of Bakhvalov, Kosloff and Tal-Ezer, Rokhlin and Alpert, and others. An
advantage of the conformal mapping approach is that it leads to theorems guaranteeing geometric
rates of convergence for analytic integrands. For example, one of the formulas presented is proved to
converge 50% faster than Gauss quadrature for functions analytic in an ε-neighborhood of [−1, 1].
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1. Introduction. The Gauss and Clenshaw–Curtis quadrature formulas, as well
as other related numerical methods for integration of nonperiodic functions or spectral
solution of nonperiodic ODEs or PDEs, all cluster the grid points near the boundaries.
Indeed, for any convergent numerical method derived from polynomial interpolation
in the grid points, the clustering will be asymptotically the same: on [−1, 1], n points
will be distributed with density ∼ n/(π

√
1 − x2 ) as n → ∞ [36, Thm. 12.7].

It is well known that this clustering may cause problems. The high density of
points near the boundaries may necessitate very small time steps in an explicit time-
stepping spectral method or make the matrices involved in implicit time-stepping
terribly ill conditioned [12, 49]. At the same time the low density of points in the
middle of the domain may force one to use more points than “ought” to be needed to
resolve the solution. Compared with equally spaced grids, these clustered grids have
π/2 times coarser spacing in the middle, implying that, for many calculations, n must
be about π/2 times larger than one might expect. In a three-dimensional calculation,
a discretization may need (π/2)3 ≈ 4 times as many grid points as one would like.
Such a factor may have a large impact on the cost of linear algebra operations.

In this article we focus on this π/2 problem and mainly on quadrature, not spec-
tral, methods. The problem arises in purest form if we consider the integral from −1
to 1 of a function f analytic in a narrow strip about the real axis. If f is periodic,
we can use the trapezoid rule and get geometric convergence, i.e., convergence at a
rate e−Cn for some C > 0. If f is not periodic, the trapezoid rule loses its speed, but
Gauss quadrature still converges geometrically. However, the constant C is π/2 times
smaller, and thus the convergence rate is π/2 times slower.

Various authors have proposed methods for countering this effect. We shall sug-
gest a new approach based on conformal mapping, which leads to formulas that
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converge more quickly than Gauss quadrature for many integrands. The practical
performance of our methods is not much different from that of other methods in the
literature, such as those of Alpert [3] and Kosloff and Tal-Ezer [33] (see section 5).
Nevertheless, the conformal mapping idea has advantages. First, it is conceptually
clear, simple, and flexible, explaining in a precise way the nature of the π/2 effect
and exactly what improvements may be possible for integrands analytic in specified
domains. Second, it leads immediately to theorems on geometric convergence rates
for analytic integrands. In the existing literature of related methods, it is hard to
find such theorems. An additional advantage, which we shall not discuss further,
is that the conformal mapping approach connects these simple quadrature problems
to more complicated problems where conformal maps have also proved useful, such
as the double exponential quadrature formula and Tee’s adaptive rational spectral
methods [22, 38, 43, 44, 46, 47, 48].

An outline of the article is as follows. In section 2 we present the conformal trans-
plantation idea. We apply it in section 3 to the particular case of a map to an infinite
strip and in section 4 to a simpler variant that may be equally useful in practice. Re-
lated work is surveyed in section 5, and theorems about geometric convergence rates
are presented in section 6. The Clenshaw–Curtis variant of our formulas is considered
in section 7, and we close in section 8 with a summary discussion. The appendix
includes a 14-line FFT-based MATLAB code that runs in less than a second for n as
high as 105 yet usually delivers more accurate integrals than the Gauss rule for each
value of n.

2. Transplanted quadrature formulas. Let f be an analytic function on
[−1, 1] whose integral

I = I(f) =

∫ 1

−1

f(x)dx(2.1)

we seek to calculate. A general interval [a, b] can be handled by a linear change of
variables. All of the methods we shall consider approximate I by sums

In = In(f) =

n∑
k=1

wkf(xk)(2.2)

defined by nodes {xk} and weights {wk}. Polynomial methods of this kind are based
on the following principle: given nodes {xk}, the weights {wk} are chosen so that In
is equal to the integral of the unique degree n − 1 polynomial interpolant through
the data points. In particular, Newton–Cotes quadrature is obtained from equally
spaced nodes, Gauss quadrature from the roots of the Legendre polynomial Pn, and
Clenshaw–Curtis quadrature from the Chebyshev points xk = cos((k − 1)π/(n− 1)).
Any polynomial method that converges as n → ∞ for all analytic f must have its
nodes distributed asymptotically with density ∼ n/(π

√
1 − x2 ) as n → ∞. The Gauss

and Clenshaw–Curtis formulas have this property and converge for any continuous f .
The Newton–Cotes formulas do not and diverge in general even if f is analytic [5, 36,
41].

The standard theorems about convergence of polynomial methods for analytic
functions assume that the integrand is analytic in an elliptical region. For any ρ > 1,
let us define Eρ to be the open set in the complex plane bounded by the ellipse with
foci ±1 with semiminor and semimajor axis lengths summing to ρ. This ellipse can
also be described as the image of the circle of radius ρ about the origin under the
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Fig. 2.1. A transplanted quadrature formula (2.6) is defined by an analytic function g that
maps the elliptical region Eρ into a region Ωρ containing [−1, 1]. In this illustration the map is
g(s) = 0.5s + 0.2s3 + 0.3s5 with ρ = 1.4. The dots show Gauss points xk ∈ Eρ for n = 16 and their
images x̃k ∈ Ωρ.

map w = (z + z−1)/2. The general idea of the following convergence theorem goes
back to Bernstein in 1919 [8], but such results do not appear in many textbooks
or monographs, and there is not much uniformity in the constants that one finds
on the right-hand side [25, p. 114]. The particular result presented here is due to
Rabinowitz [42, eq. (18)]; see also [11, Thm. 90] and [50, Thm. 4.5].

