
Ten Digit Problems

Lloyd N. Trefethen

Abstract. Most quantitative mathematical problems cannot be solved ex-
actly, but there are powerful algorithms for solving many of them numerically
to a specified degree of precision like ten digits or ten thousand. In this article
three difficult problems of this kind are presented, and the story is told of the
SIAM 100-Dollar, 100-Digit Challenge. The twists and turns along the way
illustrate some of the flavor of algorithmic continuous mathematics.

1 Introduction

I am a mathematician who spends his time working with numbers, real num-
bers like 0.3233674316 . . . and 22.11316746 . . . . If I can compute a quantity
to ten digits of accuracy, I am happy. Most mathematicians are not like this!
In fact, sometimes it seems that the further you go in mathematics, the less
important actual numbers become. But some of us develop algorithms to
solve problems quantitatively, and we are called numerical analysts. I am the
head of the Numerical Analysis Group at Oxford.

Like all mathematicians, I enjoy having a concrete problem to chew on.
For example, what is the value of the integral

Z 1

0
x−1 cos(x−1 log x)dx ? (1)

You won’t find the answer in a table of integrals, and I don’t think anybody
knows how to derive an exact formula. But even though an exact formula
does not exist, the integral still makes sense. (More precisely, it makes sense
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if we define (1) as the limit ε → 0 of an integral from ε to 1.) The only way
to evaluate it is by some kind of numerical algorithm, and this is hard, for
the integrand (i.e., the function under the integral sign) oscillates infinitely
often as x approaches 0 while swinging between larger and larger values that
diverge to infinity. To ten digits, the answer turns out to be the first number
listed above.

Each October in Oxford, four or five new graduate students arrive to
begin a PhD in numerical analysis, and in their first term they participate in
a course called the Problem Solving Squad. Each week I give them a problem
like (1) whose solution is a single real number. Working in pairs, their job is to
compute this number to as many digits of accuracy as they can. I don’t give
any hints, but the students are free to talk to anybody and use the library and
the web. By the end of six weeks we always have some unexpected discoveries
— and some tightly bonded graduate students!

In this article I want to tell you about three of these problems that have
given me pleasure, which I’ll call “two cubes”, “five coins”, and “blowup”.
Though this is the first article I’ve written about it, Oxford’s Numerical Anal-
ysis Problem Solving Squad has been well known since the SIAM 100-Dollar,
100-Digit Challenge was organized in 2002. This involved ten problems se-
lected from the early years of the Squad, and the challenge for contestants
was to try to solve each problem to as many digits of accuracy as possible,
up to ten digits for each. Teams from around the world entered the race,
and twenty of them achieved perfect scores of 100 and won $100. Afterwards
a book about the problems was published by four of the winners, with a
cover picture illustrating an ingenious method of solving (1) using complex
numbers [1]. I’ll say more about the 100-Digit Challenge at the end.

2 Two Cubes

Our first problem is motivated by a simple question from physics. Isaac New-
ton discovered that if two point masses of magnitude m1 and m2 are separated
by a distance r, then they are attracted towards each other by a gravitational
force of magnitude

F =
Gm1m2

r2
,

where G is a constant known as the gravitational constant. If you have masses
that are not points but spheres or other objects, then each point in one mass
is attracted to each point in the other by the same formula. We now pose the
following idealized problem:

Problem 1. Two objects of mass 1 attract each other gravitationally accord-
ing to Newton’s law with G = 1. Each object is a unit cube with its mass
uniformly distributed. The centers of the cubes are one unit apart, so they
are in contact along one face. What is the total force, F?
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You can think of the cubes as suns or planets if you like. No mathematician
will be troubled by the idea of cubic planets. That’s what mathematics is
best at, reasoning about any kind of precisely defined situation, no matter
how artificial. Something else about this problem, however, marks it out as
unusual for most mathematicians. It is so trivial! We all know the formula
for gravity, so where’s the interest here? Working out the force between these
particular bodies should be just a matter of bookkeeping. We are not in this
business to be bookkeepers!

But some of us are in this business to design algorithms, and this innocent-
looking problem is a killer. Let’s try to solve it, and you’ll see what I mean.

The first thought that may occur to you is, can’t we replace each cube by
a unit mass at the center and get the answer F = 1? Isn’t that what Newton
showed so many years ago, that as far as gravity is concerned, planets are
equivalent to points? Well yes, Newton did show that, but only for spherical
planets. If the shape is a cube, we have to investigate more carefully.

