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Part I. Fundamentals

1. Introduction. Many people experienced in numerical computation have en-
countered a remarkable phenomenon: if the composite trapezoidal rule for integration
is applied to a periodic integrand, or an integral over the whole real line, it is often
exponentially accurate. Some have discovered this for themselves. Others learned it
from a textbook or a colleague, though they may not quite recall which, or who.

It appears to have been Poisson, in the 1820s, who first identified this effect [139].
The example Poisson chose has remained a favorite ever since: the perimeter of an
ellipse, which he took to have axis lengths 1/π and 0.6/π, giving the integral

I =
1

2π

∫ 2π

0

√
1− 0.36 sin2 θ dθ.(1.1)

Poisson used this now-standard notation for definite integrals, but apparently it was
not yet standard in the 1820s, for he comments that

pour indiquer [les limites de l’intégrale] en même temps que l’intégrale, nous em-
ploierons la notation très-commode que M. Fourrier a proposée.1

Perhaps in 1826 the spelling of Fourier’s name wasn’t yet standardized either!
The exact solution of (1.1) is

I =
2

π
E(0.36) = 0.90277992777219 . . . ,(1.2)

where E is the complete elliptic integral of the second kind. As trapezoidal rule
approximations we can take

IN =
1

N

N∑
k=1

√
1− 0.36 sin2(2πk/N)

for any positive integer N , or, equivalently, if N is divisible by 4, exploiting the
four-fold symmetry as Poisson did,

IN =
4

N

N/4
′∑

k=0

√
1− 0.36 sin2(2πk/N).

The prime on the summation indicates that the terms with k = 0 and k = N/4 are
multiplied by 1/2. For N = 4, 8, . . . , 20 we get the following rounded results, with
digits that match the exact solution shown in boldface:

1“To indicate the limits of integration at the same time as the integrand, we shall employ the
very convenient notation proposed by Mr. Fourrier.”
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THE EXPONENTIALLY CONVERGENT TRAPEZOIDAL RULE 387

N/4 IN

1 0.9000
2 0.902769
3 0.90277986
4 0.9027799272
5 0.902779927767

The convergence is extraordinarily fast. Poisson saw this, and he computed the result
for N = 16, which requires just three nontrivial function evaluations, to ten digits.
Confusingly, he reported these with a misprint in the second place,

“la valeur approchée de I sera I = 0,9927799272.”

This was certainly just a misprint, since the following eight digits are right, and,
in fact, Poisson showed that his number must be in error by less than 4.84 × 10−6.
Using essentially the Euler–Maclaurin formula, he proved that IN − I decreases as
N → ∞ at least as fast as N−6. In view of the style of mathematical exposition of his
day, we can take this as the observation that the convergence is faster than N−m for
any m > 0. It is not clear whether Poisson realized that the convergence is actually
geometric. In fact, it follows from Theorem 3.2 that for this problem we have

|IN − I | = O(3−N ),

since the integrand has branch points in the complex θ-plane at points lying above and
below the real axis at a distance cosh−1(1/0.6) = log(3). Thus each new row in the
table brings an improvement by nearly two digits, a factor of 34 = 81, as confirmed
in Figure 1.1. One could hardly ask for more, and, indeed, the trapezoidal rule is an
excellent method for computing complete elliptic integrals (see section 17).

0 10 20 30 40 50
10

−100

10
−80

10
−60

10
−40

10
−20

10
0

N/4

|I N
−

I
|

3−N

Fig. 1.1 Convergence of the trapezoidal rule for computing the perimeter of an ellipse, with the error
|IN − I | plotted against N/4 since symmetry permits evaluation of the integrand at just
N/4+1 points (computed in multiple precision arithmetic). The convergence is geometric,
although it is not clear whether Poisson recognized this in the 1820s.
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unit circle

u(z)

[0, 2π]

v(θ)

R

w(x)

Hankel contour

g(s)

Fig. 1.2 Four domains for the geometrically convergent trapezoidal rule and the variable names that
are associated with them throughout this article. (For functions on [−1, 1] or [0, 1], we use
y(ξ).) The first three are the canonical domains considered in sections 2–7. The fourth,
equally important in practice, is the Hankel contour used for evaluation of integrals such as
inverse Laplace transforms in the left half-plane (see sections 15–16). For Hankel contours,
the trapezoidal rule is applied after a change of variables, an idea also used in other contexts
including exponential and double exponential quadrature rules for nonperiodic functions on
an interval (see section 14).

Our aim in the first half of this article is to present the mathematical founda-
tions of the geometrically convergent trapezoidal rule (sections 2–11). The geometric
convergence applies to four canonical classes of analytic functions:

(a) on a circle in the complex plane,
(b) on an interval, periodic,
(c) on the real line, with sufficient decay at ±∞,
(d) on a Hankel contour wrapping around (−∞, 0] in the complex plane.

(Each of classes (a)–(c) further comes in a nonsymmetric or symmetric variant: disk or
annulus; periodic half-plane or periodic strip; half-plane or infinite strip.) Theorems
explaining the fast convergence have been based on four kinds of arguments:

(i) series and aliasing (or, for the real line, transforms and aliasing),
(ii) contour integrals and residue calculus,
(iii) interpolation,
(iv) the Euler–Maclaurin formula and related ideas.

These two lists suggest an array of related theorems and proofs. The case (d) of a
Hankel contour is usually handled by reducing it to case (c), the real line, but even
if we ignore (d), this still leaves twelve types of proofs that might be considered. In
the early sections of this paper we shall give examples of nine of these twelve (see
Table 11.1) as we set forth a collection of these ideas in as systematic a manner
as possible. Our focus is always on geometric rates of convergence associated with
analytic functions, not on the next-order algebraic estimates that depend on behavior
at the edge of analyticity. We are not aware of any previous wide-ranging survey of
this material.
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Interspersed with the foundational material in the first half of the article are
sections detailing a numerical example (section 4) and a brief review of the history
(section 11). Who first noticed the geometric convergence of the trapezoidal rule, and
what theorems were proved along the way? We do not know all the answers, but
there are some clear post-Poisson milestones such as the papers of Turing in 1943 and
Davis in 1959. We summarize what we have found in Table 11.1.

Up to this point one might imagine that the geometrically convergent trapezoidal
rule is a rather isolated topic, more or less a curiosity in the field of numerical analysis.
Our aim in the second half of this article is to show that, in fact, it plays a significant
role in scientific computing. We focus on eight areas of application, from Cauchy
integrals in complex analysis to the solution of integral equations and time-dependent
PDEs (sections 12–19).

A word about terminology. In the context of periodic or infinite domains, there
is little difference between the “trapezoidal” and the “midpoint” or “rectangle” rules,
and we use the first of these terms mainly because it has become more standard.2 If
one makes a distinction, sometimes the trapezoidal variant may have the advantage
that it more readily reuses function values as N is doubled, whereas the midpoint
variant has slightly simpler symmetry properties and no inconvenient divisions by 0
at endpoints after certain changes of variables (section 15). For the purposes of this
article, however, these distinctions are not very important, and we will just speak of
the trapezoidal rule.

2. Integrals over a Circle in the Complex Plane. From the user’s point of view,
integrals of functions periodic on an interval represent perhaps the most basic form
of the exponentially convergent trapezoidal rule. Mathematically, however, integrals
over circles in the complex plane are arguably even simpler. We therefore begin with
this case, though the reader who chooses to move directly to the case of the periodic
interval in section 3 will not lose much. The circle is also the setting of the z-transform,
an indispensable tool in digital signal processing [174].

Let u be a real or complex function defined on the unit circle, which we shall
denote by the abbreviated expression |z| = 1, and, setting z = eiθ, define

I = −
∫
|z|=1

iz−1u(z)dz =

∫ 2π

0

u(eiθ)dθ.(2.1)

(Here and throughout this paper, a complex contour such as |z| = 1 is always to be
understood as traversed once in the counterclockwise direction.) Note that I can be
interpreted as 2π times the mean of u over the unit circle. For any positive integer
N , we define the trapezoidal rule approximation to I by

IN =
2π

N

N∑
k=1

u(zk),(2.2)

where {zk} are the Nth roots of unity, zk = e2πik/N . (Because of the periodicity, no
special factors of 1/2 are needed at the endpoints as one would have with the non-
periodic trapezoidal rule.) This approximation will be exponentially accurate if u is

2Another term often used is “trapezoid rule,” and the British say “trapezium.” Language afi-
cionados may note that whereas English has the distinct words trapezoid (in geometry) and trapeze
(in a circus), other languages such as French and German use a single word for both meanings.
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Fig. 2.1 At the Nth roots of unity, zN , z2N , and so on are indistinguishable from the constant
function 1—the phenomenon of aliasing. The error in the trapezoidal rule on the unit
circle consists in counting a contribution of 2π from each such term in a series for u(z)
instead of the correct value of 0.

analytic in a neighborhood of |z| = 1, i.e., in an annulus. For the simplest argument
we consider first the case in which it is analytic in a disk.

Theorem 2.1. Suppose u is analytic and satisfies |u(z)| ≤ M in the disk |z| < r
for some r > 1. Then for any N ≥ 1,

|IN − I | ≤ 2πM

rN − 1
,(2.3)

and the constant 2π is as small as possible.
We begin with the most elementary proof, summarized in Figure 2.1.
Proof of Theorem 2.1 by Taylor series and aliasing. The function u has the

convergent Taylor series3

u(z) =

∞∑
j=0

cjz
j(2.4)

with coefficients

cj =
1

2πi

∫
|z|=1

z−j−1u(z)dz =
1

2π

∫ 2π

0

e−ijθu(eiθ)dθ.(2.5)

From (2.1) and (2.5) we have

I = −i

∫
|z|=1

z−1u(z)dz = 2πc0,(2.6)

and from (2.2) and (2.4),

IN =
2π

N

∞∑
j=0

cj

N∑
k=1

zjk.(2.7)

If j is a multiple of N , the numbers zjk are all equal to 1, and the second sum in
this formula is equal to N . On the other hand, if j is not a multiple of N , they
are evenly spaced around the unit circle and sum to 0. This is the phenomenon of
aliasing: zj+N , zj+2N , zj+3N , and so on are indistinguishable from zj at the Nth

3The Taylor series in this paper are centered at z = 0, so a more precise term would be Maclaurin
series.
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roots of unity. Thus (2.7) reduces to

IN = 2π

∞∑
j=0

cjN ,(2.8)

which together with (2.6) gives

IN − I = 2π

∞∑
j=1

cjN .(2.9)

To estimate the error, all we need is a bound on the coefficients cjN , which must decay
geometrically since u is analytic in a disk of radius r > 1. For a precise inequality we
can deform the contour of integration in (2.5) to |z| = r′, where r′ < r is arbitrarily
close to r; or if u is analytic in the closed disk, we can simply take r′ = r. This leads
to the bound known as Cauchy’s estimate,

|cj| ≤ Mr−j , j ≥ 0.(2.10)

Thus (2.9) implies

|IN − I | ≤ 2πM

∞∑
j=1

r−jN ,

and summing this series gives (2.3). This completes the proof apart from the assertion
that the constant 2π cannot be improved. For this it is enough to consider u(z) = zN

and any r > 1, which gives I = 0, IN = 2π, M = rN , and thus |IN − I | = 2πM/rN .
As N → ∞, this is asymptotic to the bound (2.3).

The proof just given represents one of the two most fundamental approaches to
establishing theorems about exponential accuracy of the trapezoidal rule. The other,
superficially a more surprising and ingenious method, is to use contour integrals and
residue calculus. The idea, which can be traced at least in part to Cauchy in 1826,4

goes as follows. We wish to compare an integral with a sum. We do this by converting
the sum to another integral, so that we are left with the comparison of two integrals.
How does one convert a sum to an integral? By multiplying by a function that has
simple poles at the summation points, and then using residue calculus. In other
words, every quadrature formula applied to an analytic function u is equivalent to a
contour integral of m(z)u(z) for some rational or meromorphic function m, known as
a characteristic function for the quadrature formula. The nodes are the poles of m
inside the contour, and the weights are the residues times 2πi. We shall use arguments
of this kind many times in this article, and the characteristic functions involved are
summarized in Table 13.1.

Proof of Theorem 2.1 by residue calculus. The function

m(z) =
−iz−1

1− z−N
(2.11)

has simple poles at the Nth roots of unity with residues equal to −i/N , i.e., the
weights of the trapezoidal rule (2.2) divided by 2πi. By residue calculus, this implies

IN =

∫
|z|=r′

m(z)u(z)dz(2.12)

for any r′ with 1 < r′ < r. Similarly, in (2.6), since u is analytic, we can enlarge

4For comments about the history, see [170, Chapter 11].
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|z| = 1 to the circle |z| = r′ without changing the value. Thus, combining (2.6) and
(2.12) gives a representation of IN − I as an integral,

IN − I =

∫
|z|=r′

[m(z) + iz−1]u(z)dz =

∫
|z|=r′

iz−1

1− zN
u(z)dz.(2.13)

From here (2.3) follows.
Why would one want to integrate a function over a circle in the complex plane?

As we shall discuss in section 12, one reason is the Cauchy integrals and other kinds
of contour integrals that are the basis of so much of complex function theory, with
applications throughout applied mathematics. The simplest case of such an integral,
already alluded to, is the mean value theorem for analytic functions: if u is analytic
in a neighborhood of the unit disk, then in the notation of (2.1), u(0) = I/2π. We
may illustrate this identity by an example. The function

u(z) =
z

ez − 1
(2.14)

has a removable singularity at z = 0; if we define u(0) = 1, it becomes analytic
throughout the disk |z| < 2π. If we evaluate u(z) for small values of z on a computer
in 16-digit arithmetic, however, there is cancellation error and we may lose many
digits of accuracy. By contrast, full precision is achieved by taking a mean over 18
points on the unit circle. We shall consider a more extreme example of this kind
in section 12.

