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Abstract Best rational approximations are notoriously difficult to compute. How-
ever, the difference between the best rational approximation to a function and its
Carathéodory-Fejér (CF) approximation is often so small as to be negligible in prac-
tice, while CF approximations are far easier to compute. We present a robust and
fast implementation of this method in the Chebfun software system and illustrate its
use with several examples. Our implementation handles both polynomial and rational
approximation and substantially improves upon earlier published software.

Keywords Carathéodory-Fejér approximation · Near-best rational approximation ·
Chebfun

Mathematics Subject Classification (2000) 41A50 · 41A20

1 Introduction

The problem of obtaining the best rational (m,n) approximant to a given real continu-
ous function f on a finite interval with respect to the supremum norm is a remarkably
elusive one. The characterization of such an approximant is straightforward enough:
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Fig. 1 Error in (10,10) CF
approximation to
f (x) = log(1.2 + cos(e2x))

the error equioscillates at least m + n + 2 − δ times, where δ is known as the defect
of f . This result is due to de la Vallée Poussin [8, Theorem 98]. The actual computa-
tion of this approximant, however, is a much more complex matter. In particular, the
Remez algorithm is very sensitive to the initial guess and often diverges.

Nevertheless, for many practical applications there is a perfectly viable alterna-
tive to best rational approximation, namely Carathéodory-Fejér (CF) approximation.
CF approximation was introduced by the second author and Martin Gutknecht in a
series of papers published mostly in the early 1980s [4–6, 17–20, 22]. The foun-
dations, however, were laid almost a century ago by Constantin Carathéodory and
Lipót Fejér in [3], which deals with polynomial approximation, and by Issai Schur
in [12, 13]. Their theory was later extended to the rational case by Takagi [15, 16]
and further generalized by Adamjan, Arov and Krein [1]. Some recent applications
of CF approximation include computing the gamma function using complex contours
[11] and Talbot quadrature [23] for inverse Laplace transforms and solution of partial
differential equations.

Before giving a brief overview of the theory behind CF approximation in Sect. 2,
let us first illustrate the power of this method and its usage in the Chebfun system.
For information about Chebfun, the reader is referred to [2, 10] and to the website
www.maths.ox.ac.uk/chebfun.

Suppose we wish to compute the (10,10) CF approximant to the function

f (x) = log(1.2 + cos(e2x))

and plot the error curve. This is done by the following three lines of code:

>> f = chebfun(’log(1.2+cos(exp(2*x)))’);
>> [p,q] = cf(f,10,10);
>> plot(f-p./q)

Figure 1 shows that the error curve equioscillates 22 times, indicating that the CF
approximation is indistinguishable from the best approximation.
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2 CF approximation

The original CF method dealt with polynomial approximation on the complex unit
circle. In [17] it is shown how to compute near-best polynomial approximants to
analytic functions on the unit circle in the sense that the error curves approximate
perfect circles about the origin. The procedure involves finding the principal singular
value and corresponding singular vector of a complex Hankel matrix containing the
Taylor series coefficients of the function.

In [18] this method is extended to rational approximation. The approach is very
similar, only now non-principal singular values and vectors of the same matrix are
needed. Both results are based on a theorem by Carathéodory and Fejér and its ex-
tensions.

The transition to a finite interval is made using the Joukowski function x = 1
2 (z +

z−1), which maps the complex unit circle to the interval I = [−1,1]. A simple linear
transformation then maps I to any finite interval [a, b]. To keep the exposition simple
we work with the interval [−1,1], but the actual implementation can handle arbitrary
finite intervals.