Let’s say that cube 1 consists of points (x1, y1, z1) with 0 < x1, y1, z1 < 1,
and cube 2 consists of points (x2, y2, z2) in the same range except 1 < x2 < 2.
For unit point masses at (x1, y1, z1) and (x2, y2, z2), the force would be

1
r2

=
1

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
,

aligned in the direction between the points. Our job is to add up these forces
over all pairs of points (x1, y1, z1) and (x2, y2, z2). That is, we need to evaluate
a six-dimensional integral. The y and z components of the total force will
cancel to zero, by symmetry, so it’s the x component we need to integrate,
which is equal to (x2 − x1)/r times the expression above. That is, the x
component of the force between unit masses at (x1, y1, z1) and (x2, y2, z2) is

f(x1, y1, z1, x2, y2, z2) =
x2 − x1

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]3/2
. (2)

The number F we are looking for is thus

F =
Z 1

0

Z 1

0

Z 2

1

Z 1

0

Z 1

0

Z 1

0
f(x1, . . . , z2)dx1dy1dz1dx2dy2dz2 . (3)

This is an integral over a six-dimensional cube. How do we turn it into a
number?
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I must be honest and confess that I am always behind schedule and usually
make up these problems the night before giving them to the students. I aim
to make sure I can compute a couple of digits at least, trusting that more
powerful and beautiful ideas will come along during the week.

For this problem, the night before, I tried the most classical numerical
method for evaluating integrals, Gauss quadrature. The idea of Gauss quadra-
ture in one dimension is to sample the integrand at n precisely defined values
of x called nodes, multiply the sampled values by n corresponding real num-
bers called weights, and add up the results. (The nodes and weights are
determined by the condition that the estimate comes out exactly correct if
the integrand happens to be a polynomial of degree no greater than 2n− 1.)
For smooth integrands, such as those defined by functions that can be dif-
ferentiated several times, this gives amazingly accurate approximations. And
by squaring or cubing the grid, you can evaluate integrals in two or three
dimensions. Here are pictures of 10, 102, and 103 Gauss nodes for integration
over an interval, a square, and a cube:

For our integral (3) the same idea applies, though it’s not so easy to draw a
picture.

Here is what I found with this method of “Gauss quadrature raised to the
6-th power”. The number of nodes is N = n6 with n = 5, 10, . . . , 30, FN is
the Gauss quadrature approximation to F , and time is the amount of time
each computation took on my computer.

N = 15625 FN = 0.969313 time = 0.0 secs.
N = 1000000 FN = 0.947035 time = 0.3 secs.
N = 11390625 FN = 0.938151 time = 3.2 secs.
N = 64000000 FN = 0.933963 time = 17.6 secs.
N = 244140625 FN = 0.931656 time = 66.7 secs.
N = 729000000 FN = 0.930243 time = 198.2 secs.

This is awful! We can see that the answer looks like F ≈ 0.93, 7% less than if
the cubes were spheres. But that is all we can see, and it has taken minutes
of computing time. Computing 10 digits would take pretty much forever.

In fact, these results from Gauss quadrature with its special nodes and
weights are worse than what you get if you set all the weights equal to 1/N
and place the nodes at random in the six-dimensional cube! This kind of
randomized computation is called the Monte Carlo method. Here are typical
sets of 10, 100, and 1000 random nodes in one, two and three dimensions:
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And here’s a set of Monte Carlo results for the same values of N as before.

N = 15625 FN = 0.906741 time = 0.1 secs.
N = 1000000 FN = 0.927395 time = 0.5 secs.
N = 11390625 FN = 0.925669 time = 4.4 secs.
N = 64000000 FN = 0.925902 time = 22.7 secs.
N = 244140625 FN = 0.926048 time = 88.0 secs.
N = 729000000 FN = 0.925892 time = 257.0 secs.

It seems that we now have three or four digits, F ≈ 0.9259 or 0.9260. In this
collection of results, and indeed for all the numbers reported in this article,
it is a very interesting matter to try to make more precise statements about
the accuracy of a computation. This is an important aspect of the field of
numerical analysis, but to keep things as simple as possible, we shall settle
for experimental evidence here and not attempt such estimates.