If u(0) is to be calculated by a mean over a circle, one might ask, why should that
circle have radius 1? Any other radius that stays within the domain of analyticity is
mathematically acceptable, and in the first integral of (2.1), this invariance is reflected
in the presence of the scale-dependent term−iz−1, which balances the scale-dependent
contribution from dz. If |z| = 1 is replaced by |z| = ρ for some ρ > 0, the change that
results is that the powers zNk , z2Nk , and so on of (2.7) sum to Nρ j instead of just N ,
and the summand in (2.8) and (2.9) changes from cjN to cjNρ jN . The end result is
that (2.3) becomes

|IN − I | ≤ 2πM

(r/ρ)N − 1
.(2.15)

Thus, at least if cancellation errors on a computer are not a concern, the trapezoidal
rule converges geometrically as N → ∞ at a rate determined by r/ρ, and it is ad-
vantageous to take ρ as small as possible. Of course, this conclusion only applies
if u is analytic throughout a disk. For more about the choice of ρ, see section 12
and [24, 50, 51].

Let us now turn to the case of a function u(z) on the unit circle that may be
analytic not throughout a disk, but just in an annulus. For example, if u(z) is real
and nonconstant on the circle, this will necessarily be the case. For simplicity, we
suppose that the annulus of analyticity is symmetric about the unit circle, taking
the form r−1 < |z| < r for some r > 1. The assumption of boundedness in such an
annulus is enough to give the same result as before, except that the factor 2π now
doubles to 4π.

Theorem 2.2. Suppose u is analytic and satisfies |u(z)| ≤ M in the annulus
r−1 < |z| < r for some r > 1. Then for any N ≥ 1,

|IN − I | ≤ 4πM

rN − 1
,(2.16)

and the constant 4π is as small as possible.
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Proof of Theorem 2.2 by Laurent series and aliasing. The proof of Theorem 2.1 by
Taylor series generalizes readily to a proof of Theorem 2.2 by Laurent series. Equations
(2.4)–(2.8) continue to hold, except now the limits of summation are j = −∞ to ∞.
Equation (2.9) becomes

IN − I = 2π

∞∑
j=1

(cjN + c−jN ).(2.17)

We can complete the proof by generalizing (2.10) to negative as well as positive j,

|cj | ≤ Mr−|j|, −∞ < j < ∞,(2.18)

an inequality that follows in the case j < 0 from shrinking |z| = 1 to 1/r′ for r′

arbitrarily close to r. Finally, concerning the sharpness of the constant 4π, it is
enough to consider the example u(z) = zN + z−N and any r > 1, which gives I = 0,
IN = 4π, M = rN + r−N , and thus |IN − I | ∼ 4πM/rN as N → ∞.

An alternative approach to Theorem 2.2 is to note that any function u analytic
in the annulus r−1 < |z| < r can be split into u = u+ + u−, where the analytic part
u+ is analytic in |z| < r and the coanalytic part u− is analytic in r−1 < |z| ≤ ∞.
Since u+ and u− can both be represented by Cauchy integrals, i.e., as appropriately
weighted means of u(z) on circles, they satisfy |u±(z)| ≤ M in the annulus, and from
here, Theorem 2.2 can be obtained as a corollary of Theorem 2.1.

Another alternative is to prove Theorem 2.2 directly by residue calculus. This
can be done following the pattern of the proof of Theorem 2.1 by residue calculus,
but replacing the characteristic function m(z) of (2.11) by the function listed in the
(2,1) position of Table 13.1. Such an argument is spelled out in full in section 3 for
the equivalent problem of integration of a function periodic on a real interval.

Equation (2.17) (or Theorem 2.2 itself, after some easy estimates) has the follow-
ing interesting corollary.

Corollary 2.3. If u is a polynomial or Laurent polynomial of degree n (i.e., a
linear combination of z−n, . . . , zn), the N -point trapezoidal rule (2.2) is exact for all
N > n.

There is a sharpening of Theorems 2.1 and 2.2 that is often applicable. If u is
analytic but not bounded in the open disk |z| < r, Theorem 2.1 implies convergence
at the rate O((r − ε)−N ) for any ε > 0, but not necessarily O(r−N ). However, if the
singularities of u on the circle |z| = r are just simple poles, the convergence rate is
O(r−N ) after all. In the proof by Taylor series and aliasing, this follows from the fact
that the Taylor coefficients associated with a pole (z − z0)

−1 with |z0| = r are of size
O(r−n); compare [161, eq. (4.3)] and [170, Exercise 8.15]. In the proof by contour
integrals, we can integrate over a slightly larger circle |z| = r+ε for some ε > 0, while
also including keyhole contributions from small circles around each pole with |z| = r;
compare [42]. The O(r−N ) convergence of the trapezoidal rule also applies if there
are a finite number of singularities on |z| = r that are weaker than poles in the sense
that u satisfies u(z) = O(|z − ζ|α) for |z| ≤ r with α > −1 at each such singularity ζ.
This can be proved by noting that since |u| is integrable along |z| = r across such a
singularity, (2.5) leads to

|cj | =
1

2π

∣∣∣∣∣
∫
|z|=r

z−j−1u(z)dz

∣∣∣∣∣ ≤ 1

2π
‖z−j−1‖∞‖u‖1 =

r−j−1

2π
‖u‖1(2.19)

by Hölder’s inequality, with the 1- and ∞-norms defined over |z| = r. By (2.9), this
implies |IN − I| ≤ r−1‖u‖1/(rN − 1). All these observations for Theorem 2.1 and the
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394 LLOYD N. TREFETHEN AND J. A. C. WEIDEMAN

disk |z| < r also apply with obvious modifications for Theorem 2.2 and the annulus
r−1 < |z| < r.

In closing this section we note that in applications, there is often a symmetry
that enables one to cut the number of function evaluations for the trapezoidal rule
approximately in half. On the unit circle, this happens if u(z) = u(z).

3. Integrals over a Periodic Interval. Having treated integrals over a circle in
section 2, we now turn to the case of an integral of a function periodic on an interval.
This is essentially the same problem, and one can be reduced to the other by a change
of variables.

Let v be a real or complex 2π-periodic function on the real line, and define

I =

∫ 2π

0

v(θ)dθ.(3.1)

For any positive integer N , the trapezoidal rule approximation now takes the form

IN =
2π

N

N∑
k=1

v(θk),(3.2)

where θk = 2πk/N . The exponential convergence of such approximations is just as in
Theorems 2.1 and 2.2. We begin with the analogue of Theorem 2.1, whose hypothesis
of analyticity in a disk becomes analyticity in a half-plane. Like Theorem 2.1, this
theorem pertains to functions that are not real, unless they are constant. If v(θ) is
real, Theorem 3.2 is the relevant one.

Theorem 3.1. Suppose v is 2π-periodic and analytic and satisfies |v(θ)| ≤ M in
the half-plane Imθ > −a for some a > 0. Then for any N ≥ 1,

|IN − I | ≤ 2πM

eaN − 1
,(3.3)

and the constant 2π is as small as possible.
Proof as a corollary of Theorem 2.1. The change of variables z = eiθ, u(z) = v(θ)

transplants the problem to 0 < |z| < r with r = ea. To apply Theorem 2.1, all we need
is to verify that u can be extended to be analytic at z = 0, i.e., that the singularity
at z = 0 is removable. This follows via Cauchy integrals from the boundedness of u;
see, e.g., [2, Theorem 7, Chapter 4] or [119, Theorem II.1.5].

Proof of Theorem 3.1 by Fourier series and aliasing. Another approach is to
repeat the proof of Theorem 2.1 but now in the transplanted variables, with the
Taylor series turning into a Fourier series. We argue as follows. Since v is analytic
(much less smoothness than this would suffice, such as Lipschitz continuity), it has
the uniformly and absolutely convergent Fourier series

v(θ) =

∞∑
j=−∞

cje
ijθ,(3.4)

with coefficients

cj =
1

2π

∫ 2π

0

e−ijθv(θ)dθ.(3.5)

However, all the coefficients cj with j < 0 are zero, so that we really have

v(θ) =

∞∑
j=0

cje
ijθ.(3.6)
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0 π 2π

Fig. 3.1 On an N-point equispaced grid in [0, 2π], eiNθ , e2iNθ , and so on are indistinguishable from
the constant function 1. (This image shows the real part.) The error in the trapezoidal
rule for functions periodic on an interval comes from counting a contribution of 2π from
each such term instead of the correct contribution of 0.

To see that cj = 0 for j < 0, we can consider the formula (3.5) for some j < 0 and
shift the interval [0, 2π] up a distance b into the upper half of the complex plane. The
contributions from the vertical sides vanish by periodicity, and we get |cj| ≤ Me−|j|b

for any b > 0 and j < 0, hence cj = 0. From (3.1) and (3.5) we now have

I =

∫ 2π

0

v(θ)dθ = 2πc0,(3.7)

and from (3.2) and (3.6), interchanging summations as is permitted since the series
(3.4) and (3.6) are absolutely convergent, we get

IN =
2π

N

∞∑
j=0

cj

N∑
k=1

e2πikj/N .(3.8)

The second sum in this formula is equal to N when j is a multiple of N—this is
aliasing in its more familiar context (see Figure 3.1)—and equal to 0 otherwise. Thus
(3.8) becomes

IN = 2π

∞∑
j=0

cjN ,(3.9)

which together with (3.7) gives

IN − I = 2π

∞∑
j=1

cjN .(3.10)

To derive a bound on the coefficients cj in this formula, we can shift the interval
[0, 2π] again in the complex plane. This time we shift it down a distance a′ < a into
the lower half-plane, where a′ may be arbitrarily close to a, and the resulting bound
is

|cj | ≤ Me−ja, j ≥ 0.(3.11)

Thus (3.10) implies

|IN − I | ≤ 2πM

∞∑
j=1

e−jaN ,(3.12)
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0 2π

−ia′

Fig. 3.2 Integration contour Γ for the proof of Theorem 3.1 by residue calculus. The contributions
from the vertical sides cancel, reducing the calculation to an integral from π/N − ia′ to
2π + π/N − ia′.

and summing this series gives (3.3). The sharpness of the factor 2π can be established
by considering the example v(θ) = eiNθ.

Proof of Theorem 3.1 by residue calculus. The characteristic function

m(θ) =
1

1− e−iNθ
(3.13)

has simple poles at the equispaced points θk = 2πk/N with residues equal to −i/N ,
i.e., the weights of the trapezoidal rule (3.2) divided by 2πi. By residue calculus, this
implies

IN =

∫
Γ

m(θ)v(θ)dθ(3.14)

if Γ is a positively oriented contour enclosing the poles in (0, 2π]. A convenient choice
of Γ is the three-segment contour extending from π/N + i∞ to π/N − ia′, then to
2π + π/N − ia′, then to 2π + π/N + i∞, for any a′ with 0 < a′ < a (see Figure 3.2).
Subtracting I gives

IN − I =

∫ 2π+ π
N −ia′

π
N −ia′

(
1

1− e−iNθ
− 1

)
v(θ)dθ =

∫ 2π+ π
N −ia′

π
N −ia′

v(θ)

eiNθ − 1
dθ,(3.15)

where the contributions from the sides of the infinite strip cancel since v is 2π-periodic,
implying |IN − I| ≤ 2πM/(ea

′N − 1) for any a′ < a, and this implies (3.3).
The next theorem is an analogue of Theorem 2.2, involving an annulus, which

now becomes a strip of half-width a.
Theorem 3.2. Suppose v is 2π-periodic and analytic and satisfies |v(θ)| ≤ M in

the strip −a < Imθ < a for some a > 0. Then for any N ≥ 1,

|IN − I | ≤ 4πM

eaN − 1
,(3.16)

and the constant 4π is as small as possible.
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−ia′

ia′

0 2π

Fig. 3.3 Integration contour Γ for the proof of Theorem 3.2 by residue calculus. The periodic half-
plane of Figure 3.2 now becomes a periodic strip, and the characteristic function m(θ)
changes as indicated in (3.19) and Table 13.1.

Proof by Fourier series and aliasing. The proof of Theorem 2.2 generalizes imme-
diately. Equations (3.6)–(3.9) continue to hold with the limits of summation changed
to j = −∞ to ∞. Equation (3.10) becomes

IN − I = 2π
∞∑
j=1

(cjN + c−jN ),(3.17)

and we complete the proof by generalizing (3.11) to

|cj | ≤ Me−|j|a, −∞ < j < ∞,(3.18)

which follows in the case j < 0 from lowering [0, 2π] to [0, 2π]− ia′ for a′ arbitrarily
close to a.

Proof of Theorem 3.2 by residue calculus. The characteristic function

m(θ) = − i
2 cot(Nθ/2) = 1

2

1 + e−iNθ

1− e−iNθ
(3.19)

has simple poles at the equispaced points θk = 2πk/N with residues equal to −i/N ,
i.e., the weights of the trapezoidal rule (3.2) divided by 2πi. By residue calculus, this
implies

IN =

∫
Γ

m(θ)v(θ)dθ(3.20)

if Γ is a positively oriented contour enclosing the poles in (0, 2π]. This time for Γ we
choose the rectangle shown in Figure 3.3, extending from π/N + ia to π/N − ia′, then
to 2π + π/N − ia′ and 2π + π/N + ia′, for any a′ with 0 < a′ < a. Over the same
contour, the true integral I can be written

I =

∫
Γ

μ(θ)v(θ)dθ,(3.21)

where μ(θ) is defined by

μ(θ) =

{− 1
2 , Im(θ) > 0 ,

1
2 , Im(θ) < 0 .