Real rational CF approximation on I is discussed in detail in [22]. We begin with
a real function F(x) continuous on I . For any finite M ≥ 0, F possesses a partial
Chebyshev expansion

F(x) = FM(x) + GM(x) =
M∑

k=0

′akTk(x) + GM(x)

where the prime indicates that the k = 0 term should be halved. Here ak is defined by

ak = 2

π

∫ 1

−1
F(x)Tk(x)

dx√
1 − x2

. (2.1)

If F is represented by a chebfun, we obtain the coefficients ak as follows:

>> a = chebpoly(F);
>> a = a(end:-1:end-M);
>> a(1) = 2*a(1);

In keeping with Matlab tradition, chebpoly returns the coefficients from high to
low degree, which is why we need the second command above. The last command is
necessary because Chebfun uses a slightly different definition for the coefficient a0.

Next we want to relate FM to an analytic function on the unit circle in order to
apply the results of Carathéodory, Fejér, Schur and Takagi. This is done using the
Joukowski transformation defined above. Putting a−k = ak we have

FM(x) = 1

2
fM(z) = 1

2
[f +(z) + f +(z−1) + f 0(z)]

where

fM(z) =
M∑

k=−M

akz
k, f +(z) =

M∑

k=m−n+1

akz
k,
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f 0(z) =
⎧
⎨

⎩

∑m−n
k=n−m akz

k if m ≥ n,

−∑n−m−1
k=m−n+1 akz

k if m < n.

The idea is to approximate the function f +(z) on the unit circle by an extended
rational function of the form

r̃(z) =
∑m

k=−∞ dkz
k

∑n
k=0 ekzk

where the terms of negative degree in the numerator converge to a bounded analytic
function in |z| > 1 and the denominator has no zeros in |z| ≤ 1. The space of all these
functions is denoted by R̃mn. Once this approximation is found, we can map back to
the interval and then truncate to a true rational function in Rmn, the space of rational
functions of degree at most m in the numerator and at most n in the denominator.

Let H be the real symmetric Hankel matrix

H =

⎛

⎜⎜⎜⎝

am−n+1 am−n+2 · · · aM

am−n+2 0
...

...

aM 0 · · · 0

⎞

⎟⎟⎟⎠

and assume that its eigenvalues are ordered by absolute magnitude |λ1| ≥ |λ2| ≥ · · · ≥
|λM+n−m|. Let λ abbreviate λn+1 and let (u1, . . . , uM+n−m)T be the corresponding
eigenvector. Then we have the following theorem proved by Carathéodory and Fejér
for polynomials [3] and extended to the rational case by Takagi [15].

Theorem 2.1 The analytic function f + has a unique best approximation r̃∗ on the
unit circle |z| = 1 in R̃mn given by

f + − r̃∗ = b,

where b is the finite Blaschke product

b(z) = λzM u1 + · · · + uM+n−mzM+n−m−1

uM+n−m + · · · + u1zM+n−m−1
.

The approximation error is

‖f + − r̃∗‖|z|=1 = |λ|,
and the error curve (f + − r̃∗)|z|=1 is a perfect circle about the origin whose winding
number is m + n + 1 if |λn| > |λ| > |λn+2|.

We can map back to I by defining

R̃(x) = 1

2
[fM(z) − b(z) − b(z−1)].
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It then follows that

FM(x) − R̃(x) = Re b(z),

which indeed equioscillates m + n + 2 times on I . However, R̃ is in general not a
rational function in Rmn, so we have to truncate it. This is done as follows. Let q be
the polynomial of degree n or less whose zeros are the finite poles of r̃∗ outside the
unit circle. Define

Q(x) = cq(z)q(z−1)

where c is such that the constant term of Q is 1. Then Q is a polynomial of degree n

or less and it is the denominator of R̃. We now define the CF approximant as

Rcf(x) = P(x)

Q(x)
,

with P defined by

R̃(x) = Rcf(x) + O(Tm+1(x))

and O(Tm+1(x)) means that the Chebyshev expansion of R̃ − Rcf starts with a term
of order m + 1. To compute P , we need the Chebyshev coefficients ck of R̃ and γk

of 1/Q. Then the Chebyshev coefficients βk of P satisfy the Toeplitz system

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 · · · γ2m

γ1
. . .

. . .
...

. . .

... γ1
γ2m · · · γ1 γ0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

βm

...