Theorem 2.1. If f is analytic in Eρ, with |f(z)| ≤ M for some ρ > 1, then
Gauss quadrature converges geometrically with the bound

|In − I | ≤ 64M

15(1 − ρ−2)ρ2n
(n ≥ 0).(2.3)

When we don’t care about constants, we may simply note that Theorem 2.1
ensures geometric convergence at the rate O(ρ−2n) as n → ∞.

To experts in approximation theory, the assumption of analyticity in an elliptical
region is so familiar as to seem almost beyond question. Nevertheless, the appearance
of ellipses in this analysis is driven not by the quadrature formula (2.2) per se but by
the decision to derive weights from polynomial interpolation. If we do not insist on
polynomials, ellipses cease to have any special status.

We have already observed from the uneven distribution of Gauss and Clenshaw–
Curtis nodes that there may be a reason to move beyond polynomials. Here is another
argument based on the shape of Eρ. From an applications point of view, the assump-
tion that f is analytic in Eρ is unbalanced, for it permits f to be “less analytic” near
the ends of the interval, where the ellipse is narrow, than in the middle, where it is
wide. Specifically, the Taylor series of f at a point x ≈ ±1 is allowed to have more
rapidly increasing coefficients than are permitted at a point x ≈ 0. This nonuniform
analyticity condition leads to Theorem 2.1 and related results for other polynomial
quadrature formulas, but it has no intrinsic justification. Further consequences of the
same nonuniformity reverberate throughout the field of polynomial approximation
theory—for example, in the book by Ditzian and Totik [17]. Of course, there are ap-
plications where the functions of interest do have less smoothness near the boundary
than in the interior, such as fluid mechanics problems with boundary layers. Even
here, however, there is no reason to expect that an ellipse should be exactly the right
region to consider. Weak boundary layers might benefit from less grid clustering at
boundaries and strong ones from even more.

Our plan is to derive new quadrature formulas (2.2) for [−1, 1] by conformally
mapping Eρ to a region Ωρ that has straighter sides. We describe the procedure first
in general terms; see Figure 2.1.

Let Ωρ be an open set in C containing [−1, 1] inside of which the function f is
analytic. Let g be an analytic function in Eρ satisfying

g(Eρ) ⊆ Ωρ, g(−1) = −1, g(1) = 1.(2.4)
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Then g([−1, 1]) is an analytic curve in Ωρ, parametrized by s ∈ [−1, 1], that connects
−1 to 1. By Cauchy’s theorem for analytic functions, the integral of f over this curve
is the same as the integral of f over [−1, 1] itself. Thus (2.1) can be rewritten

I(f) =

∫ 1

−1

g′(s)f(g(s))ds.(2.5)

If we apply (2.2) to this integral in the s variable, we obtain

In( g′ · (f ◦ g)) =

n∑
k=1

wk g
′(xk)f(g(xk)),

which can be rewritten in the form (2.2) as

Ĩn = Ĩn(f) =

n∑
k=1

w̃kf(x̃k), w̃k = wk g
′(xk), x̃k = g(xk).

TRANSPLANTED
QUADRATURE
FORMULA

(2.6)

In this article we generally speak of g as a conformal map, which is defined as
an analytic function with nonvanishing derivative that maps one region bijectively
onto another. In fact, for the theorems we present, g does not actually have to be
conformal, merely analytic. Nor does g have to map [−1, 1] into itself; it could take
complex values. For the formulas of practical interest, however, these extra conditions
will usually be satisfied, and if they are, then we have the additional properties that
the nodes x̃k are real and the weights w̃k are real and positive. In some applications
to spectral methods, not considered here, conformality is genuinely required.

The following theorem on the convergence of transplanted Gauss quadrature is a
corollary of Theorem 2.1.

Theorem 2.2. Let f be analytic in a region Ωρ containing [−1, 1] with |f(z)| ≤ M
for some ρ > 1, and let a transplanted Gauss quadrature formula (2.6) be defined by
some map g satisfying (2.4). Then

|Ĩn − I | ≤ 64Mγ

15(1 − ρ−2)ρ2n
(n ≥ 0),

where γ = sups∈Eρ
|g′(s)| ≤ ∞.

If γ = ∞ in this estimate, we can shrink ρ a little bit to make it finite. Thus
transplanted Gauss quadrature always converges geometrically if f is analytic on
[−1, 1].

3. Map to an infinite strip. We now turn to particular choices of the map g
that may be useful in practice. Since our aim is to make the sides of Ωρ straighter
than those of Eρ, we begin by taking this notion as far as possible and considering
the map g that takes Eρ to an infinite strip Ωρ symmetric about the real axis with
g(±1) = ±1 and the ends of the ellipse mapping to ±∞ (Figure 3.1). These conditions
determine g fully. The half-width a of Ωρ is not adjustable but is determined by the
value of ρ ((3.5) below).

The map of the ellipse to the strip can be constructed in three steps (Figure 3.2).
Let Fs denote the upper half of Eρ, with distinguished boundary points sA = 0,
sB = 1, and sC = (ρ + ρ−1)/2 (the right end point of Eρ). The function u = sin−1 s
maps Fs to the rectangle Fu of width π and height log ρ with corresponding boundary
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Fig. 3.1. One choice of Ωρ is an infinite strip, shown here again for ρ = 1.4. The semiminor
axis length of Eρ is ∼ (ρ − 1), whereas the half-width of Ωρ is ∼ (2/π)(ρ − 1), reflecting the π/2
times weaker analyticity requirement of the transplanted quadrature formula. Note how the Gauss
nodes in Eρ map to nodes in Ωρ that are so close to equally spaced that they appear almost exactly
even. For more on this spacing see Figure 5.2.