So, the world’s slickest method for numerical integration is losing out to the
world’s simplest! Actually this often happens with high-dimensional integrals.
The errors with Monte Carlo decrease in proportion to 1/

√
N , the inverse of

the square root of the number of samples, more or less independently of the
number of dimensions, whereas Gauss quadrature slows down greatly with
increasing dimension. This is a widespread theme in numerical algorithms,
and one speaks of “the curse of dimensionality”.

But even Monte Carlo hits a wall at 4 or 5 digits, or maybe 6 or 7 if we run
overnight or use a parallel computer. How can we get more? The students
worked hard and came up with many good ideas. Let’s focus on one of these
which eventually turned into a ten digit solution.

If you’re familiar with Gauss quadrature, you can quickly spot why it
has done so badly. The problem is that the integrand (2) is not smooth but
singular because the cubes are right up against each other. The denominator
goes to zero whenever x1 = x2 = 1, y2 = y1, and z2 = z1, so the fraction goes
to ∞. This isn’t bad enough to make the values of the integral infinite, but
it slows down the convergence terribly.

We would like to eliminate the singularity. One way to do it would be to
change the problem by separating the cubes, say, by a distance 1.
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The convergence of Gauss quadrature changes completely, giving 14 digits in
a fraction of a second:

N = 15625 F = 0.24792296453612 time = 0.0 secs.
N = 1000000 F = 0.24792296916638 time = 0.3 secs.
N = 11390625 F = 0.24792296916638 time = 3.2 secs.
N = 64000000 F = 0.24792296916638 time = 17.6 secs.

Notice that the answer is close to 1/4, which is what the force would be if
the cubes were spheres with centers separated by distance 2.

So we can accurately solve a modified problem, with the cubes separated.
What about the original problem? Let F (ε) denote the force between cubes
separated by a distance ε ≥ 0. We want to know F (0), but we can only
evaluate F (ε) accurately for values of ε that are not too small. A good idea is
to perform some kind of extrapolation from ε > 0 to ε = 0. Extrapolation is
a well-developed topic in numerical mathematics, and some of the important
methods in this area are known as Richardson extrapolation and Aitken
extrapolation. The students and I tried a number of strategies like these and
got. . . well, we were disappointed. We got another digit or two.

And then along came a delightful additional idea from graduate student
Alex Prideaux, which finally nailed the two cubes problem.

Prideaux’s idea was, let’s break each cube into eight pieces, eight sub-cubes
of size 1/2. Now the number F will be the sum of 64 pairwise contributions.

Four of these pairs meet along a face. Eight pairs meet along an edge, and
four meet at a vertex:

In the other 48 cases the sub-cubes are well separated.
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Having started with one kind of six-dimensional quadrature problem, we
now have four! — face, edge, vertex, and separated. Let’s define Face(d) to
be the x component of the force between two cubes of size d touching along a
face, and similarly Edge(d) and Vertex(d) for cubes of size d touching along
edges and at vertices. If you think about the picture with 16 sub-cubes above,
you will see that we can write equations for the forces at scale 1 in terms of
the forces at scale 1

2 like this:

Vertex(1) = Vertex(1
2 ) + well-separated terms,

Edge(1) = 2Edge(1
2 ) + 2Vertex(1

2 ) + well-separated terms,

Face(1) = 4Face(1
2 ) + 8Edge(1

2 ) + 4Vertex(1
2 ) + well-separated terms.

This may look like dubious progress, until we note a basic fact of scaling:

Vertex(1
2 ) = 1

16 Vertex(1), Edge(1
2 ) = 1

16 Edge(1), Face(1
2 ) = 1

16 Face(1).

The factors of 16 come about as follows. If you halve the scale of a cubes
problem, each mass decreases by a factor of 8, so the product of masses
decreases by 64. On the other hand the distance between the cubes also cuts
in half, so 1/r2 increases by a factor of 4. Thus overall, the force changes by
the factor 4/64 = 1/16.

Putting these observations together, we find

Vertex(1) = 1
16 Vertex(1) + well-separated terms,

Edge(1) = 2
16 Edge(1) + 2

16 Vertex(1) + well-separated terms,

Face(1) = 4
16 Face(1) + 8

16 Edge(1) + 4
16 Vertex(1) + well-separated terms.

We can calculate the well-separated terms to high accuracy in a second or
two by Gauss quadrature, and these formulas give us first Vertex(1), then
Edge(1), and then the number we care about, Face(1). The answer is

F ≈ 0.9259812606 .

3 Five Coins

The second problem involves no physics, just geometry and probability.