(3.22)

The contributions from the ends cancel by periodicity, so subtracting these two for-
mulas gives

IN − I = 1
2

∫ 2π+ π
N −ia′

π
N −ia′

(
1 + e−iNθ

1− e−iNθ
− 1

)
v(θ)dθ− 1

2

∫ 2π+ π
N +ia′

π
N +ia′

(
1 + e−iNθ

1− e−iNθ
+ 1

)
v(θ)dθ,
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that is,

IN − I = −
∫ 2π+ π

N −ia′

π
N −ia′

(
1

eiNθ − 1

)
v(θ)dθ −

∫ 2π+ π
N +ia′

π
N +ia′

(
1

1− e−iNθ

)
v(θ)dθ.(3.23)

Each integral is readily bounded by 2πM/(ea
′N − 1) for any a′ < a, and this leads to

(3.16).
Theorems 3.1 and 3.2 assume that v has period 2π, but of course this parameter

can be altered. If v has period T instead, (3.16) changes to

|IN − I | ≤ 2TM

e2πaN/T − 1
.(3.24)

Equation (3.17) has a corollary concerning what engineers call band-limited func-
tions.

Corollary 3.3. If v is a trigonometric polynomial of degree n (a linear combi-
nation of e−inθ, . . . , einθ), the N -point trapezoidal rule (3.2) is exact for all N > n.

This result can be interpreted as follows. If a uniform grid samples a periodic
function finely enough that all Fourier components are sampled with more than one
point per wavelength, then the trapezoidal rule is exact for that function. Why do
we not need twice as many points, the famous “two points per wavelength” condition
known as the Nyquist limit? (We might also have asked this question in connection
with Corollary 2.3.) The reason is that although waves that are sampled with between
one and two points per wavelength are aliased incorrectly to smoother waves on the
grid—e.g., e1.5iNθ looks like e−0.5iNθ on the N -point periodic grid in (0, 2π]—these
aliases still have nonzero wave number and hence integrate to the correct value of
zero. We shall return to this matter in sections 8 and 12.

As explained in section 2, the periodic trapezoidal rule achieves O(e−aN ) conver-
gence even for unbounded analytic functions in the strip of half-width a, so long as
any singularities with |Imz| = a are just simple poles or weaker.

Note that another way to write the exponential decay factor e−aN is as e−2πa/h,
where h = 2π/N is the grid spacing between adjacent sample points. This formulation
highlights the crucial quantity controlling the exponential convergence of the periodic
trapezoidal rule: a/h, the ratio of the half-width of the strip of analyticity to the grid
spacing.

4. Example: Integral of a Periodic Entire Function. Here is an example of the
periodic trapezoidal formula in action. Suppose we want to evaluate the integral

I =

∫ 2π

0

ecos(θ)dθ,

whose exact value is I = 2πI0(1) = 7.95492652101284 . . . , where I0 is a Bessel func-
tion. As trapezoidal rule approximations, following (3.2), we can take

IN =
2π

N

N∑
k=1

ecos(2πk/N)(4.1)

for any positive integer N , and some numerical results (rounded) are as follows:
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N IN

1 17.1
2 9.7
3 8.23
4 7.989
5 7.9583
6 7.95520
7 7.954947
8 7.9549278
9 7.954926590
10 7.9549265245
11 7.95492652117
12 7.9549265210194

(If symmetry is used, the number of evaluations can be cut approximately in half.)
The convergence looks approximately exponential, with each increase in N yielding
about one new digit. Actually, it is slightly better than exponential since, unlike
the integrand of our opening example (1.1), exp(cos θ) is entire, that is, analytic
throughout the complex plane. To apply Theorem 3.2, we note that |ecos(θ)| takes a
maximum in the strip −a ≤ Imθ ≤ a at θ = ±ia, where its value is cosh(a). The
theorem accordingly tells us that the bound

|IN − I | ≤ 4πecosh(a)

eaN − 1
(4.2)

holds for any value of a. Calculus shows that the bound is minimized for a value of a
close to a = log(2N), giving cosh(a) = N + 1/4N and

|IN − I | ≤ 4πeN+1/(4N)

(2N)N − 1
∼ 4π

( e

2N

)N
, N → ∞.(4.3)

For N = 10, for example, this estimate is 2.7 × 10−8, not far from the actual error
3.5 × 10−9 in the table. This example is also considered in [179] and [26, Example
8.2.1].

5. Integrals over the Real Line. Now we turn to the case of integration over
the whole real line. In part, this is a small step from periodic functions, with Fourier
series replaced by Fourier transforms. New questions arise, however, because for the
discussion to make sense, the integrand must decay sufficiently rapidly.

Let w be a real or complex function on the real line, and define

I =

∫ ∞

−∞
w(x)dx.(5.1)

For any h > 0, define the trapezoidal rule approximation by

Ih = h
∞∑

k=−∞
w(xk),(5.2)

where xk = kh. For the theorems we consider w will be smooth and decay at infinity,
so the existence of the integral and the sum will be assured.
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400 LLOYD N. TREFETHEN AND J. A. C. WEIDEMAN

Before proving a theorem, let us look at a famous original example in this area
[67, 127]:

I =
1√
π

∫ ∞

−∞
e−x2

dx = 1.(5.3)

Here is what we find as h gently diminishes (rounded results):

h Ih

2π/1 3.5
2π/2 1.8
2π/3 1.21
2π/4 1.037
2π/5 1.0039
2π/6 1.00025
2π/7 1.0000096
2π/8 1.00000023
2π/9 1.0000000032
2π/10 1.000000000028
2π/11 1.00000000000015
2π/12 1.00000000000000044

The convergence is amazingly fast, with 4-digit accuracy for h ≈ 1 and 16 digits for
h ≈ 0.5 (the precise rate is given below). The numbers in this table are in principle
infinite sums, but since exp(−x2) decays rapidly, the series (5.2) can be truncated
at quite small |k| with negligible effect. The approximation of the final line can
be obtained by adding up just 23 numbers (12 if symmetry is used). The matter
of how best to truncate (5.2) is considered in the next section, which analyzes the
approximation

I
[n]
h = h

n∑
k=−n

w(xk).(5.4)

In sections 2 and 3 we began with nonsymmetric domains of analyticity (disk,
periodic half-plane) before turning to symmetric ones (annulus, periodic strip). Here,
we reverse the pattern and begin with the symmetric case.

Theorem 5.1. Suppose w is analytic in the strip |Im(x)| < a for some a > 0.
Suppose further that w(x) → 0 uniformly as |x| → ∞ in the strip, and for some M,
it satisfies ∫ ∞

−∞
|w(x + ib)|dx ≤ M(5.5)

for all b ∈ (−a, a). Then, for any h > 0, Ih as defined by (5.2) exists and satisfies

|Ih − I | ≤ 2M

e2πa/h − 1
,(5.6)

and the quantity 2M in the numerator is as small as possible.
Note that from the assumption that w decreases to 0 as |x| → ∞ in the strip, it

follows by Cauchy integrals that the same holds for all the derivatives of w. It also
follows that w(x + ib) is not only in L1, but is also bounded and hence in L2 too
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for each b with |b| < a. The essential idea of our first proof is related to one of the
Paley–Wiener theorems [136]: under appropriate assumptions, a function analytic in
a strip has an exponentially decaying Fourier transform.

Outline of proof by Fourier transform and aliasing. Since w is integrable, its
Fourier transform

ŵ(ξ) =
1

2π

∫ ∞

−∞
e−iξxw(x)dx(5.7)

is a uniformly continuous function of ξ ∈ R. From (5.1) and (5.7) we have

I = 2πŵ(0).(5.8)

The accuracy of the trapezoidal rule follows from the corresponding formula for Ih,
known as the Poisson summation formula:

Ih = 2π

∞∑
j=−∞

ŵ(2πj/h).(5.9)

A discussion of the Poisson summation formula can be found in [74] and many other
places, but generally with stricter hypotheses on w. We do not know a reference that
asserts its validity in the present case, so we shall just take (5.9) as given, hence the
heading “Outline of proof.”

Subtracting (5.8) from (5.9) gives

Ih − I = 2π

∞∑
j=−∞
j �=0

ŵ(2πj/h).(5.10)

For a bound on ŵ(ξ), again following section 3, we shift the real axis up or down a
distance a′ < a into the upper or lower half-planes, depending on whether ξ < 0 or
ξ > 0. Here a′ may be arbitrarily close to a. Hence one obtains from (5.5) and (5.7)

|ŵ(ξ)| ≤ 1

2π
Me−|ξ|a(5.11)

(this is the Paley–Wiener result). Again the assumption w(x) → 0 in the strip ensures
that this shift does not change the value of (5.7). Thus (5.10) implies

|Ih − I | ≤ 2M

∞∑
j=1

e−2πja/h,

and summing this series gives (5.6).
To prove sharpness of the quantity 2M , for any h, consider the function

w(x) =
cos(2πx/h)

x2 + L2
, L > 0.

For this function, I = (π/L) exp(−2πL/h) and Ih = (π/L) coth(πL/h); hence Ih−I ∼
π/L as h → 0. On the other hand, for any a with 0 < a < L,∫ ∞

−∞
|w(x ± ia)|dx =

∫ ∞

−∞

√
cos2(2πx/h) cosh2(2πa/h) + sin2(2πx/h) sinh2(2πa/h)

(x2 − a2 + L2) + 4a2x2
dx

≤ cosh(2πa/h)

∫ ∞

−∞

dx√
(x2 − a2 + L2)2 + 4a2x2

.
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−ia′

ia′
Γ+

Γ−

−nh nh

Fig. 5.1 Integration rectangle Γ for the estimation of Ih− I in (5.15), with vertices ±(n+ 1
2
)h+ ia′

and ±(n+ 1
2
)h− ia′. The contributions from the vertical sides vanish in the limit n → ∞,

reducing the calculation to two integrals, one from −∞− ia′ to ∞− ia′ and the other from
−∞+ ia′ to ∞+ ia′. If w is real on the real axis, these two integrals can be combined into
one as in (5.16).

The latter integral (which can be evaluated as an elliptic function) is bounded from
above by π/L (which corresponds to a = 0), so we can take M = (π/L) cosh(2πa/h).
The error bound in (5.6) now becomes

2M

e2πa/h − 1
=

2(π/L) cosh(2πa/h)

e2πa/h − 1
,

and the right-hand side is asymptotic to π/L in the limits L → 0, h → 0, with
h = o(L).

Proof of Theorem 5.1 by residue calculus. The function

m(x) = − i

2
cot
(πx

h

)
(5.12)

has simple poles at x = 0,±h,±2h, . . . , with residues all equal to h/(2πi). By residue
calculus, this implies that for any integer n,

I
[n]
h =

∫
Γ

m(x)w(x)dx,(5.13)

where I
[n]
h denotes the truncated trapezoidal rule (5.4) and Γ is a positively oriented

contour enclosing the poles in [−nh, nh]. A convenient choice of Γ is the rectangular
contour with vertices ±(n + 1

2 )h + ia′ and ±(n + 1
2 )h − ia′ for any a′ with 0 <

a′ < a (see Figure 5.1). Let Γ+ and Γ− be the parts of Γ in the upper and lower
half-planes, respectively. By Cauchy’s theorem, the integral of w(x) on the interval
[−(n + 1

2 )h, (n + 1
2 )h] can be evaluated along Γ− without changing its value, or,

equivalently, along Γ+, but with negative orientation. Writing the integral as the
average along these two paths and subtracting this from (5.13) gives

h

n∑
k=−n

w(kh) −
∫ (n+ 1

2 )h

−(n+ 1
2 )h

w(x)dx(5.14)

= −1

2

∫
Γ−
(1 + i cot(πx/h))w(x)dx +

1

2

∫
Γ+

(1− i cot(πx/h))w(x)dx

= −
∫
Γ−

w(x)

1− e2πix/h
dx+

∫
Γ+

w(x)

1− e−2πix/h
dx.
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The contributions from the sides of the rectangle Γ vanish in the limit n → ∞. To
see this, consider the following integral on one of the four half-sides:∣∣∣∣∣

∫ (n+ 1
2 )h+ia′

(n+ 1
2 )h

w(x)

1− e−2πix/h
dx

∣∣∣∣∣ ≤ 1

2

∫ a′

0

∣∣∣w((n+ 1
2 )h+ iy)

∣∣∣ dy,
since on the segment of integration, |1 − exp(−2πix/h)| = 1 + exp(2πIm(x)/h) ≥ 2.
This vanishes as n → ∞ under the decay assumptions on w. Taking the limit as
n → ∞ in (5.14) leads to

Ih − I = −
∫ ∞−ia′

−∞−ia′

w(x)

1− e2πix/h
dx−

∫ ∞+ia′

−∞+ia′

w(x)

1− e−2πix/h
dx,(5.15)

and from here (5.6) follows.
We note that the assertions of the theorem concern the series (5.2), which is

properly defined not by a limit of symmetric sums from −n to n as n → ∞, as we
have considered, but by a limit of arbitrary sums from −n− to n+ as n−, n+ → ∞.
However, our argument did not use the symmetry, so it establishes the theorem as
stated.