F
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Fig. 3.2. Construction of the strip map in three steps s → u → v → z. The upper half of each
region is shown. A large value of ρ has been used for clarity (ρ = 2.3), since, as ρ decreases to 1,
the segment from vB to vC shrinks exponentially.

points uA = 0, uB = π/2, and uC = π/2 + i log ρ. We now map Fu to a half-
disk by a Jacobi elliptic sine function sn with parameter m [1, 16, 20]. Specifically,
v = sn(2Ku/π |m) maps Fu to the upper half-disk Fv about the origin of radius
m−1/4, with vA = 0, vB = 1, and vC = m−1/4. Here, following standard notation,
the parameter m with 0 < m < 1 is chosen such that the associated elliptic integrals
K ′ and K satisfy K ′/K = 4 log(ρ)/π. Given ρ, the appropriate value of m can be
calculated by the rapidly convergent series expression given in [24]:

m1/4 = 2

∞∑
j=1

ρ−4(j− 1
2 )2

/(
1 + 2

∞∑
j=1

ρ−4j2
)
.(3.1)

Finally z = tanh−1(m1/4v)/ tanh−1(m1/4) maps Fv to Fz, the upper half of an infinite
strip about the real axis with zA = 0, zB = 1, and zC = +∞. By combining the
steps, we have the ellipse→ strip map

g(s) = tanh−1

(
m1/4 sn

(
2K

π sin−1(s) |m

))/
tanh−1(m1/4) .(3.2)

The same formula is valid also below the real axis (by the Schwarz reflection principle),
and thus g as given by (3.2) maps all of Eρ to all of Ωρ. For the transplanted
quadrature formula (2.6) we also require the derivative of the map function, which
for s ∈ (−1, 1) is given by

g′(s) =
2Km1/4

π
√

1 − s2

cn(ω|m)dn(ω|m)

(1 −m1/2 sn2(ω|m))

/
tanh−1(m1/4),(3.3)

where ω = 2K sin−1(s)/π. For the end points s = ±1, with the aid of L’Hopital’s rule
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g

Fig. 3.3. Though g maps Eρ to the unbounded strip Ωρ, it maps smaller ellipses within Eρ to
regions that hug the interval [−1, 1] closely. Because of this property, f does not have to be analytic
far down the strip for transplanted Gauss quadrature to be effective. Also, since the subregions have
nearly straight sides, a value of ρ chosen for the strip of a particular half-width will also be effective
for integrands whose true regions of analyticity are narrower.

one can derive the formula

g′(±1) = 4K2π−2m1/4(1 + m1/2)
/

tanh−1(m1/4) ,(3.4)

which we shall need for the Clenshaw–Curtis variant in section 7.
The half-width a of Ωρ is

a =
π

4 tanh−1(m1/4)
<

2

π
(ρ− 1),(3.5)

with a ∼ (2/π)(ρ − 1) as ρ → 1 (we have verified this inequality numerically, and
no doubt it could be proved analytically). The half-width of Eρ in the same limit
is ∼ (ρ − 1). Thus the transplanted formula needs only 2/π times as wide a strip
of analyticity to achieve the same convergence rate, as is confirmed by the following
theorem. Further convergence results for this method are given in section 6.

Theorem 3.1. Let f be analytic in the strip Ωρ about R of half-width (2/π)(ρ−1)
for some ρ > 1. Let f be integrated by the transplanted Gauss quadrature formula (2.6)
associated with the map (3.2) from Eρ to Ωρ. Then, for any ρ̃ < ρ,

Ĩn − I = O(ρ̃−2n) (n → ∞).(3.6)

Proof. The inequality (3.5) implies that f(x) is analytic in the strip of half-width
a, and therefore f(g(s)) is analytic in Eρ. The constant γ of Theorem 2.2 is infinite
for this map g, so we do not quite get O(ρ−2n) convergence, and for this reason we
have not assumed that f is bounded either. For any ρ̃ < ρ, however, Theorem 2.1 still
applies to the integrand g′(s)f(g(s)) of (2.5), which will be analytic and bounded in
this smaller ellipse. This implies (3.6).

To make our domain narrower in the imaginary direction by a factor of 2/π, we
have lengthened it in the real direction by a factor of ∞! This may seem a dubious
improvement, and, indeed, it is a very strong condition that f must be analytic
throughout an infinite strip. However, this is not a serious issue in practice because
if we consider slightly smaller ρ̃-ellipses within Eρ, we find that they map under g to
domains about [−1, 1] that are much shorter. Thus little is lost if f is analytic near
[−1, 1] but not very far down the real axis. Figure 3.3 illustrates this effect.

Let us see how strip-transplanted Gauss quadrature performs in practice. We do
not normally recommend tuning ρ to the integrand at hand, for we are hardly likely to
beat adaptive quadrature methods at their own game. Instead the aim is to derive a
fixed family of formulas that perform well, if not quite optimally, and with this in mind
we start by fixing the value ρ = 1.4 arbitrarily, as in Figures 2.1–3.1. Figure 3.4 shows
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Fig. 3.4. Comparison of Gauss quadrature (dots) against Gauss quadrature transplanted to an
infinite strip (solid line) for nine integrands on [−1, 1], with ρ = 1.4. In a number of cases the
transplanted formulas converge about 1.4 times faster.

that, for many integrands, the result is a clear improvement over Gauss quadrature.
(For this relatively large value of ρ, the improvement factor is about 1.42 rather than
π/2 ≈ 1.57.) This occurs, for example, for the first three integrands, which have poles
or branch points close to [−1, 1] in the complex plane. A similar speedup is observed
for the fourth function exp(−40x2), which has no singularities but grows very rapidly
as x moves away from the real axis. For the fifth function cos(40x), the transplanted
quadrature formula begins to converge sooner than the untransplanted one since it
resolves the oscillations sooner; once the error falls below 10−5, the untransplanted
formula overtakes it because the function is entire. The sixth integrand exp(−x−2) is
C∞ but not analytic; here we see comparable performance of the two methods. The
same is observed for |x| − |x − 0.1|, which is continuous but not differentiable. For
the eighth integrand

√
1.01 − x, the untransplanted Gauss rule wins because of its

weaker analyticity requirement near ±1. Finally, for the entire function cos(x), the
transplanted rule loses by a substantial factor because it is stuck at the particular
convergence rate O(ρ−2n), with ρ = 1.4, since g is singular at the end points of this
ellipse. The standard Gauss formula, by contrast, is not tied to any particular ellipse
of analyticity and thus does very well in a case like this where the integrand is analytic
and not too large in a sizable region around [−1, 1].