Problem 2. Non-overlapping coins of radius 1 are placed at random in a
circle of radius 3 until no more can fit. What is the probability p that there
are 5 coins?

We shall see that this story, so far at least, has a less happy ending.
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We can illustrate the game in a picture. We put a red coin down at random,
then a green one, then a blue one. I’ll leave it to you to prove that fitting in
at least three coins is always possible. Here’s an example that gets stuck at
three, with no room for a fourth.

(Incidentally, to be precise the problem must specify what “at random”
means. The meaning is pretty obvious; the trick is how to say it mathemat-
ically. If k coins are down, consider the set S of points at which the center
of another coin could be placed. If S is nonempty, we put the center of coin
k + 1 at a point in S selected at random with respect to area measure.)

Quite often a fourth coin can fit too. Here’s an example.

At four coins, we are usually finished. But occasionally a fifth can fit too:

Five coins is the limit. (Well, not quite. Six or seven are also possible, but
the probabilities of these events are zero, meaning that no matter how many
times you play the game randomly, you will never see them. Can you prove
it? Think of where the centers of a 7-coin configuration would have to fall.)

So the question is, how often do we get to five coins? This problem has
something in common with the two cubes. Since it is posed in terms of prob-
ability, one approach to a solution should be Monte Carlo simulation. We
can write a computer program and see what happens. It’s not obvious how
best to organize the computation, but one reasonable approach is to replace
the big disk by a fine grid, then pick points at random in that grid. Every
time you pick a point, you remove it from further consideration along with
all its neighbors at distance less than 2. For convergence to the required num-
ber, you must refine the grid and also increase the number of samples. By
following this Monte Carlo approach we find approximately these frequencies:

3 coins: 18% 4 coins: 77% 5 coins: 5%
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This level of accuracy can be achieved in 5 minutes. Running overnight gives
possibly one more digit:

p ≈ 0.053 .
You may sense a bit of foreshadowing in the fact that we’ve printed this
number in large type.

There’s a scientific context to the five coins: this is known as a “parking
problem”. In one dimension, imagine a curb of length L with k cars parking at
random, one after another, along the curb. How many cars will fit? Problems
like this are of interest to chemists and physicists investigating aggregation of
particles, and have been studied in 1, 2, and 3 dimensions. A question often
asked is, in the limit of an infinite parking area, what fraction of the space
can one expect will be filled by randomly arriving cars or coins or particles?
In the one-dimensional case, the answer is known in the form of an integral
that evaluates to 0.7475979202 . . . .

For circular disks (“coins”) in two dimensions, or spheres in three, we
speak of a “Tanemura parking problem”. So far as I am aware, no formula is
known for the infinite-size limit in either of these situations.

But in any case our Problem 2 concerns not a limit but a very concrete
setting of 3, 4, and 5 coins. And do you know something? Despite hard work,
the Problem Squad never improved on 0.053. We found variations on the
theme of Monte Carlo, but none that helped decisively. Yet this problem
is one of finite-dimensional geometry, equivalent in fact to another multiple
integral. There must be a way to solve it to high accuracy!

Sometimes a problem has no slick solution. In this case, I think a slick
solution is still waiting to be found.

4 Blowup

Our final problem involves a partial differential equation (PDE). Since this
may be unfamiliar territory, let me explain a little.

One of the best known PDEs is the heat or diffusion equation:

∂u

∂t
=

∂2u

∂x2
. (4)

We have here a function u(x, t) of a space variable x and a time variable t.
The equation says that at each point in space-time, the partial derivative of
u with respect to t is equal to its second partial derivative with respect to x.
Physically, the idea is that at a particular point x and time t, the temperature
will increase (∂u/∂t > 0) if the temperature curves upward as a function of x
(∂2u/∂x2 > 0), since this means that heat will flow in towards x from nearby
hotter points. For example, one solution to (4) would be the function
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u(x, t) = e−t sin(x) ,

for it is not hard to verify that for this choice of u,

∂u

∂t
= −u ,

∂2u

∂x2
= −u .

In the time of Napoleon, Joseph Fourier discovered that equation (4) governs
diffusion of heat in a one-dimensional body. For example, if a function u0(x)
describes the temperature distribution in an infinitely long bar at time t = 0,
then a solution u(x, t) to (4) with initial condition u(0, x) = u0(x) tells the
temperature at times t > 0. This was a first-class scientific discovery, and it
is bad luck for Mr. Fourier that for whatever accidental reason of history, we
talk about the Laplace and Poisson equations but not the Fourier equation.