β0
...

βm

⎞

⎟⎟⎟⎟⎟⎟⎠
= 2

⎛

⎜⎜⎜⎜⎜⎜⎝

cm

...

c0
...

cm

⎞

⎟⎟⎟⎟⎟⎟⎠

which can be reduced to a system of size m + 1 instead of 2m + 1.
The condition |λn| > |λ| > |λn+2| at the end of the Carathéodory-Fejér-Takagi

theorem is related to the structure of the CF table. If for given FM we organize the
approximants in a table in the (m,n)-plane, then it follows from [4], [6] and [20] that
this table consists of disjoint square blocks. In each block r̃∗ and |λ| are fixed. All en-
tries along any diagonal m−n = const. correspond to a single Hankel matrix H , and
the magnitudes of the absolute values of this matrix are the approximation errors as
we descend along this diagonal. The length of the intersection of the diagonal with a
square block equals the multiplicity of the corresponding eigenvalue (in magnitude).
Furthermore, it is shown in [6] that the CF operator (the map from function to ap-
proximation) is continuous if and only if (m,n) lies in the lower-left or upper-right
corner of such a square block.

3 Chebfun implementation

The first implementation of the CF method for real rational approximation appeared
in [21], which so far as we know may have been the first research article ever pub-
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lished containing a Matlab program! Our current implementation is substantially dif-
ferent in several ways. A quick overview of the algorithmic innovations is given in
the following bullet list, which we discuss in more detail in the rest of this section:

– Formulation within the Chebfun system
– Arbitrary (finite) intervals
– Approximation of piecewise smooth functions
– Correct handling of block structure in the CF table, including even and odd func-

tions
– Special treatment of (numerically) rational functions using Chebyshev-Padé ap-

proximation
– Detection of ill-conditioning
– Unified approach to polynomial and rational approximation
– Computation of only a few eigenvalues in case of non-smooth functions, with Mat-

lab’s eigs command
– Use of Henrici’s method to extract the co-analytic part of b(z)

– Construction of 1/Q(x) from explicit knowledge of Q(x)

– Safety margins and argument checks to make the code more robust
– Reduction of the Toeplitz system of size 2m + 1 to a system of size m + 1

The complete syntax of the CF command in Chebfun is

[p,q,r_handle,s] = cf(f,m,n,M)

but some of the input and output parameters are optional, as explained in the help
text. Here p and q are chebfuns representing the numerator and denominator polyno-
mials of the approximant, r_handle is a function handle to a pointwise evaluator
of the rational approximant itself, and s is the absolute value of the eigenvalue that
measures the approximation error. The input parameter f is the chebfun we wish to
approximate and m and n are the numerator and denominator degrees. The optional
parameter M indicates the number of Chebyshev coefficients of f that we want to use.

3.1 Chebfun system

This CF implementation is part of the Chebfun system, which means we can take
advantage of the built-in chebfun methods. This is especially useful in computing
the Chebyshev coefficients of the various functions discussed in Sect. 2 with the
chebpoly command. The only exception here is in the computation of the coeffi-
cients ck of R̃(x), which we compute from the Laurent coefficients of the Blaschke
product b(z) using the FFT as explained in [22]. Using chebpoly here would be
too slow.

Dealing with intervals different from I is also made easy in Chebfun. The interval
on which f is defined can be obtained with the command

>> d = domain(f);

and giving d as an extra argument to the Chebfun constructor will produce a new
chebfun defined on d.
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Finally, f may consist of several pieces; see [10]. In this case M should be pro-
vided; a typical value might be in the low hundreds. This makes it possible to quickly
approximate functions such as |x|.