In fact, the convergence rate for the transplanted Gauss formula applied to cos(x)
in Figure 3.4 has rather little to do with cos(x)—the rate would be almost exactly
the same for the integrand f(x) = 1 ! In general, nonpolynomial quadrature formulas
do not integrate constants exactly. This perhaps startling property can be removed
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by a scaling adjustment to our formula (2.6), whereby we multiply the weights w̃k by
a constant so as to make them sum to 2. Since the transplanted quadrature formula
integrates the constant function with exponential accuracy, the adjustment factor will
be exponentially close to 1, and there will be no effect on the asymptotic convergence
rates of Theorem 3.6 or Theorems 6.1 and 6.2 to follow. As a practical matter, the
adjustment sometimes improves the behavior of our formulas slightly, and perhaps it
is worth making.1

To implement the transplanted formula (2.6), we need to be able to compute
g and g′. The following MATLAB code segment does this for the strip map (3.2).
The standard MATLAB functions ellipke and ellipj used here to compute Jacobi
elliptic functions are restricted to real arguments; for the complex values needed in
Figures 3.1 and 3.3, we replaced ellipj by the function ellipjc from Driscoll’s
Schwarz–Christoffel Toolbox [19]. The function gauss, from [49], computes Gauss
quadrature nodes and weights.

f = @(x) 1./(1+20*x.^2); % change this for other integrands

[s,w] = gauss(n); % Gauss nodes and weights

[g,gprime] = strip(s); % g and g’

In = (w.*gprime’)*f(g); % the integral

function [g,gprime] = strip(s) % change this for a different map g

rho = 1.4; % this can be adjusted

num = 0; den = 0;

for j = 1:round(.5+sqrt(10/log(rho))) % given rho, find m

num = num + rho^(-4*(j-.5)^2);

den = den + rho^(-4*j^2);

end

m4 = 2*num/(1+2*den); m = m4^4; % m^{1/4} and m

K = ellipke(m); % Jacobi elliptic parameter

u = asin(s);

[sn,cn,dn] = ellipj(2*K*u/pi,m); % Jacobi eliptic function

duds = 1./sqrt(1-s.^2);

dvdu = (2*K/pi)*cn.*dn;

dgdv = (m4./(1-m4.^2*sn.^2))/atanh(m4);

g = atanh(m4*sn)/atanh(m4); % g

gprime = dgdv.*dvdu.*duds; % g’

If ρ is close to 1 (smaller than about 1.1), the code just given suffers from numerical
instability. The appendix outlines what can be done in such cases and offers an ele-
mentary map slightly different from (3.2) that as a practical matter may be superior.

4. A simpler conformal map. We now put aside the infinite strip and consider
another idea for selecting the function g. Suppose we set out to cancel the clustering of
Gauss or Clenshaw–Curtis points exactly. The function g(s) = (2/π) sin−1(s) would
achieve this, and the factor 2/π makes it plain that the result would be a grid denser
by that factor in the middle of the interval. This choice of g would be useless, however,
because sin−1(s) has singularities at ±1, so we would have no ellipse of analyticity at
all for the transplanted integrand.

1Relatedly, one of the anonymous referees of this paper as originally submitted for publication
pointed out that our transplanted n-point formulas, unlike polynomial methods, could in theory have
arbitrarily large errors even for functions with a bounded kth derivative for any k > 0.
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d = 1

d = 5

d = 9

Fig. 4.1. “Sausages” Ωρ corresponding to the maps (4.1), (4.2), and (4.3), with ρ = 1.4. The
dashed line in each image marks the target height (2/π)(ρ− 1).

Instead we propose taking the terms through degree d of the Taylor series

sin−1 s = s +
1

6
s3 +

3

40
s5 +

5

112
s7 +

35

1152
s9 + · · ·

and then normalizing so that g(±1) = ±1 as required by (2.4). Taking d = 1, 5, or 9
gives the following choices, respectively:

g(s) = s,(4.1)

g(s) =
1

149
(120s + 20s3 + 9s5),(4.2)

g(s) =
1

53089
(40320s + 6720s3 + 3024s5 + 1800s7 + 1225s9).(4.3)

Figure 4.1 shows the corresponding “sausage domains” Ωρ for ρ = 1.4.2

To implement transplanted Gauss quadrature of degree d (odd), we can replace
the function strip in the code above by the following function sausage. The line
with the cumprod command computes the Taylor series coefficients of sin−1(x).

function [g,gprime] = sausage(s)

d = 9; % this can be adjusted

c = zeros(1,d+1);

c(d:-2:1) = [1 cumprod(1:2:d-2)./cumprod(2:2:d-1)]./(1:2:d);

c = c/sum(c); g = polyval(c,s);

cp = c(1:d).*(d:-1:1); gprime = polyval(cp,s);

Figure 4.2 shows the performance of this method with d = 9 for various integrands.
On the whole the convergence is much like that with the strip map, though somewhat
slower for the first few examples and faster for the last few. With f(x) = cosx, for
example, we do much better now since g has no singularity to limit the convergence
rate. Although it is entire, however, g still grows rapidly away from [−1, 1], and that
is why this map still does not match untransplanted Gauss quadrature for cos(x).

In section 6 we give a theorem that establishes that Gauss quadrature transplanted
by (4.3) is 30% faster than standard Gauss quadrature for functions analytic in an
ε-neighborhood of [−1, 1].

2Previous authors have investigated the conformal mapping of a “bratwurst,” but their maps
concern exteriors rather than interiors and the applications are different [32].
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Fig. 4.2. Comparison of Gauss quadrature (dots) against transplanted Gauss quadrature for
the degree 9 polynomial (4.3) (solid line), for the same nine integrands as in Figure 3.4. Again in
many cases the transplanted formulas converge faster.

5. Related work. A number of ideas have been proposed over the years for
combating the π/2 problem, for both quadrature and spectral methods, which might
be classified as follows: (i) end point corrections, (ii) alternatives to polynomials, (iii)
transplantation. Here is a brief summary of some of these developments.