Most PDE problems are posed on bounded domains, and then we must
prescribe boundary conditions to determine the solution. For example, the
heat equation might apply on the interval x ∈ [−1, 1], corresponding to a
finite bar, with boundary conditions u(−1, t) = u(1, t) = 0, corresponding
to zero temperature at both ends. Here’s an illustration of a solution to
this problem at different times. Notice how the sharp edges diffuse instantly,
whereas the larger structure decays more slowly. That makes sense, since
strong temperature differences between nearby points will quickly equalize.

t = 0 t = 0.001
t = 0.1

Eventually, all the heat flows out the ends and the signal decays to zero. (If
you are troubled by how to take the second derivative of the jagged initial
function, you are right to be troubled! We may imagine that u(x, 0) is a
smooth function that happens to match the jagged curve to high accuracy.)

Equation (4) depends linearly on the variable u: it is a linear PDE. Our
third problem involves a nonlinear PDE which consists of this equation plus
an additional term, the exponential of u:

∂u

∂t
=

∂2u

∂x2
+ eu. (5)

Whereas the heat equation just moves heat around, conserving the total heat
apart from any inflow or outflow at the boundaries, this nonlinear term adds
heat. You can think of eu as a model of a chemical process like combustion,
a temperature-dependent kind of combustion that accelerates exponentially
as the temperature goes up.

Suppose we apply equation (5) on an interval [−L,L] with initial condition
u(x, 0) = 0 and boundary conditions u(−L, t) = u(L, t) = 0. For t > 0,
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the exponential term adds heat, and the derivative term diffuses it out the
boundaries. There’s a competition here. If L is small, diffusion wins and the
solution converges to a fixed limit function u∞(x) as t→∞, with combustion
exactly balancing diffusion. If L is larger, combustion wins. The heat can’t
diffuse away fast enough, and the solution explodes to infinity at a finite time
t = tc. In particular, this happens for the case L = 1. Here are the solutions
at times 0, 3, and 3.544, by which point the amplitude has reached about
7.5. Soon afterwards, the curve will explode to infinity.

t = 0 t = 3 t = 3.544

Physically, this blowup is related to the phenomenon of spontaneous com-
bustion. Imagine a heap of grass cuttings or compost. Chemical processes may
generate some heat, but if it’s a small heap, the heat escapes and all is stable.
In a larger pile, however, the heat may be unable to get away. Eventually,
the heap catches fire. Much the same mathematics explains why a quantity
of Uranium 235 has a critical mass above which it explodes in a fission chain
reaction, the original principle behind atomic bombs.

Here then is our mathematical problem.

Problem 3. At what time tc does the solution u(x, t) to the problem

∂u

∂t
=

∂2u

∂x2
+ eu, u(x, 0) = 0, u(−1, t) = u(1, t) = 0 (6)

blow up to infinity?

The numerical solution of PDEs on computers goes back to von Neumann
and others in the 1940s. It is as important a topic as any in numerical analy-
sis, and a huge amount is known. For Problem 3, the geometry is an interval
and the equation is a simple one with a single variable. Other problems of in-
terest to scientists and engineers may be much more complicated. The shapes
of wings and airplanes are designed by solving PDEs of fluid and structural
mechanics in complicated three-dimensional geometries. Weather forecasts
come from solutions of PDE problems involving variables representing air
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velocity, temperature, pressure, humidity and more, and now the geometry
is nothing less than a chunk of planet Earth with its oceans and islands and
mountains.

Most numerical solutions of PDEs depend on discretizing the problem,
replacing partial derivatives by finite approximations. The grid around an
airplane may be eye-poppingly complicated, but for (6), one might begin
by using a simple regular grid like this one, with the horizontal direction
corresponding to x and the vertical direction to t.

Quite a good solution strategy for Problem 3 is to discretize (6) on grids like
this, shrink the step sizes ∆x and ∆t systematically, and then use some kind
of extrapolation to estimate the blowup time.