It is straightforward to generalize the error bounds of this theorem to the case
where w is analytic in a strip unsymmetric about the real axis, or to specialize it to
the case where w is real on the real axis. In the former case, assuming analyticity in
the strip −a− < Im(x) < a+ for some a+, a− > 0, one obtains from (5.15)

|Ih − I | ≤ M+

e2πa+/h − 1
+

M−
e2πa−/h − 1

,

where ∫ ∞

−∞
|w(x + ib−)|dx ≤ M−,

∫ ∞

−∞
|w(x+ ib+)|dx ≤ M+

for all b− ∈ (−a−, 0) and b+ ∈ (0, a+). We shall use this form of the error bound when
we discuss the numerical inversion of the Laplace transform, for there the analytic
properties of the integrand in the upper and lower half-planes are quite different
(section 15).

On the other hand, when w is real on the real axis, symmetry can be used to
simplify (5.15) to

Ih − I = −2Re

{∫ ∞+ia′

−∞+ia′

w(x)

1− e−2πix/h
dx

}
,(5.16)

which is the error formula given in [120]. The use of asymptotic methods for estimating
this integral was proposed in [67, 173]. For example, for the famous integral (5.3),

it was shown in [67] that the absolute error for small h is approximately 2e−π2/h2

,
which agrees perfectly with the results in the table below (5.3). See also section 6.

We state the half-plane variant of Theorem 5.1 without proof.
Theorem 5.2. Suppose w is analytic in the half-plane Im(x) > −a for some

a > 0, with w(x) → 0 uniformly as |x| → ∞ in that half-plane, and for some M , it
satisfies ∫ ∞

−∞
|w(x + ib)|dx ≤ M(5.17)
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for all b > −a. Then for any h > 0, Ih exists and satisfies

|Ih − I | ≤ M

e2πa/h − 1
,(5.18)

and the quantity M in the numerator is as small as possible.
Here is the analogue for the real line of Corollaries 2.3 and 3.3 concerning band-

limited functions.
Corollary 5.3. If w is a function satisfying the conditions of Theorem 5.1

whose Fourier transform ŵ has compact support in [−2π/H, 2π/H ] for some H > 0,
the trapezoidal rule (5.2) is exact for all h ≤ H.

This section has considered integrals over the real line as defined by (5.1). A
simple yet powerful variation on this theme is the Hilbert transform integral

I = p.v.

∫ ∞

−∞

w(x)

x
dx,(5.19)

where p.v. denotes the principal value, which arises in numerous applications [76,
Chapter 14]. The trapezoidal rule converges at essentially the same rate for (5.19) as
for (5.1), provided the singularity at x = 0 is placed midway between two grid points,
so that the trapezoidal rule becomes the midpoint rule. Kress and Martensen [101]
prove a theorem to this effect by subtracting w(0) exp(−x2)/x from the integrand
to remove the singularity. The Hilbert transform on the unit circle is considered
in [53, 56, 147].

6. Optimal Step Sizes and Convergence Rates for the Real Line. Both The-
orems 5.1 and 5.2 are based on the infinite sum (5.2), whose evaluation in principle
involves an infinite amount of work. Provided the integrand decays rapidly, it is com-
mon practice to truncate the sum at a value of |k| determined by the rate of decay of
w(x) as |x| → ∞. To determine the optimal truncation point, we define the truncated
approximation I

[n]
h as in (5.4) and write

|I [n]
h − I | ≤ |Ih − I |+ |Ih − I

[n]
h |.

The discretization error |Ih − I | can be estimated with Theorem 5.1 or 5.2 and de-
creases as h → 0. The truncation error |Ih − I

[n]
h | can be estimated as the maximum

of the magnitudes of the integrand at the truncation points x = ±hn, provided the
terms in the trapezoidal sum decay sufficiently rapidly. Estimates for the optimal
truncation point can be obtained accordingly by balancing the orders of magnitude
of the discretization and truncation error estimates. Of course, it is not necessary to
truncate the infinite sum symmetrically at ±nh as in (5.4), but we consider just this
case for simplicity.

It is interesting to highlight three special cases of interest, as summarized in
Table 6.1. The first two of these functions both have singularities at x = ±i, and
hence the theory of section 3 can be used to establish a discretization error of order
O(e−2π/h) in each case. The third function has no singularities in the finite complex
plane, and finding the discretization error involves a minimization argument already
used in section 4. Brief details are given below. For the second and third examples
in the table, w(x) exhibits Gaussian decay as |x| → ∞, while the first decays only
exponentially.

By balancing the estimates for the discretization and truncation errors in Ta-
ble 6.1, formulas for the optimal step size and the optimal rate of convergence can
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Table 6.1 Optimal convergence rates and step sizes in the numerical calculation of
∫∞
−∞ w(x)dx by

the truncated trapezoidal rule (5.4) for three typical functions w(x). These are prototyp-
ical examples of functions that are analytic in a strip with exponential decay, analytic in
a strip with Gaussian decay, and entire with Gaussian decay.

w(x) Disc. error Trunc. error Optimal h Optimal rate

(1 + x2)−1 exp(−x tanh x) O(e−2π/h) O(e−nh) (2π/n)1/2 O(e−(2πn)1/2 )

(1 + x2)−1/2 exp(−x2) O(e−2π/h) O(e−(nh)2) (2π/n2)2/3 O(e−(2πn)2/3 )

exp(−x2) O(e−π2/h2
) O(e−(nh)2 ) (π/n)1/2 O(e−πn)

10
0

10
1

10
2

10
3

10
4

10
5

1e−1000

1e−100

1e−10

1e−1

e−x tanh(x)

1+x2

e−x2

√
1+x2

e−x
2

n

|I
−
I[
n
]

h
|

Fig. 6.1 Actual (dots) and estimated (solid) convergence curves for the three examples of Table 6.1.

be derived. Note how the final column shows increasingly fast convergence, with
exponents proportional to n1/2, n2/3, and n as the integrands grow better behaved.
Figure 6.1, based on high precision computations in Maple, confirms these predictions.

The third function in the table, w(x) = exp(−x2), is the famous example already
discussed in the last section. Its discretization error can be derived by noting that for
any a > 0,

|Ih − I | = O(ea
2−2πa/h), h → ∞,

where we have used the fact that the quantity M in Theorem 5.1 is equal to exp(a2).
Following reasoning as in (4.2)–(4.3), we see that the choice of a that yields the tightest

estimate is a = π/h, leading to |Ih − I | = O(e−π2/h2

), as listed in the table.
If the integrand w(x) does not decay at least exponentially as |x| → ∞, the

truncated trapezoidal rule will be less efficient. For example, for the Runge function
w(x) = (1 + x2)−1, it takes thousands of points in (5.4) to achieve a few digits of
accuracy. In such cases there are two courses of action. First, it is often possible to
convert a slowly decaying integrand into a quickly decaying one by an appropriate
change of variables. Such transformation methods are discussed in section 14. A
particular one, a sinh mapping, is mentioned at the end of section 14 and applied to
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solve a PDE in section 16. An alternative strategy for dealing with slowly decaying
integrands is to apply convergence acceleration to the sequence of partial sums of
(5.4) [70]. This effectively eliminates the truncation error, so that the total error is
dominated by the discretization error.

7. Polynomial, Trigonometric, and Sinc Interpolation. We have followed two
routes to the exponentially convergent trapezoidal rule: series (or transforms, in the
case of the real line) and contour integrals. A third idea is to make use of the following
property: the trapezoidal rule approximation is the exact integral of an interpolant
through the given data values. On the unit circle, the interpolant is a polynomial
or a Laurent polynomial. On the periodic interval [−π, π], it is a one-sided or two-
sided trigonometric polynomial, i.e., a linear combination of functions eikx for various
integers k either of a single sign or both positive and negative. On the real line, it is
an infinite series of translates of sinc functions. These ideas are sketched in Figure 7.1.

This section is unfortunately rather dry, as it seemed desirable to set down six ver-
sions of the formulas corresponding to three variants of the trapezoidal rule (complex
unit circle, periodic interval, and real line) and two types of domains of analyticity
(nonsymmetric and symmetric). Though individual results of this kind can be found
here and there in the literature, we do not know any previous publications where such
information has been collected systematically.

As usual, we organize the presentation by beginning with the case of a function
on the unit circle. Consider the context of Theorem 2.1, a function u(z) analytic and
bounded in absolute value by M in the disk |z| < r with r > 1. One approximation
by a polynomial of degree ≤ N − 1 is obtained by truncating the Taylor series (2.4),

p
taylor

(z) =

N−1∑
j=0

cjz
j.(7.1)

It follows from the estimate (2.10) that the error in this approximation is bounded by

‖p
taylor

− u‖ ≤ Mr−N

1− r−1
,(7.2)

where ‖ · ‖ denotes the supremum norm over |z| = 1 (or |z| ≤ 1, by the maximum
modulus principle). Another approximation of u would be the unique polynomial of
degree ≤ N − 1 that interpolates u in the roots of unity {zk}. It is possible to write

0 π 2π

−1

0

1

Fig. 7.1 Any set of data at equispaced points can be interpolated by a trigonometric polynomial,
and if the trapezoidal rule is applied to the data, the result IN is equal to the integral of
the interpolant. Here the data correspond to a Kronecker delta function on a grid with
N = 12, the interpolant is a periodic sinc function, and the integral is equal to h = 2π/N .
Interpolants to more general data can be regarded as linear combinations of translates of
such periodic sinc functions. Analogous observations hold for the trapezoidal rule on the
unit circle or the real line.

D
ow

nl
oa

de
d 

03
/3

0/
18

 to
 7

7.
15

7.
19

4.
21

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE EXPONENTIALLY CONVERGENT TRAPEZOIDAL RULE 407

down an explicit formula for the coefficients of this interpolant by noting that it can
be derived by aliasing zN , z2N , . . . to z0; zN+1, z2N+1, . . . to z1; and so on. The result
is the formula

p
interp

(z) =

N−1∑
j=0

( ∞∑
k=0

cj+kN

)
zj.(7.3)

For this approximation, (2.10) implies

‖p
interp

− u‖ ≤ 2Mr−N

1− r−1
.(7.4)

Examining (7.2) and (7.4), we see that both polynomial interpolants in roots of unity
and truncated Taylor series are enough to establish the result that functions analytic
on the closed unit disk can be approximated by polynomials with exponentially de-
creasing error as N → ∞.5 What is special about p

interp
for our purposes is that

when the trapezoidal rule is applied to u, the resulting approximation IN is exactly
the integral of p

interp
, as can be derived from (2.8) and (7.3). Thus (7.4) yields an-

other proof of the geometric convergence of the trapezoidal rule: if we multiply (7.4)
by the circumference 2π, we find

|IN − I | ≤ 4πM

rN − rN−1
.(7.5)

This bound is similar to (2.3) but weaker by a factor slightly greater than 2.
What happens if u is analytic just in the annulus r−1 < |z| < r? In this case the

natural approximations to consider are Laurent polynomials, involving both negative
and positive powers of z. Assuming N is odd for simplicity, the analogue of the Taylor
projection p

taylor
is the Laurent projection

p
laurent

(z) =

(N−1)/2∑
j=(1−N)/2

cjz
j ,(7.6)

in which terms of degree |k| ≥ N/2 of the Laurent series of u are dropped, satisfying

‖p
laurent

− u‖ ≤ 2Mr−(N+1)/2

1− r−1
.(7.7)

If these terms of the Laurent series are aliased to |k| < N/2 rather than dropped, we
obtain a Laurent polynomial interpolant analogous to p

interp
,

p
interp2

(z) =

(N−1)/2∑
j=(1−N)/2

( ∞∑
k=−∞

cj+kN

)
zj,(7.8)

with

‖p
interp2

− u‖ ≤ 4Mr−(N+1)/2

1− r−1
.(7.9)

Multiplying (7.9) by the circumference 2π yields

|IN − I | ≤ 8πM

r(N+1)/2 (1− r−1)
.(7.10)

5Convergence of polynomial interpolants in roots of unity goes back to Runge [142, section II.15,
pp. 136–137]. For Chebyshev polynomial analogues of these developments on [−1, 1], see [170, Chap-
ters 4 and 8].
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Perhaps it is worth noting explicitly that when the trapezoidal rule is applied to
a set of data at roots of unity, the formula involved has no notion of whether the data
come from a function that is analytic in a disk, analytic in an annulus, or not analytic
at all. The quadrature result IN is just a number computed from the data, and the
bounds (7.5) and (7.10) differ not because IN differs in the two cases, but because
different conclusions about its accuracy can be reached based on different hypotheses.

In passing from (7.2), (7.4), and (7.5) to (7.7), (7.9), and (7.10), the convergence
rate has approximately halved, from r−N to r−(N+1)/2, so that twice as many points
are needed for a good approximation of u on an annulus as on a disk. Yet from
Theorems 2.1 and 2.2 we know that the actual rate of convergence of |IN − I | to
zero is the same in both cases, r−N . The distinction is genuine: moving from the
disk to the annulus halves the rate of convergence of the interpolants without halving
the rate of convergence of the trapezoidal rule. This sounds paradoxical, but it can
be explained by returning to the observation mentioned in section 3 in connection
with the Nyquist limit of two points per wavelength. If u is analytic in just an
annulus rather than a disk, then we need negative powers of z as well as positive
ones for accurate interpolation, halving the rate of convergence of the interpolants as
N → ∞. However, the components z(N+1)/2, z(N+3)/2, . . . , zN−1 of u(z) that are now
mishandled by our interpolant p

interp2
contribute nothing to the integral, so the rate

of convergence of the trapezoidal rule is unaffected.
For the remainder of this section we spell out analogues of the above results,

first for functions periodic on an interval, then for functions on the real line. It is
worthwhile to record these formulas, but the reader with no special interest in them
is encouraged to turn to the next section.