3.2 Block structure of CF table

A major difference from previous implementations of the CF method, crucially im-
portant in practice, is that ours takes into account the structure of the CF table. This
is done by the subfunction getblock. This function constructs the Hankel ma-
trix for given m, n and M, computes the eigenvalues, and returns k and l such that
|λn−k+1| = · · · = |λ| = · · · = |λn+l+1|. If either k > 0 or l > 0, we are in a nontrivial
square block and should move to the upper-right or lower-left corner. The program
first tries the upper-right corner by calling getblock again but now with the param-
eters m+l, n-k. If it turns out that we were below the main diagonal of the square,
then this will not work and getblock is called a third time to move to the lower-left
corner.

If the function to be approximated is itself a rational function in Rmn, then there
is an infinite square block in the CF table. This can of course not be detected from a
finite number of eigenvalues, but if |λ| = |λn+2| = · · · = |λM+n−m| then the program
assumes that the block is infinite. Moving to the upper-right or lower-left corner of an
infinite block is impossible, so in this case the CF method cannot be used. Instead we
use chebpade to compute a Chebyshev-Padé approximation. This should reproduce
the rational function exactly. However, if m or n are large, the results may be incorrect
because of ill-conditioning.

A common case of predictable block structure is when f is an odd or even function,
which leads to a tiling of the CF table by 2 × 2 blocks. To avoid having to compute
the eigenvalues of a Hankel matrix several times, we test in the beginning whether f
is odd or even by looking at the Chebyshev coefficients.

3.3 Ill-conditioning

The CF method works remarkably well for smooth functions, but it is known that the
method is less useful for more difficult functions (e.g. when there are singularities
close to the interval). This difficulty manifests itself in different ways.

Theoretically, the Blaschke product b(z) can have at most n poles outside the
complex unit circle. However, because of ill-conditioning, it may happen that there
are poles inside the unit disk too. If this happens, the program discards those poles
and outputs a warning message.

Another source of ill-conditioning is the Toeplitz system for computing the nu-
merator polynomial P . If the denominator Q has zeros close to the interval, then the
Toeplitz matrix becomes ill-conditioned and digits are inevitably lost. This only be-
comes a problem if we lose so many digits that the equioscillation property is lost,
specifically, if κ/|λ| > 1/ε, where κ is the condition number of the Toeplitz matrix
and ε is machine precision. To be on the safe side, we take 1/ε = 1e13, a choice
which works well in practice. Also here the program generates a warning message
when it detects ill-conditioning.
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3.4 Polynomial case

Although we have only discussed the case of rational approximation, the Chebfun cf
program can also be used for the special case of polynomial approximation. The com-
putations, however, are much simpler and there are no problems of block structure or
ill-conditioning. Our program takes special steps to handle the polynomial case ef-
ficiently, but we will not go into the details of the implementation. The interested
reader is referred to [5].

3.5 Miscellaneous optimizations

If f is non-smooth it will have a long Chebyshev series representation and thus M will
be large. Computing the eigenvalues of a large Hankel matrix is very time-consuming,
especially in Matlab where no advantage is taken of the special structure of the ma-
trix. Since we do not need all the eigenvalues, but only the (n+1)st, we can use eigs
to return only the largest eigenvalues and speed up the computations. This makes a
huge difference in cases where M is in the thousands. But in order to study the block
structure, we may need more than n+1 eigenvalues, so the program computes n+10
eigenvalues and assumes that will be enough to draw conclusions. We only use eigs
when M > 1024, otherwise we use eig to compute all the eigenvalues.

The polynomial q(z) can be computed in two ways: by factoring the denomina-
tor polynomial of b(z) with the roots command, or using a method described by
Henrici in [7, §3.2] based on the FFT. If M is large then factoring the complete
denominator polynomial becomes very expensive. Hence the program uses Henrici’s
method to obtain the small polynomial q(z). In fact we could construct Q(x) directly
from q(z) without even computing the roots, but for reasons of stability we neverthe-
less still factor q(z) and then construct Q(x) with the command

>> q = chebfun(@(x) real(prod(x-z)/prod(-z)),’vectorize’);

where z contains the roots of q(z) transformed to the x-plane using the Joukowski
map.