For example, one way to discretize this equation from t = 0 to t = 3.544 is
to divide [−1, 1] into N space intervals and [0, 3.544] into 2N2 time intervals
and then approximate the PDE on this grid in a manner whose details we
won’t go into. Here are the approximate values u(0, 3.544) produced by this
method for a succession of values of N :

N = 32 u(0,3.544) = 9.1015726 time = 0.0 secs.
N = 64 u(0,3.544) = 7.8233770 time = 0.1 secs.
N = 128 u(0,3.544) = 7.5487013 time = 0.6 secs.
N = 256 u(0,3.544) = 7.4823971 time = 3.3 secs.
N = 512 u(0,3.544) = 7.4659568 time = 21.2 secs.
N = 1024 u(0,3.544) = 7.4618549 time = 136.2 secs.

It seems clear that the true value u(0, 3.544) must be about 7.46, and by
applying Richardson extrapolation to the data, one can improve this estimate
to 7.460488. Using methods like this, with some ingenuity and care, one can
estimate the blow-up time for Problem 3 to six or seven digits.

It seems wasteful, however, to use a regular grid for a problem like this
where all the action happens in a narrow spike near x = 0 and t = 3.5. It
is tempting to try to take advantage of this structure by using some kind of
uneven grid, one which gets finer as the spike gets narrower, like this:
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Adapting grids like this to the solution being computed is a big topic in
numerical PDE. When flows are computed over airplanes, the grids may be
thousands of times finer near the surface than further out.

The ten digit solution that I know of for Problem 3 makes use of a highly
nontrivial adaptive-gridding algorithm due to my former student Wynn Tee.
Tee’s method starts from the observation that although (6) is posed for x in
the interval [−1, 1], we can extend the solution to complex values of x too,
that is, to values of x with an imaginary as well as a real part. As t approaches
tc, it turns out that the solution u(x, t) has singularities in the complex x-
plane that approach the real axis. By monitoring this situation and using
what is known as a conformal map to distort the grid systematically, one can
maintain extremely high accuracy with a small number of grid points even
as the spike grows very tall and narrow. In fact it is possible to calculate a
solution to ten digits of accuracy with only 100 grid points in the x direction:

tc ≈ 3.544664598 .

This solution also takes advantage of advanced methods of time discretiza-
tion, and it is really a tour de force of clever computation, illustrating that
some very abstract mathematics may be useful for concrete problems.

5 The 100-Digit Challenge

What does it mean to solve a mathematical problem? That’s too big a ques-
tion, for the solution to a mathematical problem might be a “yes” or “no”,
a proof, a counterexample, a theorem, who knows what. More specifically,
then: what does it mean to solve one of those mathematical problems whose
solution, in principle, is a number? Must we find an exact formula — and if
we do, is that good enough regardless of the formula’s complexity? Must we
write down the number in decimal form — and how many digits are enough?
Is it sufficient to find an algorithm that can generate the number — and does
it matter how quickly it runs?

There are plenty of sand traps in this discussion. Even the notion of an
exact formula is elusive. For example, in the theory of roots of polynomials,
an exact formula is traditionally allowed to include n-th roots, like 3

√
2, but

not trigonometric or other special functions, like sin(2). A computer, however,
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doesn’t see much difference between 3
√

2 and sin(2). Both are calculated by
fast iterative algorithms. For that matter, even a fraction like 2/3 is calculated
by an iterative algorithm on some computers, but nobody would question
the credentials of 2/3 as an exact solution! What about a more complicated
expression like

R 1
0 e−x4

dx? That’s easy for your computer too, but it will
probably have to call a piece of software rather than use something built-in
to the microprocessor hardware. Is it an exact solution?

For me, solving a numerical problem means finding an algorithm that can
calculate the answer to high accuracy on a computer, whether or not there’s
an explicit formula, and this brings us to the question: what’s so special about
ten digits? Why not three digits, or a hundred? I’d like to suggest two reasons
why ten digits is indeed a good goal to aim for.

One reason is that in science, many things are known to more than three
digits of accuracy, but hardly anything is known to more than ten. If a quan-
tity is known to a hundred or a million digits, you can be sure it is a math-
ematical abstraction like π rather than a physical constant like the speed of
light or Planck’s constant. So in science, you might say that ten digits is more
or less the same as infinity. Ultimately this is why computers normally com-
pute with 16-digit precision, not 160. (And since 10 digits is comfortably less
than 16, you usually don’t have to worry too much about computer precision
when tackling a ten-digit problem.)