The end point corrections idea starts from the observation that the trapezoid
rule would achieve the ideal convergence rate if only the integrand were periodic.
Accordingly, one might make some adjustments at the boundaries to achieve this ef-
fect, at least up to a prescribed order. The Euler–Maclaurin formula suggests one
approach: one can add to the quadrature formula certain linear combinations of odd-
order derivatives of the integrand at the end points, chosen to annihilate the error
up to any prescribed power of the grid size. To get a quadrature rule based on
function values only (i.e., without derivatives), one can then replace these terms by
one-sided finite difference approximations of the appropriate orders. The resulting
quadrature rules are known as Gregory’s formulas [11, 30, 35], and they are effec-
tive up to medium orders of accuracy, at which point they encounter the difficulties
caused by exponentially large coefficients of alternating signs. An improvement on
Gregory formulas capable of achieving exponential convergence has been proposed by
Alpert [3], building upon ideas of Kapur and Rokhlin [31]. Alpert’s method goes be-
yond the equispaced grid to include a small number of extra Gauss-like nodes near the
end points, now with weights guaranteed to be positive. High-precision computations
are required in advance to obtain the nodes and weights, but once they are known
the method is highly effective.
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By alternatives to polynomials we mean the explicit construction of orthogonal
bases that are nonpolynomial and have more uniform behavior over the interval of
interest. An important set of functions in this connection is the prolate spheroidal
wave functions, which were introduced in the 1960s by Slepian and Pollak [45]. These
functions have excellent resolution properties, and more recent authors have shown
their power for a variety of computational applications [9, 10, 13, 53]. In this literature,
rather than derive theorems about convergence for functions analytic in specified
domains as we are about to do, it is customary to quantify the matter of resolution
by considering applications to band-limited functions.

Finally there is the transplantation idea, the basis of the present article. A no-
table contribution in this area is a forty-year-old theoretical paper by Bakhvalov [4].
What is the optimal family of quadrature formulas, Bakhvalov asks, for the set of
functions analytic and bounded by M in a given complex region Ω containing [−1, 1]?
His first step is to transplant the problem by a conformal map g to an ellipse Eρ.
This is very close to what we have done but with a difference. In the ellipse, the
new quadrature problem has a weight g′. Since his aim is to investigate optimal
formulas, Bakhvalov now considers the Gauss formulas associated with this weight,
which he shows are in a sense optimal. By contrast we have used the unweighted
Gauss formula, including g′ instead as part of the integrand. We presume that this
simpler procedure does not hurt the convergence rate much in practice, but we have
not investigated this matter. Bakhvalov’s paper is full of interesting ideas, and it has
led to subsequent developments in the theoretical quadrature literature by Petras [40]
and other authors [23, 28, 34]. So far as we are aware, however, this collection of
publications has not been concerned with the π/2 phenomenon, nor with particular
choices of Ω, and does not propose actual quadrature formulas for numerical use.

A more practically oriented transplantation idea was introduced in the spectral
methods literature by Kosloff and Tal-Ezer in 1993 [33]. Like the conformal maps
proposed in the last section, the Kosloff–Tal-Ezer map is derived from the inverse
sine function. Their transformation is

g(s) =
sin−1(αs)

sin−1(α)
(5.1)

for a value of α slightly less than 1. Various methods for choosing α are considered
both in their original paper and in various subsequent works by other authors [2, 7,
15, 18, 29, 37].

The Kosloff–Tal-Ezer map is quite different from those of sections 3 and 4 in
original concept but rather similar in practice. These authors, and their successors,
do not consider g as a conformal map, and they do not present theorems about
geometric rates of convergence for analytic functions. Nevertheless the function (5.1)
has the familiar effect of mapping Eρ to a region with straighter sides, with the usual
consequence that the nodes are distributed more evenly in the interior and clustered
less near ±1. To investigate a Kosloff–Tal-Ezer map in the framework established in
this paper, we might begin by setting ρ = 1.4 and drawing a plot analogous to those
of Figures 2.1, 3.1, and 4.1. The largest choice of α for which g will be analytic in Eρ

is α = 2/(ρ + ρ−1) ≈ 0.9459. Figure 5.1 shows the result.3

The node spacings for the various transformations we have considered are shown
(for n = 24) in Figure 5.2.

3In [29] Hesthaven, Dinesen, and Lynov consider a spectral method with α = cos(1/2) ≈ 0.88,
corresponding to ρ ≈ 1.69. In most other spectral methods papers that make use of the Kosloff–Tal-
Ezer mapping, α is chosen to increase toward 1 as n increases.
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Fig. 5.1. The Kosloff–Tal-Ezer map (5.1) for ρ = 1.4 and α = 2/(ρ + ρ−1) ≈ 0.9459. For the
given choice of ρ, this is the largest possible α for which g is analytic in Eρ.

Gauss KTE sausage strip

Fig. 5.2. Comparison of node spacings with n = 24 for Gauss quadrature, the Kosloff–Tal-Ezer
(KTE) map (5.1) with ρ = 1.4 and α = 2/(ρ + ρ−1), the polynomial (4.3) of degree 9, and the strip
map (3.2) with ρ = 1.4. Dots appear at horizontal positions (xj + xj+1)/2 and vertical positions
(xj+1 − xj)/2. The dashed lines correspond to equally spaced points and the same times π/2.
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Fig. 5.3. Another comparison of Gauss (dots) and transplanted Gauss (solid line) quadrature
for the integrands of Figures 3.4 and 4.2, now for the Kosloff–Tal-Ezer map (5.1) with ρ = 1.4 and
α = 2/(ρ + ρ−1) ≈ 0.9459.

If we apply the Kosloff–Tal-Ezer map to the same nine test integrands as before,
we get the curves shown in Figure 5.3. These results are good. Nevertheless, the
strip-transplanted formula of Figure 3.4 does better for the first four functions, and
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the sausage-transplanted formula of Figure 4.2 does as well or better for the last
five. There are parameters in all of these methods that might be tuned to enhance
their performance, so one cannot draw fine judgments from these simple experiments.
The proper lesson is that all of these methods are capable of outperforming Gauss
quadrature by 20%–50% for many integrands. Let us now make this observation more
precise.