Here are the analogues of (7.1)–(7.10) for periodic functions on an interval. For a
function v(θ) analytic and bounded by M in the half-plane Im(θ) > −a with a > 0,
an approximation by a trigonometric polynomial of degree ≤ N − 1 is obtained by
truncating the Fourier series (3.6),

q
trig

(θ) =

N−1∑
j=0

cje
ijθ .(7.11)

For this approximation, (3.11) gives

‖q
trig

− v‖ ≤ Me−aN

1− e−a
,(7.12)

where ‖ · ‖ is the supremum norm over [0, 2π]. Alternatively, another approximation
is the unique trigonometric polynomial of degree ≤ N − 1 that interpolates v in the
points {θk}, i.e., the trigonometric polynomial obtained by aliasing eiNx to 1, ei(N+1)x

to eix, and so on:

q
interp

(θ) =

N−1∑
j=0

( ∞∑
k=0

cj+kN

)
eijθ,(7.13)

with

‖q
interp

− v‖ ≤ 2Me−aN

1− e−a
.(7.14)

The trapezoidal rule applied to v will give the exact integral over [0, 2π] of q
interp

,
implying

|IN − I | ≤ 4πM

eaN (1− e−a)
,(7.15)
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which may be compared with (3.3). Again we might ask, what happens if v is analytic
just in a strip −a < Im(θ) < a? Now we must consider two-sided trigonometric
polynomials. Assuming again for convenience that N is odd, we get

q
trig2

(θ) =

(N−1)/2∑
j=(1−N)/2

cje
ijθ ,(7.16)

with

‖q
trig2

− v‖ ≤ 2Me−a(N+1)/2

1− e−a
,(7.17)

and

q
interp2

(z) =

(N−1)/2∑
j=(1−N)/2

( ∞∑
k=−∞

cj+kN

)
eijθ ,(7.18)

with

‖q
interp2

− v‖ ≤ 4Me−a(N+1)/2

1− e−a
,(7.19)

implying

|IN − I | ≤ 8πM

ea(N+1)/2(1− e−a)
,(7.20)

to be compared with (3.16).
Finally, there is the case of the trapezoidal rule on the real line. Here, given a

function w(x) analytic and with integrals bounded byM in the half-plane Im(x) > −a
with a > 0, as in Theorem 5.2, we may truncate the appropriate Fourier integral at
ξ = 2π/h to get

r
fourier

(x) =

∫ 2π/h

0

ŵ(ξ)eiξxdξ,(7.21)

for which (5.11) gives

‖r
fourier

− w‖ ≤ M

2πa
e−2πa/h,(7.22)

where ‖ ·‖ is the supremum norm over R. Alternatively, another approximation is the
unique function band-limited to wave numbers [0, 2π/h] that interpolates w in the
points {xk},

r
sinc

(x) =

∫ 2π/h

0

( ∞∑
k=0

ŵ(ξ + 2πk/h)

)
eiξxdξ,(7.23)

for which (5.11) implies

‖r
sinc

− w‖ ≤ M

πa
e−2πa/h.(7.24)

Since R is of infinite length, however, this does not lead directly to a bound on |Ih−I |
to be compared with (5.6). If w is analytic just in the strip −a < Im(x) < a, as in
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Theorem 5.1, these formulas become

r
fourier2

(x) =

∫ π/h

−π/h

ŵ(ξ)eiξxdξ,(7.25)

with

‖r
fourier2

− w‖ ≤ M

πa
e−πa/h,(7.26)

and

r
sinc2

(x) =

∫ π/h

−π/h

( ∞∑
k=−∞

ŵ(ξ + 2πk/h)

)
eiξxdξ,(7.27)

with

‖r
sinc2

− w‖ ≤ 2M

πa
e−πa/h.(7.28)

Again there is no bound on |Ih − I | that results directly from these estimates.
The function r

sinc2
is known as the cardinal interpolant or sinc interpolant to

f on the equispaced grid hZ. This function can be obtained as a limit of periodic
trigonometric interpolants on wider and wider intervals of periodicity, or as a series
with coefficients derived from central difference formulas on wider and wider stencils,
and its properties have been studied since E. T. Whittaker in 1915 [185]. A simple
interpretation of r

sinc2
(x) is that it is the sum of an infinite series of translates of the

sinc function sin(πx/h)/(πx/h). For a leisurely account of the mathematics, see [168,
Chapter 2]. In the periodic case, one can interpret q

trig2
in the same way, except

that the series is a finite one involving periodic sinc functions that take the form
sin(πx/h)/((2π/h) tan(x/2)) when N is even, as illustrated in Figure 7.1. See [97]
and [168, Chapter 3].

8. Connections with Gauss and Clenshaw–Curtis Quadrature. First in sec-
tion 3, and again repeatedly in section 7, we mentioned a certain factor-of-two prop-
erty for the trapezoidal rule on a circle or a periodic interval: the formula requires just
“one point per wavelength” for exactness, not two. Another way to put it is that the
accuracy of the N -point quadrature formula is approximately equal to the accuracy of
the trigonometric interpolant through not N but 2N points. We shall now sketch how
this can be viewed as the same advantage enjoyed by Gauss (more precisely, Gauss–
Legendre) quadrature for a nonperiodic function defined on [−1, 1] in comparison with
other methods for such functions such as Clenshaw–Curtis quadrature.

Consider, for example, the case of a periodic function v on [0, 2π]. On an equis-
paced grid of N points, with N taken to be odd for simplicity, the trapezoidal rule can
be interpreted as interpolating v by a trigonometric polynomial of degree (N − 1)/2
and then integrating the interpolant exactly (section 7). Thus if v is given by a con-
vergent Fourier series, the terms in the series of orders (N + 1)/2, (N + 3)/2, . . . can
be viewed as aliased by the grid to orders (−N + 1)/2, (−N + 3)/2, . . . . However,
though these terms are aliased, they are still integrated correctly by the trapezoidal
rule to zero, until one reaches the term of order N , which aliases to 0 and erroneously
gets a nonzero integral.

Gauss quadrature has an analogous property. Suppose we have a function y(ξ)
defined on [−1, 1]. On an N -point Gauss grid in [−1, 1], i.e., the grid of roots of the
Legendre polynomial PN , Gauss quadrature can be interpreted as interpolating y by
a polynomial of degree N − 1, then integrating the interpolant exactly. Thus if y is
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0 10 20 30 40

10
−10

10
0

trapezoidal
rule

trigonometric
interpolation

0 10 20 30

10
−10

10
0

Gauss
quadrature

polynomial
interpolation

Fig. 8.1 For analytic functions periodic on [0, 2π], the trapezoidal rule for quadrature converges
asymptotically at twice the rate of the underlying approximation by trigonometric interpola-
tion. The image on the left shows this effect for the example v(θ) = exp(cos(θ)+sin(2θ)/4).
On the right, the analogous behavior for the function y(ξ) = exp(cos(ξ) + sin(2ξ)/4) on
[−1, 1], comparing Gauss quadrature with polynomial interpolation in Legendre points.
Both computations are carried out in floating point arithmetic, so the errors level off at
machine precision. Missing dots correspond to errors that cancel to zero in floating point.

given by a convergent series of Legendre polynomials, the terms in the series of degree
N , N + 1, and so on can be viewed as aliased to lower degrees when sampled on the
grid. More precisely, from the three-term recurrence relation associated with these
orthogonal polynomials, one can see that PN is aliased to zero, PN+1 to a multiple
of PN−1, PN+2 to a linear combination of PN−2 and PN−1, and, in general, for any
k ≤ N , PN+k to a linear combination of PN−k, . . . , PN−1. Again, however, these
aliases introduce no errors for k < N , because the alias of each Legendre polynomial
integrates to the correct value of zero. This is because all Legendre polynomials other
than P0 have zero integrals over [−1, 1], since they are orthogonal to P0. The first
error is introduced at k = N , where we find that P2N ought to integrate to zero but
is aliased to a sum of Legendre polynomials that includes a nonzero component of P0.

We can contrast this behavior with what happens with Clenshaw–Curtis quadra-
ture on [−1, 1], that is, the formula obtained by applying the trapezoidal rule on
[0, 2π] to the function v(θ) obtained by transplanting y(ξ) under the change of vari-
ables ξ = cos(θ). In the ξ variable on [−1, 1], this is equivalent to sampling at the
Chebyshev points cos(θk), interpolating by a sum of Chebyshev polynomials Tk, and
integrating the interpolant exactly. As in the Gauss–Legendre case, TN+k aliases to
a linear combination of TN−k, . . . , TN−1; actually, the situation is even simpler, for
TN+k aliases to TN−k alone. The difference is that this time, an integration error
is introduced by this aliasing, since TN+k and TN−k have nonzero and distinct inte-
grals (when N + k is even). This is why Clenshaw–Curtis quadrature has half the
polynomial order of accuracy as Gauss quadrature.6

In summary, for |z| = 1 or θ ∈ [0, 2π], the trapezoidal rule is Gauss quadrature:
it combines algebraic simplicity with the characteristic Gauss quadrature factor-of-2
bonus in formal order of accuracy. This fast rate of convergence is summarized in
Figure 8.1. For nonperiodic functions on [−1, 1], one can have either the algebraic

6The full story is subtler than this, however, for although TN−k has nonzero integral, the integral
is of size O(N−3) for fixed k as N → ∞ and of size O(N−2) in a certain sense averaged over all k.
As a consequence Clenshaw–Curtis quadrature, despite its lower polynomial order of accuracy, is in
practice nearly as accurate as Gauss quadrature in many cases, with errors often closer to the lower
dots than the upper ones in plots like those of Figure 8.1. See [134, 169, 183, 187].
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412 LLOYD N. TREFETHEN AND J. A. C. WEIDEMAN

simplicity (Clenshaw–Curtis) or the extra order of accuracy (Gauss), but not both.
Now we turn to another context in which the factor of 2 is lost.

9. Unevenly Spaced Quadrature Points. The periodic trapezoidal rule is de-
fined by equispaced points and equal quadrature weights. However, its exponential
convergence for analytic integrands does not depend on equal spacing. The conver-
gence is still exponential for certain periodic nonequispaced point sets, provided the
quadrature weights are adjusted according to the design principle of section 7: inter-
polate the data by a trigonometric polynomial, then integrate the interpolant. Let
us call the resulting periodic quadrature formula for nonuniform points quadrature
by trigonometric interpolation. Note that this is different from the more elementary
trapezoidal rule for unevenly spaced points, based on approximating the function by
trapezoids, whose accuracy is just O(h2).

We begin with a numerical illustration. The upper image of Figure 9.1 shows
the periodic integrand v(θ) = ecos(θ) of section 4 sampled on a 12-point trapezoidal
grid, the same grid sketched in Figure 7.1. The error listed for the trapezoidal rule
reveals 11-digit accuracy for this problem. The lower image of the figure shows the
same result for a perturbed grid (the third, eighth, and ninth points have moved
left by distances 0.2, 0.4, and 0.2, respectively). Now the accuracy cuts in half, to
6 digits. In other words, the quadrature now approximately matches the accuracy of
the trigonometric interpolant, as described in the last section. Perturbing the grid
has eliminated the “Gauss quadrature factor of 2,” but it has not eliminated the
exponential convergence.

To make these observations precise, ideally, we would state generalizations of
(7.19)–(7.20) for quadrature by trigonometric interpolation. We are not aware of
such generalizations, but let us summarize some of what is known that is relevant to
this problem. It is not clear that anything has been published that explicitly addresses

0 π 2π
0

1

2

3
trapezoidal rule

|IN − I| = 0.0000000000065

||vN − v|| = 0.0000063582715

0 π 2π
0

1

2

3
perturbed trapezoidal rule

|IN − I| = 0.0000009860515

||vN − v|| = 0.0000142907647

Fig. 9.1 If the nodes of the periodic trapezoidal rule are perturbed, one still gets exponential con-
vergence for analytic integrands, but at a rate cut in half. This observation holds in theory
for all perturbations that leave the asymptotic distribution of quadrature points uniform
(Theorem 9.1). However, if the quadrature rule is to be useful in practice and converge
for less smooth integrands, or in the presence of rounding errors, additional conditions are
needed to keep the points apart.
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quadrature by trigonometric interpolation, but there are two bodies of literature that
have direct implications for this problem.

The first concerns interpolation of analytic functions and features theorems that
might be regarded as mainly of theoretical interest, because they are unstable with
respect to perturbations. Like so much in the field of interpolation, the idea goes back
to Runge [142] and his use of the Hermite integral formula for estimating accuracy of
polynomial interpolants.

Let {z(N)
k } be a family of N -point grids on the unit circle for each N ≥ 1, and,

following a line of work going back to Weyl [184], suppose that as N → ∞, these grids
are uniformly distributed in the sense that the fraction of points on any arc of the circle
of length L converges as N → ∞ to L/2π. There is no assumption that the points are
well separated or even distinct. Let u(z) be analytic in |z| ≤ r for some r > 1, and

let pN−1 be the degree N − 1 polynomial interpolant to u in the grid {z(N)
k }. (If two

nodes are equal, one interpolates both f and f ′ there, and similarly for confluences
of higher order.) Then the interpolants satisfy ‖u − pN−1‖ = O(r−N ) as N → ∞.
This result is generally attributed to Fejér in 1918 [45], though Fejér stated it without
proof, commenting that he was building on ideas of Sierpiński and Weyl and would
publish a proof on another occasion. (Fejér’s main concern was generalizations by
conformal mapping to regions other than the disk.) A proof was perhaps first spelled
out by Kalmár in 1926 together with a converse to the effect that O(r−N ) convergence
for all functions analytic in |z| ≤ r implies uniform distribution of the grids [89], so the
result is sometimes known as the Fejér–Kalmár theorem; see [36, 54] for discussions.