The second reason is illustrated by the five coins. To exaggerate a little
bit, you can solve just about any problem to three digits of accuracy by
brute force. But a brute force algorithm doesn’t encode much insight, and
it often fails if you try to push it much further. This is just what happened
with the five coins, where we got stuck at three digits with Monte Carlo. Ten
digits is a very different achievement. To get to ten digits, you need a good
understanding of your problem and a well targeted algorithm. In fact, if you
can get this far, the chances are pretty good that you could get ten thousand
if you had to. To see what I mean, let’s return to the 100-Digit Challenge.

The Challenge was launched in January 2002, and its ten problems in-
volved the integral (1), some chaotic dynamics, the norm of an infinite ma-
trix, global optimization in two dimensions, the approximation of the gamma
function in the complex plane, a random walk on a lattice, inverting a
20 000 × 20 000 matrix, the heat equation on a square plate, parametrized
optimization, and Brownian motion. Each team was allowed to have up to
six members, and 94 teams entered from 25 countries. Twenty of them got
perfect scores! That surprised me. I had planned to spend $100 rewarding
whoever got the most digits, but with twenty perfect scores, I was unsure
what to do. To my great pleasure, a donor came forward to plug the gap
— William Browning, founder of Applied Mathematics, Inc. in Connecticut.
You might think that for a member of a team of six to give nights and week-
ends to a mathematical project and be rewarded with $16.67 must be some
kind of sour joke. But it turned out that receiving a little bit of cash meant
a great deal to the winners as a symbolic recognition of their achievement.
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The winners also got certificates, like this one awarded to Folkmar Borne-
mann of the Technical University of Munich, one of the authors of the book
The SIAM 100-Digit Challenge [1].

The SIAM 100-dollar, 100-digit challenge

This is to certify that
Folkmar Bornemann

was a
First Prize 100-digit Winner

in this competition entered by hundreds
of contestants around the world.

Lloyd N. Trefethen
Oxford University

May 2002

0.32336743170.99526291941.274224153-3.3068686470.21433523460.061913954470.72507834630.42401138700.78593367440.00000038375879790.32336743170.9952629194

1.274224153-3.3068686470.21433523460.0619139544 70.72507834630.42401138700.78593367440.0000003837 5879790.3233674317
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0.99526291941.274224153-3.3068686470.21433523460.061913954470.72507834630.42401138700.78593367440.00000038375879790.32336743170.99526291941.274224153

I published an article in SIAM News telling the story and outlining a
solution to each problem. The article ended like this:

If you add together our heroic numbers, the result is τ =
1.497258836 . . . . I wonder if anyone will ever compute the ten thou-
sandth digit of this fundamental constant?

Now I wrote this to be funny, and to get people thinking. What’s funny is
that this number τ is the most unfundamental constant you could imagine.
The sum of the answers to ten arbitrary unrelated problems — what non-
sense! I chose the Greek letter tau because privately I was thinking of this
as “Trefethen’s Constant”. With good British modesty I felt it was OK to
name something after oneself, provided the item was sufficiently ridiculous.

In the book [1], τ took on a life of its own. The authors amazed us all by
finding ways to solve nine of the problems, one after another, to ten thou-
sand digits! The variety of mathematical, algorithmic, and computational
tools they used was striking. Indeed, the book emphasizes throughout that
there is no “right way” to solve a problem, and your bag of tools can never be
too big. By one beautiful chain of reasoning making use of ideas of the Indian
mathematician Ramanujan, Bornemann found an exact formula for the so-
lution to Challenge Problem 10 (Brownian motion). By another remarkable
method based on ideas related to the field of number theory, Jean-Guillaume
Dumas together with 186 computer processors running for four days were
able to compute exactly the solution to Challenge Problem 7 (inverting a
matrix): the task was to find a particular element of this inverse, and they
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discovered that the answer was a rational number equal to the quotient of
two 97,389-digit integers.

Bornemann et al. wrote an appendix called “Extreme Digit-Hunting”,
which reported their super-accurate results in this format:

0.32336 74316 77778 76139 93700 <<9950 digits>> 42382 81998 70848 26513 96587 27

The listing goes to digit 10,002, so that if you added up the ten numbers,
you’d be confident that the 10,000-th digit of the sum would be correct.