6. Convergence theorems for analytic integrands. An advantage of the
conformal mapping point of view is that it leads readily to convergence theorems
for analytic integrands. The trick is to decide which analyticity assumptions and
conformal maps g to consider, for the number of possibilities is unlimited. Rather
than explore this terrain thoroughly, we shall offer a few representative choices. Our
class of integrands will be as follows. For any ε > 0:

A(ε) = set of functions analytic in the open ε-neighborhood of [−1, 1].(6.1)

Now the ellipse with foci ±1 whose semiminor axis length is ε has parameter ρ =
ε +

√
1 + ε2 = 1 + ε + O(ε2). Since ρ > 1 + ε, any f ∈ A(ε) is bounded in the ellipse

E1+ε, and thus by Theorem 2.1, Gauss quadrature will achieve In−I = O((1+ε)−2n)
as n → ∞ for any f ∈ A(ε). On the other hand, since ρ ∼ 1 + ε as ε → 0, it will do
no better than this in general as ε → 0. By contrast, the methods of the last three
sections, with the parameters used there, converge at least 40%, 30%, and 30% faster,
respectively.

Theorem 6.1. Let the transplanted Gauss quadrature formula (2.6) be applied
to a function f ∈ A(ε). The following statements pertain to the limit n → ∞:

For the strip map (3.2) with ρ = 1.4, for any ε ≤ 0.24: Ĩn−I = O((1+1.4ε)−2n).
For the polynomial (4.3) with d = 9, for any ε ≤ 0.8: Ĩn − I = O((1 + 1.3ε)−2n).

For the KTE map (5.1) with ρ = 1.4, for any ε ≤ 0.3: Ĩn− I = O((1+1.3ε)−2n).
Proof. Consider, for example, the first assertion, that the map (3.2) with ρ = 1.4

has convergence rate O((1+1.4ε)−2n). By Theorem 2.1, this conclusion will be valid if
for all ε ≤ 0.24 the function g is analytic in the elliptical region E1+1.4ε and maps the
ellipse of parameter 1 + 1.4ε into the open ε-neighborhood of [−1, 1]. We know that
g is analytic throughout E1.4, so the first condition holds since 1 + (1.4)(0.24) < 1.4.
The second condition can be verified numerically by plotting the image of the ellipse
and the boundary of the ε-neighborhood for various ε and verifying that the first is
inside the second; of course, we have chosen parameters in the theorem to make this
true.

The speedups of Theorem 6.1 are not particularly close to the limiting value of
π/2 that can be achieved as ε → 0. We now give another result that comes closer
to this limit. This time we modify the Gauss quadrature estimate O((1 + ε)−2n) by
improving the exponent rather than the factor multiplying ε.

Theorem 6.2. Let the transplanted Gauss quadrature formula (2.6) be applied
to a function f ∈ A(ε) for any ε ≤ 0.05. For the strip map (3.2) with ρ = 1.1,
Ĩn − I = O((1 + ε)−3n) as n → ∞.

The proof is as before, combining Theorem 2.1 with a numerical verification for
the particular map g. Similarly, it can be shown that one gets Ĩn−I = O((1+ε)−2.7n)
for ε ≤ 0.1 for the strip map (3.2) with ρ = 1.4, the higher-degree analogue of the
polynomial (4.3) with d = 17, or the KTE map (5.1) with ρ = 1.2, and Ĩn − I =
O((1 + ε)−2.5n) for ε ≤ 0.3 for the strip map (3.2) with ρ = 1.5, the polynomial (4.3)
with d = 9, or the KTE map (5.1) with ρ = 1.4.
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7. Clenshaw–Curtis variant. Among polynomial quadrature methods, Gauss
quadrature is optimal from the point of view of degree of polynomials integrated
exactly, namely, 2n−1 for the formula (2.2). It also has an elegant convergence theory
for analytic integrands, as represented by Theorem 2.1 and the further theorems we
have derived from it. Thus it is natural that, in the experiments of this paper until
now, we have considered Gauss quadrature and its transplanted alternatives.

Gauss quadrature has the disadvantage, however, that it takes O(n2) work and
memory to compute Gauss nodes and weights by the standard algorithm of Golub and
Welsch [27]. In some applications this is not an issue, because either n is small or the
nodes and weights are precomputed. In others, it is troublesome indeed. Certainly
one would rarely use a Gauss quadrature formula with thousands of points.

An easy alternative is Clenshaw–Curtis quadrature, which is readily implemented
via the fast Fourier transform in O(n log n) operations [14, 26]; now there is no problem
if n is 104 or 105 [6, 50]. All of the conformal transplantation ideas discussed in this
article can be applied to Clenshaw–Curtis as well as Gauss formulas, with comparable
effect: a speedup for many integrands by a factor approaching π/2. A Clenshaw–
Curtis code segment for (n+ 1)-point integration of f over [−1, 1] can be written like
this [50]:

s = cos((0:n)’*pi/n);

[g,gprime] = strip(s);

fx = f(g).*gprime/(2*n);

h = real(fft(fx([1:n+1 n:-1:2])));

a = [h(1); h(2:n)+h(2*n:-1:n+2); h(n+1)];

w = 0*a’; w(1:2:end) = 2./(1-(0:2:n).^2);

In = w*a;

One’s first expectation is that Clenshaw–Curtis convergence rates should generally
be about half those of Gauss, for both the pure and the transplanted variants. For
example, the n-point Clenshaw–Curtis formula exactly integrates polynomials only up
to degree n, not 2n− 1, and similarly, a result like Theorem 2.1 holds with O(ρ−2n)
reduced to O(ρ−n). Thus one might expect that a transplanted Clenshaw–Curtis
formula should converge about 2× 2/π = 4/π times more slowly than untransplanted
Gauss quadrature.