The same conclusion carries over from a disk to an annulus or a periodic interval:
analyticity and uniform distribution of the interpolation points are enough to guar-
antee convergence at the expected geometric rate. For the case of an annulus, see [78,
Theorem 3]. The following statement for a periodic interval can be derived from [92,
Theorem 5].

Theorem 9.1. Let v be a 2π-periodic function on the real line that is analytic

in the strip −a < Im(θ) < a for some a > 0, let {θ(N)
k } be a uniformly distributed

system of grids in [0, 2π] as defined above, and let {IN} be the results of quadrature
by trigonometric interpolation applied in these points. Then

lim sup
N→∞

|IN − I |1/N ≤ e−a/2.(9.1)

A theorem is a theorem, but it is clear that the convergence promised by this
result must be unstable. The condition of uniform distribution does not prevent grid
points coalescing, and if this happens, a vanishing denominator will appear in any
interpolation formula. In the standard analysis of approximation theory, this effect
shows up as Lebesgue constants for the interpolation process that satisfy no finite
bound, even for finite N [170].7 Mathematically, this will not affect the accuracy
of the interpolant to an analytic function, but interpolation of nonanalytic functions
will be another matter, as will interpolation of analytic functions in the presence
of rounding errors. The situation is analogous to polynomial interpolation of entire
functions in equispaced grids on [−1, 1], where one has exponential convergence in
theory but exponential divergence in practice.

7By contrast, the interpolation processes underlying the theorems on fast convergence for analytic
functions in the other sections of this paper, such as Theorems 2.1–2.2, 3.1–3.2, and 5.1–5.2, are
robust, with Lebesgue constants that are finite for each N and grow only slowly as N → ∞.
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414 LLOYD N. TREFETHEN AND J. A. C. WEIDEMAN

Thus uniform distribution of the interpolation points is not enough for robust
interpolation, yet it is clear from Figure 9.1 that interpolation in perturbed points
will sometimes be highly accurate. This leads us to the question of what degree of

perturbation of {θ(N)
k } from the equispaced configuration can be permitted. Apart

from the paper [18], we do not know of any literature on this question from the
perspective of approximation theory or quadrature, but there is a related literature
on sampling theory going back many years. A basic question in this area asks, what
properties of an interpolatory process suffice to guarantee that it will reproduce a
sampled function exactly? Our Corollaries 2.3, 3.3, and 5.3 concerning band-limited
functions are of this form, and such results have been generalized to irregular grids in
work beginning with Paley and Wiener, Levinson, and Kadec, among others. These
and other references are given in [5]. When stability is brought into the picture, key
concepts that arise are the notions of Riesz bases and frames, which are related to
boundedness of the reconstruction process in L2 and other norms. Closely related
is the literature of algorithms associated with the so-called nonuniform fast Fourier
transform (FFT) [41].

The emphasis on band-limited functions, exact reconstruction, and integral norms
gives the literature of sampling theory a different style from that of our interest here
in the rate of convergence of the trapezoidal rule for smooth but non-band-limited
functions. We do not know what analogues there are of Theorem 9.1 for quadrature
by trigonometric interpolation with a robustness condition.

10. The Euler–Maclaurin Formula. When people set out to explain the fast
convergence of the trapezoidal rule for periodic integrands, an argument commonly
used is based on the Euler–Maclaurin formula. Indeed, this was Poisson’s approach in
the 1820s, for the formula was already well established in his day, having originated
independently with Euler and Maclaurin in the 1730s and 1740s. By such reason-
ing one can see that the periodic trapezoidal rule has accuracy O(N−m) for any m
when applied to a C∞ function, though it is not easy to see that the accuracy is
O(exp(−CN)) if the function is analytic.

Returning to the setting of section 3, let v be a continuous function on the real
line, which initially we do not require to be periodic, and define

I =

∫ 2π

0

v(θ)dθ, IN = h

N∑
k=0

′
v(kh),

where h = 2π/N and the prime indicates that the terms k = 0 and N are multiplied
by 1/2. For a nonperiodic integrand, the accuracy of the formula will normally be
IN − I = O(h2) as N → ∞, i.e., as h → 0. The observation underlying the Euler–
Maclaurin formula is that if v is sufficiently smooth, this figure can be improved
to O(h4), O(h6), and so on by subtracting appropriate multiples of v′(2π) − v′(0),
v′′′(2π)− v′′′(0), and so on. Specifically, one statement of the formula in terms of an
asymptotic series is as follows.

Theorem 10.1. For the trapezoidal rule applied to a function v ∈ C∞[0, 2π],
IN − I has the asymptotic series

IN − I ∼ h2B2

2!
[v′(2π)− v′(0)] + h4B4

4!
[v′′′(2π)− v′′′(0)] + · · ·(10.1)

as N → ∞, where {Bk} are the Bernoulli numbers (B2 = 1/6, B4 = −1/30, B6 =
1/42, . . .).
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Alternative formulations give an explicit expression for the error if the series
is truncated after a certain number of steps, in which case v need only have the
corresponding number of derivatives.

The case of interest to us is what occurs if v and its derivatives are 2π-periodic.
Then all the coefficients in the series are zero, and we have

IN − I ∼ 0h2 + 0h4 + · · · .(10.2)

This is an interesting asymptotic expansion indeed! One might make the mistake of
thinking that it implies that for 2π-periodic v ∈ C∞(R), IN must be exactly equal
to I, but this is not true. The correct implication is that in this case IN − I decreases
faster than any finite power of h as N → ∞. This conclusion holds if v is infinitely
differentiable, and it can be modified appropriately if it has just a finite number of
derivatives.

Poisson understood the limitations of asymptotic series, and wrote [138]

Euler’s series, after having been convergent in the initial terms, sometimes

ends by becoming divergent and consequently inexact.8

As mentioned above, the Euler–Maclaurin formula provides a popular explanation
of the special accuracy of the trapezoidal rule for periodic functions. It is a rather odd
explanation, however, in that it imagines that v has a discontinuity at the endpoints
and then takes the discontinuity away again, Cheshire cat style. Perhaps such an
argument is most natural in a context in which v is less smooth at the endpoints than
in the interior, as occurs, for example, in the analysis of the IMT and tan rules for
numerical integration (section 14).

Closer to the spirit of this article, with its emphasis on analytic functions, would be
a formulation of the Euler–Maclaurin idea that made use of analyticity. Specifically,
in section 3 we gave a proof of Theorem 3.1 based on a contour integral over the
contour depicted in Figure 3.2. Similarly, Theorem 3.2 can be proved with the use
of a rectangular contour symmetric with respect to the real axis. Now suppose v
is analytic as in Theorem 3.2 but not necessarily periodic. Could the same contour
integral be used to derive a more general bound that incorporates both the exponential
decay of Theorem 3.2 and also the finite-order error terms of (10.1)? Could such a
bound yield Theorem 10.1 in one limit and also Theorem 3.2 if v happens to be
periodic?

This investigation has been carried out by the first author and Javed [88]. For
any m ≥ 0 and sufficiently smooth v, define

Qm,N =
m∑

k=1
k odd

hk+1 v
(k)(2π)− v(k)(0)

(k + 1)!
Bk+1.(10.3)

The theorem from [88] is as follows.
Theorem 10.2. Given a > 0, m ≥ 0, and M > 0, let v be a function defined in

the region 0 ≤ Rez ≤ 2π, −a < Imz < a that has a continuous (m + 1)st derivative
throughout this region and is analytic and bounded by |v(z)| ≤ M in the interior.
Then

IN − I −Qm,N = Einterior + Eboundary + Etail(10.4)

8“. . .la série d’Euler, après avoir été convergente dans les premiers termes, finit quelquefois par
devenir divergente, et par conséquent inexacte.”
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with

|Einterior| ≤
4πM

eaN − 1
,(10.5)

|Eboundary| ≤
2Δ(m+1)

3πm−1(2N)m+2
,(10.6)

and

|Etail| ≤
2Δm(2πNa+ 1)m

πeaN
,(10.7)

where Δm and Δ(m+1) are defined by

Δm =

m∑
k=1
k odd

(2π)k
∣∣v(k)(2π)− v(k)(0)

∣∣,(10.8)

Δ(m+1) = (2π)m+1 sup
−a<y<a

∣∣v(m+1)(2π + iy)− v(m+1)(iy)
∣∣ .(10.9)

If v is 2π-periodic, then Qm,N = Eboundary = Etail = 0, and from (10.4) and
(10.5) we recover the exponential bound (3.16) of Theorem 3.2. For more discussion
of the implications of Theorem 10.2, including Faulhaber’s formula as a corollary and
a variant for the midpoint rule, see [88].

11. History. At this stage in the paper, we would like to be able to summarize
who were the earliest authors to investigate the fast convergence of the trapezoidal
rule in the three special cases of the periodic interval, the unit circle, and the real line.
We find this surprisingly difficult. The roots of the fast trapezoidal rule go back to
Euler and Maclaurin, if not Archimedes, but it is hard to find explicit discussions. One
source of information on early works on quadrature in general is the 1961 bibliography
by Stroud [159].

For the periodic interval, as told in the introduction, the first such discussion may
be that of Poisson in the 1820s [138, 139]. Many mathematicians of the 19th century
must have been aware of Poisson’s work, but we do not know what use was made of it,
and there seems to be no author who explicitly stated the geometric convergence for
analytic functions until Davis in 1959 [37]. Early papers in the computer era include
those of Fettis in 1955 [46] and Moran in 1958 [127], but their discussions, based
on the Poisson summation formula, do not include general convergence statements.
This 150-year gap seems odd, and it is hardly surprising that Davis (who does not
cite Poisson) calls the result “folklore.” Davis’ paper considers both intervals and
circles, and, as in section 2, he makes use of convergent series. Our Theorem 3.2 is
essentially his Theorem 1, which is restated in section 4.6 of the book by Davis and
Rabinowitz [38, p. 243]. One can also find essentially the same result as Theorem 9.28
of [99] and Exercise 12.6 of [168].

For the unit circle, after Davis, a key early figure was James Lyness in the
1960s [39, 113, 114, 116, 117]. In a succession of papers, some of them written jointly
with Delves, Moler, and Sande, Lyness advocated the use of the trapezoidal rule on
the unit circle to evaluate contour integrals numerically for applications including
evaluation of functions, calculation of derivatives, and zerofinding. Such techniques
are the subject of the next section. These methods are closely linked to the FFT,
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which was an established tool by the 1970s. The field of digital signal processing
developed rapidly in that era, and many of its algorithms are based on computation
with data at roots of unity [11].

In the case of the real line, interest in the equispaced sampling of functions origi-
nated about a century ago. One line of research arose from the introduction of cardinal
interpolants of equispaced data by E. T. Whittaker in 1915 [185]. Whittaker’s start-
ing point was the construction of functions by applying finite difference formulas on
wider and wider equispaced grids, and his work was closely related to operational
calculus and divergent series, subjects of interest to British mathematicians includ-
ing Heaviside, Hardy, Littlewood, Milne-Thomson, and Titchmarsh. We wish Hardy
were here to ask about the trapezoidal rule! Whittaker’s son J. M. Whittaker wrote
a tract some years later on what he called interpolatory function theory [186], with
a bibliography listing work by many authors including Copson, Ferrar, Hurwitz, and
Takenaka. Meanwhile, across the Atlantic, the subject of sampling theory was being
invented beginning in the 1920s by Hartley, Nyquist, and Shannon (not to mention
less-often cited authors Kotelnikov, Raabe, Gabor, and Someya [174]), wherein Whit-
taker’s cardinal function is interpreted as a band-limited interpolant, and Paley and
Wiener’s Fourier Transforms in the Complex Domain appeared in 1934 [136].

The people who first used the trapezoidal rule on the real line for numerical calcu-
lation of integrals may have been the early British statisticians, who were concerned
with the estimation of moments of a distribution such as mean, variance, skewness,
and kurtosis. The first publication we have found that discusses the matter is Aitken’s
1939 book Statistical Mathematics [3]. Though Aitken does not speak of geometric
convergence or state general theorems, he touches upon the same issues we have dis-
cussed in sections 5 and 6, and we hope the reader looking at Figure 11.1 will share
some of the pleasure we felt in encountering this material in Aitken’s book.

A more focused analysis of the fast convergence of the trapezoidal rule on the real
line appears in a paper by Turing written in 1939 and published in 1943 [173]. Turing’s
aim was a numerical exploration of the Riemann hypothesis, and he introduced a
method for evaluating the zeta function based on the trapezoidal rule applied to a
smooth function on the real line. He wrote, “We approximate to the integral by the
obvious sum

∑K
k=−K

1
Kh
(

k
K

)
and we find that . . .this gives a remarkably accurate

result; when the number of terms taken is T = 2K + 1 the error is of the order of
magnitude of e−

1
2πT .” He derived a bound with the flavor of Theorem 5.1, with a

proof using contour integrals, and alluded to the use of the trapezoidal rule on more
general contours (section 15).

Several times in the course of writing this article we have encountered leads to
the mathematical literature of the Soviet Union, including the names of Bakhvalov,
Fok (also spelled Fock), Korobov, and Malozemov. It is quite possible that Fok,
for example (known in the West through Hartree–Fock methods), worked with the
geometrically convergent trapezoidal rule before Turing. However, our links to the
Soviet literature are not as strong as we would like, and we have failed to turn up a
definitive publication.