Since we have now computed the roots of Q(x) explicitly, we can use this to our
advantage when constructing a Chebfun representation for 1/Q(x) (needed to set up
the Toeplitz system). The root closest to the interval determines the exact ellipse of
analyticity for 1/Q, hence the convergence rate of the Chebyshev expansion, and
hence the length of the Chebfun representation. This length is passed as an extra ar-
gument to the Chebfun constructor to speed up the computations. If we do not do
this, it often happens (especially when there are roots close to the interval) that the
computed Chebyshev coefficients reach a plateau which is still above the Chebfun tol-
erance, and the constructor keeps on generating coefficients until one (accidentally)
falls below the tolerance.

4 Numerical experiments

Both the software and hardware scenes have changed tremendously over the last 30
years, and computations that were unfeasible or far too time-consuming in 1984 have
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Fig. 2 Approximation error
(solid) for the (n,n) CF
approximation to |x| and the
asymptotic error (dashed) of
Varga, Carpenter, Ruttan and
Stahl

become almost trivial in 2010. In this section we illustrate our new CF implementa-
tion with several examples.

We first look at (n,n) rational approximations to f1(x) = |x|. Following New-
man’s original discovery [9] it was conjectured in [24] and proved in [14] that

lim
n→∞ eπ

√
nEnn(|x|; [−1,1]) = 8,

where Enn(|x|; [−1,1]) denotes the error of best uniform approximation to |x| on
[−1,1] by (n,n) rational functions. Figure 2 plots the asymptotic estimate Enn ∼
8e−π

√
n along with the approximation errors of an (n,n) CF approximant, computed

using M= 1000 Chebyshev coefficients. Note how close both curves are to each other,
even though n is small and CF approximants are only near-best.

To illustrate the use of cf for more difficult piecewise smooth functions, let us try
and approximate the function

f2(x) =
∫ x

−1
sign

(
sin(10et )

)
dt.

A Chebfun representation for this function and the (7,7) CF approximant based on
70 Chebyshev coefficients are produced in Matlab with the commands

> x = chebfun(’x’);
> f2 = cumsum(sign(sin(10*exp(x))));
> [p,q] = cf(f2,7,7,70);

The function and its approximant are plotted in Fig. 3. Using more than 70 Chebyshev
coefficients yields no visible difference.

In the next example we compute (n,2) approximants to

f3(x) = tanh(10x).

Figure 4 shows the approximation error for increasing values of n. This example
clearly illustrates the block structure of the CF table. Since f3 is an odd function,
the (n,2) and (n + 1,2) approximants are equal when n is odd, hence the ‘staircase’
shape of the plot.
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Fig. 3 f2 (solid) and its (7,7) CF approximant using 70 Chebyshev coefficients (dashed)

Fig. 4 Error in (n,2) CF approximation to f3(x) = tanh(10x)

The strange artifact at n = 64 and n = 65 is due to ill-conditioning: cf writes
out a warning message that is has detected this. From n = 66 on cf decides that
f3 looks close to rational and it uses Chebyshev-Padé approximation to compute the
approximant. The difference between the (rational) approximant and the function f3

is indeed close to machine precision. It might have been better to use Chebyshev-Padé
also for n = 64 and n = 65, but detecting this automatically is an inherent difficulty
of CF approximation close to machine epsilon.

Our final example is more complicated. For ω � 1 and −1 < c < 1 define

p(x) = π

ω
(x2 − c2), f4(x) = xp(x)

sinhp(x)
.

This function has two sharp spikes at x = ±c caused by poles in the complex plane,
and is difficult to approximate by polynomials. For c = 0.6 and ω = 0.02 the Chebfun
representation of this function has length M = 1682. We compute a (100,10) CF
approximation and plot the error as a function of x, together with the lines ±λ (the
eigenvalue that measures the approximation error). The result is shown in Fig. 5. Note
how the error equi-oscillates beautifully between the two bounds ±λ.
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Fig. 5 Error in (100,10) CF
approximation to f4(x) for
c = 0.6 and ω = 0.02
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