In actuality, however, Clenshaw–Curtis formulas are often about as accurate as
Gauss, for the values of n of interest, despite what the standard theorems might lead
one to expect. This effect was observed by O’Hara and Smith in the 1960s [39] and
has recently been investigated further [21, 50, 52]. We find the same happy surprise
with transplanted Clenshaw–Curtis quadrature. We shall make no attempt to add
more to the theoretical discussion of this effect but just present two computational
illustrations. The first is Figure 7.1, another repetition of Figure 3.4 but now com-
paring pure Gauss quadrature against strip-transplanted Clenshaw–Curtis, again for
ρ = 1.4. The latter does very well—about as well as transplanted Gauss. Indeed it
is only for the function exp(−40x2) where we have lost much in moving from trans-
planted Gauss to transplanted Clenshaw–Curtis: the convergence rate starts out as
before but then cuts abruptly in half at an error level of about 10−5. This kink in the
Clenshaw–Curtis convergence curve for analytic functions is explained in [21, 50, 52].

Our second example is a complicated function f(x) on [−1, 1] considered in [51],
defined by the initial conditions f = β = sin(10x) followed by 15 steps of the iteration
β = 3(1−2β4)/4, f = f+β. (In [51] the initial condition is sin(πx), but we change this
to sin(10x) to break the periodicity.) Figure 7.2 illustrates f and the convergence of
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Fig. 7.1. Another repetition of Figure 3.4 but with the solid curve corresponding now to strip-
transplanted Clenshaw–Curtis rather than Gauss quadrature. The results are much the same as in
Figure 3.4, the main exception being exp(−40x2), where we now see a convergence rate that cuts
in half at around n = 14. Evidently transplanted Clenshaw–Curtis quadrature, quite apart from its
much greater speed of implementation, is often more accurate than Gauss quadrature as well.
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Fig. 7.2. On the left, the function f(x) adapted from [51]. On the right, convergence of Gauss
(dots), Clenshaw–Curtis (circles), and strip-transplanted Clenshaw–Curtis formulas (solid line) with
ρ = 1.1 for this function. Data are plotted corresponding to values of n equal to multiples of 100
(up to n = 2000 for Gauss quadrature). There is no significant difference between the Gauss and
Clenshaw–Curtis formulas, and the transplanted formula beats them both by about 50%, as one would
expect for Gauss quadrature from Theorem 6.2.

quadrature formulas to I ≈ 15.3198135546173. Strip-transplanted Clenshaw–Curtis
quadrature with ρ = 1.1 beats untransplanted Clenshaw–Curtis, which is more or less
the same as Gauss. This function f is entire, but it is very ill behaved outside a small
region surrounding [−1, 1], as illustrated in Figure 7.3. For example, the maximum
value of |f(z)| for Im z = 0.004 is about 9.5, for Im z = 0.006 it is about 3236, for
Im z = 0.008 it is about 1041, and for Im z = 0.01 it is about 10263.
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Fig. 7.3. Although entire, the function f of Figure 7.2 is ill-behaved away from a strip of width
about 0.003 surrounding [−1, 1]. This plot shows the region around [−1, 1] in which |f(x)| < 1000.
The boundary has a fractal structure 15 levels deep.

8. Discussion. The idea of transforming the integrand in a numerical quadra-
ture rule is an old one. What is new in this paper has been to choose transformations
based on explicit conformal maps and to thereby derive specific quadrature formulas
that often converge faster than Gauss quadrature. Numerical experiments justifying
this claim were presented in sections 3–5 and 7 and theorems in sections 3 and 6. The
theorems apply to analytic integrands f , but experiments show that the modified
formulas often outperform Gauss quadrature for nonanalytic integrands, too.

All of the methods we have discussed contain adjustable parameters, notably ρ
for (3.2), the degree d for the maps of section 4, and α for (5.1). Rather than try to
optimize these values, we have taken somewhat arbitrary fixed choices such as ρ = 1.4
or 1.1 and d = 9 or 17, which are enough to deliver fairly robust quadrature improve-
ments by 30%–50%. These figures could be increased closer to the 57% associated
with the ratio π/2 by decreasing ρ and increasing d and α, perhaps in a fashion de-
pendent on the number of grid points n, and, in some applications, such adjustments
may be worthwhile. There is a literature on how to choose α for the application of
the Kosloff–Tal-Ezer map (5.1) to spectral methods [2, 15, 18, 29, 37]. Preliminary
experiments show that the speedups we have described for quadrature appear equally
for spectral methods, and we hope to give details in a later publication. For spec-
tral methods there is the additional consideration that the diminished clustering near
±1 permits larger time steps or faster iterative matrix solves, making the choice of
effective parameters a more complicated matter.

To compute a single integral, or a small number of integrals, one would nor-
mally use an adaptive quadrature program, and we do not recommend Gauss or
Clenshaw–Curtis formulas, or their transplanted improvements, for such applications.
Indeed, even for the complicated integrand of Figure 7.2, transplanted Clenshaw–
Curtis quadrature is less than ten times faster than MATLAB’s general-purpose
adaptive codes quad and quadl. Rather, the potential practical relevance of the
methods investigated in this paper is to situations where large numbers of integrals
are embedded inside a bigger computation. We close with an artificial example of a
multidimensional integral. Suppose we compute

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

cos(100(w + x + y + z))dwdxdydz =

(
sin(100)

50

)4

≈ 1.05 × 10−8

numerically by a quadrature formula applied in four dimensions, exploiting none of
the symmetries or simple structure of this particular integrand. To get three digits
of relative accuracy, Gauss quadrature requires 634 = 15,752,961 points, whereas
strip-transplanted Gauss quadrature with ρ = 1.4 needs 524 = 7,311,616 points.
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Appendix. Computation of the strip transformation in extreme cases
and a MATLAB code. Figure 3.2 shows how the conformal map g of (3.2) from the
ρ-ellipse Eρ to the infinite strip Ωρ can be constructed in three steps: ellipse→periodic
strip→disk→infinite strip, with the middle step involving a Jacobi elliptic function.
All of this is mathematically straightforward, but, when ρ is smaller than about 1.1,
it is numerically troublesome. The problem is that the right end of the periodic
strip gets mapped in the disk domain to the interval [1,m−1/4], and this interval
shrinks exponentially as ρ decreases to 1 (similarly at the left end). For example,
ρ = 1.4, 1.2, 1.1 correspond to m−1/4 ≈ 1.0026, 1.0000053, 1.000000000023, and for
ρ = 1.05 one calculates m−1/4 = 1 on a computer to machine precision. This “crowd-
ing phenomenon” is a familiar challenge in numerical conformal mapping, making it
impossible to compute g accurately unless the computation is reformulated [20].