Our overall assessment of the situation in the first half of the 20th century is that
the fast convergence of the trapezoidal rule would have been readily understood by
many mathematicians, but that, before the introduction of computers, it did not stand
out as a topic worthy of much special attention. This kind of mathematics was used
more often to approximate sums by integrals than integrals by sums, and convergence
as h → 0 was not a prominent issue. Indeed, the use of the actual term “trapezoidal
rule” in this context was not so common until later, perhaps in the 1950s. Davis uses
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418 LLOYD N. TREFETHEN AND J. A. C. WEIDEMAN

Fig. 11.1 Above, a sketch from p. 28 of Aitken’s 1939 book [3]. Below, an extract from pp. 44–45.
Note his comment that, in practice, it is good enough to take the step size to be smaller
than the standard deviation.

this term, as do Isaacson and Keller in their 1966 textbook [86], which relates the
periodic trapezoidal rule to the Euler–Maclaurin formula.

After Turing, a paper often cited as an early contribution to the trapezoidal rule
on the real line is that of Goodwin in 1949 [67], who begins, “It is well known to
computers that the approximate formula [the trapezoidal rule] yields a surprising
degree of accuracy. . . .” This use of the word “computers” is in the charming older
sense of the term. Goodwin and Turing were colleagues at the National Physical
Laboratory during 1945–48, working on the ACE computer project, and Goodwin
states that his purpose is to give the details of a generalization of Turing’s method.
In his formulation of the matter, it is assumed that the integrand decays at the rate
exp(−x2), a condition that will usually hold in statistical applications. The first
appearance of a more general theorem along the lines of Theorem 5.1, again based on
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Table 11.1 Twelve approaches to theorems about the fast convergence of the trapezoidal rule, with
pointers to publications we know of in each category from before 1970. Page numbers
indicate locations in this article where proofs of each kind are spelled out. As the blank
third row suggests, we do not know of published works before 1970 that derive the fast
convergence of the trapezoidal rule from analysis of interpolants, or after 1970 either,
even though, as discussed in section 9, this is the kind of argument that is most robust
for generalizations such as perturbed quadrature nodes. We also do not know of literature
on the Euler–Maclaurin formula on the unit circle before or after 1970, apart from a
2006 paper of Berrut [19]. The reason two page numbers are cited in some cases is that,
in fact, each box of the table could be doubled along a third dimension corresponding to
the alternative nonsymmetric domains of analyticity, such as a disk or a half-plane, or
symmetric ones, such as an annulus or a strip.

circle interval real line

Lyness 1967 Fettis 1955 Fettis 1955
series or transform Davis 1959 Moran 1958 Moran 1958

Davis 1959
(pp. 390, 393) (pp. 394, 397) (p. 401)

Turing 1943
Goodwin 1949
Luke 1956

contour integral Hunter 1964
McNamee 1964
Martensen 1968
Schwartz 1969

(p. 391) (pp. 396, 397) (p. 402)

interpolation (pp. 407, 407) (pp. 408, 409)

Poisson 1826 Aitken 1939
Milne-Thomson 1933 Faddeeva 1954

Euler–Maclaurin Sag & Szekeres 1964
Isaacson & Keller 1966

(p. 415)

a contour integral, seems to be in the 1968 paper of Martensen [120], who cites both
Turing and Davis. Schwartz in 1969 [148] also shows exponential convergence using
a contour integral, without citing any previous publications.

By 1970, Mori and Takahasi were developing transformed methods of integration
based on the trapezoidal rule (section 14), spectral methods were being invented
for ODEs and PDEs [96, 135, 168], Stenger was developing his theory of numerical
methods based on sinc functions [156], FFT-fueled digital signal processing was taking
off with the discrete z-transform as its central tool [174], and Martensen’s student
Kress was beginning a career that would apply related ideas to many problems of
quadrature and integral equations [97, 98]. At this point the literature related to the
fast convergence of the trapezoidal rule begins to get voluminous, and with this in
mind, we summarize in Table 11.1 the contributions we are aware of from before 1970.

Part II. Applications

12. Contour Integrals. We now begin the second half of this article, devoted to
applications.

In the preceding pages, we have applied contour integrals to the analysis of the
trapezoidal rule. In this section, we turn around to consider the trapezoidal rule as
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420 LLOYD N. TREFETHEN AND J. A. C. WEIDEMAN

a method for evaluating contour integrals. It seems ideally suited to this task, since
contour integrals are often posed over circles in the complex plane, and by the nature
of the problem, the integrand is analytic. The ideas for this go back to Poisson and
Cauchy in Paris in the 1820s, though we doubt those two men made the connection.
Things changed after the introduction of the FFT in 1965, providing a powerful tool
for all kinds of computations with periodic discrete data.

We begin with (2.4) and (2.5). If u is analytic and bounded by M in the disk
|z| < r for some r > 1, then it has a Taylor series

u(z) =
∞∑
j=0

cjz
j(12.1)

with coefficients

cj =
1

2πi

∫
|z|=1

z−j−1u(z)dz.(12.2)

Following (2.2), we define the N -point trapezoidal rule approximation to cj by

c
[N ]
j =

1

N

N∑
k=1

z−j
k u(zk),(12.3)

where {zk} are the Nth roots of unity, zk = e2πik/N . For j = 0, this is the same setting

as in Theorem 2.1, apart from a factor of 2π, and that theorem implies |c0 − c
[N ]
0 | ≤

M/(rN − 1). For j > 0, however, we find ourselves in the situation corresponding
to an integrand u in (2.1) with a pole at z = 0, analytic in an annulus but not a
disk. Thus we must turn to arguments related to Theorem 2.2 to get a statement of
geometric convergence, and in so doing, we might as well relax the assumption on u
to analyticity in an annulus rather than a disk. The definitions (12.2) and (12.3) still
apply, now for all integers j, and the Laurent series representation of u is

u(z) =
∞∑

j=−∞
cjz

j.(12.4)

The following theorem gives the estimate that results, which can be found as equation
(3.5) of [75].

Theorem 12.1. Suppose u is analytic and satisfies |u(z)| ≤ M in the annulus
r−1 < |z| < r for some r > 1. Then for any N ≥ 1 and any j,

|c[N ]
j − cj | ≤

M(rj + r−j)

rN − 1
.(12.5)

Proof. In analogy to (2.17), the error is given by the aliasing formula,

c
[N ]
j − cj =

∞∑
k=1

(cj+kN + cj−kN ).(12.6)

By (2.18), the Laurent coefficients satisfy |ck| ≤ Mr−|k|. Combining these observa-
tions gives (12.5).

Theorem 12.1 implies that Taylor and Laurent coefficients can be computed with
geometric accuracy by applying the trapezoidal rule on the unit circle. In the early
FFT era, this idea was analyzed and applied to a variety of problems of complex
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analysis by Henrici [75, 76]. An algorithm with Fortran software was proposed by
Lyness and Sande in 1971 [117]. For much more discussion and context, see [11].

Computing the jth Taylor series coefficient cj of a function u is equivalent to

evaluating its jth derivative at z = 0, u(j)(0) = j!cj, and thus Theorem 12.1 also

provides the error boundMj!(rj+r−j)/(rN−1) for the evaluation of the jth derivative
by the trapezoidal rule. A related method of evaluating derivatives, without mention
of the FFT, was proposed by Lyness and Moler [116], who pointed out the great
contrast with the numerical instability suffered by finite difference methods based on
just real arguments:

Once complex arguments are allowed, the principal difficulties encountered

in numerical differentiation simply disappear.

Lyness and Moler gave the example of the evaluation of the fifth derivative at z = 0
of the function

u(z) =
ez

sin3(z) + cos3(z)
,

with exact answer u(5)(0) = −164. Using a seven-point centered finite difference with
step size h, the best result one can get is about −164.02 with h ≈ 0.0024. Taking the
fifth derivative of a polynomial interpolant to u in 37 Chebyshev points in [−0.5, 0.5]
(to avoid the pole at z ≈ −0.785) improves this result to about −1.63999999985, i.e.,
about 10 digits of accuracy, and one can get similar accuracy from interpolation in a
large number of equispaced points if coefficients are computed in extended precision.
Convergence at the rate ≈ (0.5/0.785)n to 15 digits of accuracy is readily achieved in
standard machine arithmetic, however, by the trapezoidal rule over a circle of radius
0.5:

N Estimate of u(5)(0)

20 −164 .013
40 −164 .0000016
60 −164 .00000000019
80 −164 .000000000000022

In this example, the trapezoidal rule was applied over a circle of radius ρ = 0.5
rather than 1 to avoid a pole. Even when there are no singularities to avoid, the choice
of radius can make a big difference to both the accuracy and the numerical stability
of these methods, as has been recognized from the start. An adaptive algorithm for
choosing a good radius ρ was published by Fornberg in 1981 [50, 51]. Recently this
matter has been investigated comprehensively by Bornemann [24], who has shown
that for a wide class of functions u, an optimal choice of ρ enables computation of
derivatives of all orders with condition number essentially O(1).9 As the order of the
derivative increases, so does ρ.

9An extreme choice of radius is utilized in the method of complex step differentiation, which
goes back at least to Squire and Trapp in 1998 [154]. Here, the first derivative of a real analytic
function f at a real argument x is computed to machine accuracy by the formula (f(x+ iε)− f(x−
iε))/(2iε), where ε is a number smaller than machine epsilon, such as 10−100 in standard 16-digit
IEEE arithmetic. From the point of view of machine arithmetic, the reason the method works is that
the real and imaginary parts of a function evaluation are decoupled, so the subtraction is performed
with negligible cancellation error. From the point of view of the mathematics of the trapezoidal rule,
one may interpret this as the two-point trapezoidal rule (more precisely, the two-point midpoint rule)
evaluated over a circle of radius ρ = 10−100 , with high accuracy guaranteed by (2.15).
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In fact, as mentioned in section 2, the use of the trapezoidal rule for a Cauchy inte-
gral may be numerically advantageous even for the evaluation of the zeroth derivative,
i.e., the function itself. Suppose, for example, we wish to evaluate the “phi function”

u(z) =
ez − 1− z

z2
(12.7)

for z = 10−8 [79, 90, 146] . There is nothing wrong with this function mathemati-
cally: it has a removable singularity at z = 0. On a computer in standard 16-digit
arithmetic, however, evaluation of u(z) directly from (12.7) fails completely due to
cancellation error, giving u(z) = −0.6077 . . . . The 16-point trapezoidal rule on the
unit circle, by contrast, gives the correct answer u(z) ≈ 0.500000001666667 to full
machine precision [146]. This method of stabilized evaluation of difficult functions is
applied to matrices and operators in [90, 146], and generalizations to rational functions
are exploited in [52] and (implicitly) in [66].

Related to Taylor coefficients are generating functions. For example, the jth
Taylor coefficient cj of the function z/(ez − 1), mentioned in (2.14), is 1/j! times the
jth Bernoulli number Bj . Thus the trapezoidal rule can be used to compute Bernoulli
numbers. With N = 128 points on the circle of radius 4, B0, . . . , B15 are computed
to almost full precision in 16-digit arithmetic.

Computing a Taylor coefficient from (12.2) amounts to the evaluation of a contour
integral over a circle for which the integrand has a pole right at the center of the circle.
However, the more general notion of a Cauchy integral involves a pole at an arbitrary
location inside the integration contour. If u is an analytic function in the closed unit
disk, then its value for any a with |a| < 1 is given by the Cauchy integral formula

u(a) =
1

2πi

∫
|z|=1

u(z)

z − a
dz.(12.8)

(The generalization of this formula to the case where a becomes a matrix A will be a
central theme of section 18.) Regardless of the choice of a, this integrand is analytic in
an annulus around the unit circle, and since 1965, mathematicians have been attracted
to the idea of exploiting the trapezoidal rule for evaluating the integral. Geometric
convergence is guaranteed, with a rate determined by whichever is closer to the unit
circle: the circle of analyticity of u, or the point a.

Theorem 12.2. Suppose u is analytic and bounded in the disk |z| < r for some
r > 1, and u[N ](a) is the approximation to u(a) for some a with |a| < 1 obtained by
applying the N -point trapezoidal rule on the unit circle to (12.8). Then as N → ∞,

u(a)− u[N ](a) = O(max{r−N , |a|N}).(12.9)

Proof. This can be derived from the arguments used to prove Theorem 2.2.
This method of combining the trapezoidal rule with Cauchy integrals is powerful

and flexible. Nevertheless, when a is close to the circle of integration, it may be far
from optimal when the second term of the maximum in (12.9) is bigger than the first.
Suppose, for example, we wish to evaluate u(z) = exp(z− 0.9) at a = 0.9 from values
at N = 32 roots of unity; the exact result is 1. The Cauchy integral method gets just
1.5 digits of accuracy:

Trapezoidal rule for Cauchy integral: u(0.9) ≈ 1.035557779939565.

By contrast, suppose we use exactly the same 32 data values to define a degree-31
polynomial interpolant, and then evaluate the interpolant at a. We now get full
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machine precision:

Polynomial interpolation: u(0.9) ≈ 1.000000000000000.

To understand the striking difference between these two quantities, it is interesting
to compare two lines of MATLAB that may be used to calculate them. If z is a
MATLAB vector of roots of unity, we may write

cauchy = mean(z.*u(z)./(z-z0))

interp = mean(z.*u(z)./(z-z0))./mean(z./(z-z0))

The first line implements the trapezoidal rule for the Cauchy integral based on data at
the roots of unity, whereas the second computes the polynomial interpolant from the
same data by the barycentric interpolation formula [11, 20]. When a is equal to 0, the
two formulas are the same, and this observation was the basis of section 7. For general
a, note that the second formula can be interpreted as a Cauchy integral evaluation
of u at a divided by a Cauchy integral evaluation of the function g(z) = 1 at a. The
same two formulas are compared from other points of view in [11, 73, 84]. The main
point is that one must be cautious in evaluating Cauchy integrals near the contour
of integration. This fact is well known to practitioners of the numerical solution of
integral equations (section 19), where various methods have been proposed to cope
with it [73, 93].