But Challenge Problem 3 proved intractable. (This was to determine what
is called the “2-norm” of a matrix with infinitely many rows and columns,
with entries a11 = 1, a12 = 1/2, a21 = 1/3, a13 = 1/4, a22 = 1/5, a31 =
1/6, . . . .) With a month of computer time the authors computed 273 digits:

1.2742 24152 82122 81882 12340 <<220 digits>> 75880 55894 38735 33138 75269 029

And that’s where Trefethen’s constant is stuck as of today, at 273 digits.
I decided at age 20 to devote my career to number crunching, and it has

given me unending satisfaction since then. My knowledge and confidence
have advanced with the years, and so have the computers and software tools
available. What a feeling, to be working on algorithms related to those that
control spacecraft, design integrated circuits, and run satellite navigation
systems — yet still be so close to elegant mathematics!

The field of numerical analysis can be defined like this:

Numerical analysis is the study of algorithms
for the problems of continuous mathematics.

This means problems involving real or complex variables, not just integers.
“Continuous” is the opposite of “discrete”, and algorithms for discrete prob-
lems have quite a different flavor and a different community of experts. Like
any scientific field, numerical analysis stretches over a pure–applied range,
with some people spending most of their time inventing algorithms or apply-
ing them to scientific problems, while others are more interested in rigorous
analysis of their properties. In earlier centuries the leading pure mathemati-
cians were the same people as the leading numerical ones, like Newton and
Euler and Gauss, but mathematics has grown a lot since then, and now the
two groups are rather separate. If you look at numbers of specialists, numer-
ical analysis is nowadays one of the biggest branches of mathematics.

Let’s finish with another ten digit problem from my file. Suppose you have
three identical regular tetrahedra, each of volume 1. What’s the volume of
the smallest sphere you can fit them inside?

Every problem is different. This is the only one so far for which I’ve found
myself playing with cardboard models! I made three tetrahedra, then juggled
and jiggled till I thought I knew roughly what the shape of the optimal con-
figuration must be. By numerically minimizing a function whose derivation
took hours of tricky trigonometry, I got the estimate
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22.113167462973 . . . .

Now by a curious coincidence, my computer tells me

256π(
√

12−
√

10)3 = 22.113167462973 . . . .

Have we stumbled upon the exact answer? I think so, but I’m not sure, and
I certainly don’t have a proof. And what in the world gave me the idea of
calculating 256π(

√
12−

√
10)3 ?1

6 Epilogue

Stop Press! We’ve had an unexpected development on Problem 1, the two
cubes. I showed a draft of this article to Prof. Bengt Fornberg of the Univer-
sity of Colorado, one of the best numerical problem-solvers in the world. He
got hooked. The problem is so simple, yet so devilishly hard!

Working with pencil and paper and the symbolic computing system Math-
ematica, Fornberg managed to shrink the dimensionality from six to five, then
four. Then three, then two. That is, he managed to reduce Problem 1 to a
two-dimensional integral to be evaluated numerically. As he peeled off one
dimension after another, the formulas kept getting more complicated, and he
fought hard to keep the complexity under control.

Then one morning Fornberg reported he was down to one dimension. This
meant that the problem could be five-sixths solved analytically, leaving just
a one-dimensional integral to be evaluated numerically. We were startled.

The next morning, Fornberg had the exact solution! It was preposterously
long and complicated. He kept working, making more and more simplifica-
tions of trigonometric functions and logarithms and hyperbolic functions and
their inverses, combining some terms together and also splitting some terms
into two to make the result more elementary. And here is what he found:

F =
1
3

µ
26π
3
− 14 + 2

√
2− 4

√
3 + 10

√
5− 2

√
6 + 26 log(2)− log(25)

+ 10 log(1 +
√

2) + 20 log(1 +
√

3)− 35 log(1 +
√

5)

+ 6 log(1 +
√

6)− 2 log(4 +
√

6)− 22 tan−1(2
√

6)
¥

.

1 OK, I’ll tell you. My calculation led to the estimate R ≈ 0.85368706 for
the radius of the smallest sphere that can enclose three tetrahedra each of side
length 1. I tried typing this number into the Inverse Symbolic Calculator at
http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html, and back came the sug-
gestion that R might be 4(

√
6−

√
5). Cubing this number and multiplying by 4π/3

gives the volume of the sphere, and dividing that result by
√

2/12, which is the volume
of a regular tetrahedron with side length 1, gives 256π(

√
12−

√
10)3.
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So now we can have as many digits as we want:

F ≈ 0.9259812605572914280934366870 . . . .

Most computational problems don’t have exact solutions, but when I cook
up challenges for the Problem Squad, the drive for elegance keeps me close
to the edge of tractability. In this case we were lucky.
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