It would be possible to consider systematically the development of an algorithm
to evaluate g to as close to machine precision as possible. Rather than attempt this,
we propose a method that works very well for our quadrature application and is much
simpler. When ρ is small, the two ends of the rectangle→ strip map of Figure 3.2
are exponentially decoupled from one another. In fact, for ρ less than about 1.2, the
map near one end of the rectangle is indistinguishable in 16-digit arithmetic from
what it would be if the rectangle were a semi-infinite strip. By following this line of
reasoning, after quite of bit of algebra, one is led to consider the function g defined
by u = sin−1 s, τ = π/ log ρ, and

g(s) = C

[
log(1 + e−τ(π/2+u)) − log(1 + e−τ(π/2−u)) +

(
1

2
+

1

eτπ + 1

)
τu

]
,(A.1)

where the constant C is fixed so that g(±1) = ±1. To 16-digit precision, for ρ < 1.2,
this function is the same as the strip map (3.2); and it is numerically reliable down
to about ρ = 1.02, which is closer to 1 than one would ever need to go in practice.
For s ∈ (−1, 1) the derivative is

g′(s) =
−τC√
1 − s2

[
1

eτ(π/2+u) + 1
+

1

eτ(π/2−u) + 1
−
(

1

2
+

1

eτπ + 1

)]
,(A.2)

and at the end points we have

g′(±1) =
Cτ2

4
tanh2

(τπ
2

)
.(A.3)

Notice how much more elementary (A.1)–(A.2) are than (3.1)–(3.4). In principle g is
not analytic in the ellipse, having branch points at s = ±1. The singularities are so
weak, however, that for ρ < 1.2 they are undetectable in 16-digit arithmetic.

Although the map (A.1) was derived as an approximation to the ideal (3.2) for
small values of ρ, it is surprisingly effective even for larger values of ρ. If (3.2) is
replaced by (A.1) in the experiments of Figure 3.4, for example, it makes no difference.

The following terse code combines all of the elements we have discussed, imple-
menting the Clenshaw–Curtis quadrature formula for the modified strip transforma-
tion (A.1). Since such a code will be especially useful for large n, the listing gives
a value of ρ close to 1. If this code is applied to the function of Figure 7.2 with
n = 1800, it gets the right answer to 15 digits in about 0.01 seconds on a 2006 work-
station. (With n = 106 it gets the same answer in 5 seconds.) Untransformed Gauss
quadrature with n = 1800 achieves 11 digits of accuracy and takes far longer.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEW QUADRATURE FORMULAS 947

function I = CCstrip(f,n) % transplanted C-C quad.

rho = 1.1; t = pi/log(rho); % rho (adjustable) and tau

d = .5+1/(exp(t*pi)+1); p2 = pi/2; % convenient abbreviations

up = pi*(0:n)/n; u = up-p2; um = p2-u; % u and shifts by +-pi/2

C = 1/(log(1+exp(-t*pi))-log(2)+p2*t*d);

g = C*(log(1+exp(-t*up))-log(1+exp(-t*um))+u*t*d); % map g

gp = 1./(exp(t*up)+1)+1./(exp(t*um)+1)-d;

gp(2:n) = -t*C*gp(2:n)./cos(u(2:n));

gp([1 n+1]) = C*(t*tanh(p2*t)/2)^2; % derivative g’

fx = f(g).*gp/(2*n); % transplanted integrand

h = real(fft(fx([1:n+1 n:-1:2]))); % Chebyshev coefficients

a = [h(1) h(2:n)+h(2*n:-1:n+2) h(n+1)];

w = 0*a; w(1:2:n+1) = 2./(1-(0:2:n).^2); % Clenshaw-Curtis weights

I = w*a’; % the result
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[41] G. Pólya, Über die Konvergenz von Quadraturverfahren, Math. Z., 37 (1933), pp. 264–286.
[42] P. Rabinowitz, Rough and ready error estimates in Gaussian integration of analytic functions,

Comm. ACM, 12 (1969), pp. 268–270.
[43] T. W. Sag and G. Szekeres, Numerical evaluation of high-dimensional integrals, Math.

Comp., 18 (1964), pp. 245–253.
[44] C. Schwartz, Numerical integration of analytic functions, J. Comput. Phys., 4 (1969), pp. 19–

29.
[45] D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and un-

certainty. I, Bell System Tech. J., 40 (1961), pp. 43–63.
[46] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, New York,

1993.
[47] H. Takahasi and M. Mori, Double exponential formulas for numerical integration, Publ. Res.

Inst. Math. Sci., 9 (1974), pp. 721–741.
[48] T. W. Tee and L. N. Trefethen, A rational spectral collocation method with adaptively

transformed Chebyshev grid points, SIAM J. Sci. Comput., 28 (2006), pp. 1798–1811.
[49] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2001.
[50] L. N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis?, SIAM Rev., 50 (2008),

pp. 67–87.
[51] L. N. Trefethen, Computing numerically with functions instead of numbers, Math. Comput.

Sci., 1 (2007), pp. 9–19.
[52] J. A. C. Weideman and L. N. Trefethen, The kink phenomenon in Fejér and Clenshaw–

Curtis quadrature, Numer. Math., 107 (2007), pp. 707–727.
[53] H. Xiao, V. Rokhlin, and N. Yarvin, Prolate spheroidal wavefunctions, quadrature and

interpolation, Inverse Problems, 17 (2001), pp. 805–838.