The idea of applying the trapezoidal rule to Cauchy integrals can be applied to
many other problems besides evaluation of functions and derivatives. For example, if
u is analytic in the closed unit disk, what is the number ν of zeros of u in the disk? Let
us assume that u is nonzero on the unit circle. Then by the principle of the argument,
ν is equal to the winding number of u(z) about the origin as z traverses the unit
circle once in the counterclockwise direction. This is in turn equal to (2πi)−1 times
the change in log(u(z)) as z traverses the circle. Since the derivative of log(u(z)) is
u′(z)/u(z), we accordingly have

ν =
1

2πi

∫
|z|=1

u′(z)
u(z)

dz.(12.10)

Another way to interpret this formula is to note that u′(z)/u(z) is a function with
simple poles at the zeros of u(z), each with residue equal to 1, and the contour integral
will give the sum of the residues, namely, ν. From (2.1) and (2.2), we conclude that
ν can be calculated from the trapezoidal rule as

ν ≈ 1

N

N∑
j=1

zju
′(zj)

u(zj)
.(12.11)

The convergence as N → ∞ will be geometric, and since the limit is an integer, it will
usually not be hard to spot its correct value. For example, the 40-point trapezoidal
rule estimates that u(z) = sin3(2z) + cos3(2z) has 2.99863 . . . zeros in the unit disk,
and increasing N to 100 gives 2.9999999256 . . . .

Equation (12.10) can be generalized to enable one not just to count zeros, but to
find them as well. If u is an analytic function with a single simple zero ζ in the unit
disk, then ζ is given by

ζ =
1

2πi

∫
|z|=1

zu′(z)
u(z)

dz.(12.12)
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A numerical utilization of this formula was perhaps first recommended by McCune [122].
If u has N zeros {ζj} in the disk, the formula generalizes to

N∑
j=1

ζkj =
1

2πi

∫
|z|=1

zku′(z)
u(z)

dz(12.13)

for the sum of the kth powers of the zeros [87]. (Equation (12.10) corresponds to
k = 0: we can count the zeros by adding their zeroth powers.) In other words, the
sums on the left in (12.13) are the Laurent coefficients of u′/u. From here it is not far
to the algorithm for finding zeros of analytic functions proposed by Lyness and Delves
in 1967 [39, 114] and improved by Kravanja and Van Barel [95, section 1.2]. The al-
gorithm proposed later by Luck and Stevens [108] is a variant based on computing∫
(z/f(z))dz

/∫
(1/f(z))dz rather than

∫
z(f ′(z)/f(z))dz, and this too can be gener-

alized to multiple roots [95, section 1.6]. Changing 1/f(z) to g(z) gives an algorithm
for finding a pole of a meromorphic function, related to the FEAST algorithm for
computing matrix eigenvalues mentioned at the end of section 18. Besides works by
Lyness and Kravanja and their coauthors, there are also a number of other contribu-
tions in this area, such as a method proposed by Henrici [75, section 3.2]. Connections
to the so-called Burniston–Siewert method for zerofinding are analyzed in [9].

The issues summarized in this section are investigated more fully in [11], where,
among other things, it is shown that Kravanja’s generalization of the Luck–Stevens
method to multiple zeros is mathematically equivalent to the determination of the
poles of a linearized rational interpolant to 1/f(z).

13. Rational Approximation. Every quadrature formula can be related to ratio-
nal or meromorphic functions. In this section we spell out some of these connections
for the trapezoidal rule and show how it has been used to derive approximate solutions
to two famous problems of rational approximation theory.

To begin the discussion, recall one of our proofs involving contour integrals, say,
the proof of Theorem 2.1 for the integral over the unit circle of a function u(z) analytic
in |z| < r for some r > 1. The key idea was to multiply u(z) by the rational function
m(z) of (2.11), which is listed in the upper-left position of Table 13.1. This function
has simple poles at the quadrature points (the Nth roots of unity) with residues
equal to (2πi)−1 times the corresponding quadrature weights 2π/N . It follows that
the contour integral of m(z)u(z) around the circle |z| = r is equal to IN , the result of
the trapezoidal rule. The other entries of Table 13.1 list analogous functions for the
other five fundamental cases of this paper.

Now the true integral I can also be represented by a contour integral of u times
a characteristic function, which we shall call μ. For the case of the unit circle just
discussed, by (2.6), we have μ(z) = −iz−1. This function is listed in the upper-left
position of Table 13.2, and the remaining entries show the other five cases.

Contour integral estimates for the accuracy of the trapezoidal rule for analytic
integrands are based on comparing a function in Table 13.1 with the corresponding
function in Table 13.2. For example, consider the middle of the bottom row in the
two tables, corresponding to integration of a 2π-periodic function v(θ) analytic in a
strip of half-width a around the real axis in the complex θ-plane (see [88]). By the
definitions of m(θ) and μ(θ), the error of the trapezoidal rule can be expressed as the
integral

IN − I =

∫
Γ

v(θ)[m(θ) − μ(θ)]dθ,(13.1)
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Table 13.1 Characteristic functions m for trapezoidal quadrature in the six fundamental cases re-
viewed in this paper. In each case, the result of the trapezoidal rule applied to an
integrand f is equal to the contour integral of f times m over an appropriate contour
Γ. In the top row, the contours Γ are the circle |z| = r, the line segment [0, 2π]−ia, and
the line R− ia. In the bottom row they are the boundary of the annulus r−1 < |z| < r,
the periodic rectangle [0, 2π] ± ia, and the strip boundary R ± ia, all traversed in the
usual positive sense.

circle interval real line

nonsymmetric −iz−1

1− z−N
1

1− e−iNθ
1

1− e−2πix/h

symmetric − i
2
z−1 1 + zN

1− zN
− i

2
cot(Nθ/2) − i

2
cot(πx/h)

Table 13.2 Characteristic functions μ for exact integration in the six fundamental cases. In each
case, the true integral I is equal to the contour integral of f times μ over the same
contours Γ as in Table 13.1. Each function in Table 13.1 is an approximation to the
corresponding function in Table 13.2, whose accuracy improves with distance to Γ.

circle interval real line

nonsymmetric −iz−1 1 1

symmetric
− i

2
z−1, |z| > 1

i
2
z−1, |z| < 1

− 1
2
, Im(θ) > 0

1
2
, Im(θ) < 0

− 1
2
, Im(x) > 0

1
2
, Im(x) < 0

where Γ is the rectangle [0, 2π]± ia traversed in the positive direction. (We can ignore
the ends of the rectangle, as their contributions cancel by periodicity.) As Im(θ) → ∞,
m(θ) approaches −1/2 exponentially, and as Im(θ) → −∞, it approaches 1/2. Thus
m(θ) − μ(θ) is exponentially small for large |Im(θ)|. It follows that if v is analytic
in a wide region around [0, 2π] and does not itself grow too fast with |Im(θ)|, (13.1)
delivers a powerful accuracy bound.

In other words, contour integrals connect quadrature to the subject of rational
or, more generally, meromorphic approximation. The function to be approximated
is μ, with a jump discontinuity along the integration interval. (The discontinuity is
explicit in the second row of Table 13.2 and implicit in the first row.) The function
m approximates that jump discontinuity by a sequence of poles.10 In the upper-left
position of the tables, for example, after dividing by −iz−1, we note that (1−z−N )−1

is a rational function that is close to 1 outside the unit disk and close to 0 inside.11

10These formulations can be regarded as uses of the theory of hyperfunctions, which are generalized
functions defined by analytic functions in the lower and upper half-planes that may have singularities
or discontinuities along the real axis [68]. Table 13.1 is thus a list of hyperfunction approximations
to the hyperfunctions of Table 13.2.

11Why, one might wonder, would one wish to approximate the simple rational function −iz−1 by
the more complicated rational function −iz−1/(1− z−N )? This question is not idle, but reflects the
fact that by the mean value theorem, if u(z) is analytic in |z| ≤ 1, its integral over |z| = 1 can be
evaluated by a single point evaluation at z = 0. So, indeed, sometimes one would not want to use
the more complicated function.
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Connections between quadrature formulas and rational functions have been a part
of quadrature theory for 200 years. Most classically, for integration of a nonperiodic
function on the interval [−1, 1], the function μ(ξ) that arises is log((ξ − 1)/(ξ + 1)),
with a branch cut along [−1, 1] and analytic elsewhere in the extended complex plane.
When Gauss invented Gauss quadrature in 1814, he did it by approximating μ by what
we would now call its type (N−1, N) Padé approximant at ξ = ∞, though he used the
language of continued fractions. (We say that a rational function is of type (m,n) if it
can be written as a quotient of a polynomial of degree at most m and a polynomial of
degree at most n, not necessarily in lowest terms.) Comparisons of m(ξ) and μ(ξ) for
other quadrature formulas on [−1, 1] were investigated by Takahasi and Mori [162].
For the special case of Gauss vs. Clenshaw–Curtis quadrature, see Figure 5 of [169].

We now turn to two particular problems in the subject of rational approximation
where the trapezoidal rule can be used to powerful effect, following the discussion in
the chapter on “Two Famous Problems” in [170].

The first problem is an approximation of y(ξ) = |ξ| on [−1, 1] by type (n, n) ratio-
nal functions, a prototypical rational approximation problem for nonsmooth functions.
Let Enn(|ξ|) denote the minimal value of ‖|ξ| − r(ξ)‖ over all rational functions r of
type (n, n), where ‖ · ‖ is the ∞-norm on [−1, 1]. It was a striking surprise when Don-
ald Newman proved in 1964 that the accuracy of these approximations can improve
root-exponentially with n [132]. Since polynomials can never do better than O(n−1),
this established that rational functions can be far more powerful than polynomials
in certain applications, a theme implicit in a number of parts of this article. Later,
Stahl found the precise asymptotic behavior [155]:

Enn(|ξ|) ∼ 8e−π
√
n.(13.2)

Following [170] and arguments by Stenger [157], it is now apparent that a simpler
argument than Newman’s would have sufficed to establish the root-exponential be-
havior, as follows. We start from the identity

|ξ| = 2ξ2

π

∫ ∞

−∞

exdx

e2x + ξ2
,

which can be established by an elementary substitution that converts the integral on
the right to an arctangent. This is an attractive integral to work with because the
integrand decays exponentially as |x| → ∞. We now get a rational approximation of
|ξ| by approximating this integral by the trapezoidal rule with node spacing h > 0:

r(ξ) =
2hξ2

π

(n−2)/4∑
k=−(n−2)/4

ekh

e2kh + ξ2
.(13.3)

Here n is a positive even number and there are n/2 terms in the sum, so r(ξ) is a
rational function of ξ of type (n, n). There are two sources of error that make r(ξ)
differ from |ξ|. The fact that the sum has been terminated at a limit n < ∞ introduces
an error on the order of e−nh/4, and the finite step size h > 0 introduces an error on
the order of e−π2/h. (The integrand is analytic in the strip around the real x-axis of
half-width a = π/2, corresponding to a convergence rate e−2πa/h.) Balancing these

sources of error as in section 6 suggests the condition e−nh/4 ∼ e−π2/h, that is,

h ∼ 2π√
n
, n → ∞,
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with error of order

‖f − r‖ = O(e−(π/2)
√
n).

This achieves the root-exponential behavior of (13.2), falling short of the actual op-
timal convergence rate by a factor of 4 in the sense that it requires n to be 4 times
larger than in (13.2) to achieve the same error.

The second famous problem is the approximation of et on (−∞, 0]. This problem
was introduced in a 1969 paper of Cody, Meinardus, and Varga [31], which drew
attention to the connection of such approximations with the numerical solution of
PDEs and showed that the convergence was at least geometric. What is the optimal
rate? The idea that it might be O(9−n) became known in the 1970s as the 1/9
conjecture. In fact, the optimal convergence rate turned out to be O(Hn) with H ≈
1/9.28903, a number now known asHalphen’s constant, as was conjectured numerically
by Trefethen and Gutknecht [171] and proved by Gonchar and Rakhmanov [65].

Again we can derive the exponential behavior from the trapezoidal rule, employing
methods to be detailed in section 15. We begin with the Laplace transform identity

et =
1

2πi

∫
Γ

esds

s− t
, t < 0,

where the integral is over a Hankel contour Γ of the kind to be described in section 15.
Choosing the contour to be a parabola, we convert this to an integral over the real
x-axis by the change of variables

s = (ix+ a)2, ds = 2i(ix+ a) dx

for a constant a > 0, which gives

et =
1

π

∫ ∞

−∞

e(ix+a)2(ix+ a)

(ix+ a)2 − t
dx.

We now approximate this integral by the trapezoidal rule with node spacing h > 0:

r(t) =
h

π

(n−1)/2∑
k=−(n−1)/2

e(ikh+a)2(ikh+ a)

(ikh+ a)2 − t
.(13.4)

Here n is a positive odd number, and since t rather than t2 appears in each term,
we now take n terms in the sum rather than n/2 as in (13.3) to make r(t) a rational
function of type (n− 1, n), and hence also of type (n, n).

This time, the integrand has Gaussian decay rather than just exponential decay
as |x| → ∞, so choosing h = O(1/

√
n) is enough to make the errors from endpoint

truncation exponentially small. We also have the parameter a to play with (the details
are spelled out in section 15). By taking a = O(

√
n), we can make the errors due

to grid spacing exponentially small too, and in this fashion we can achieve geometric
convergence. More precisely, the choices

a =

√
πn

24
, h =

√
3π

2n
(13.5)

lead to the convergence rate

‖f − r‖ = O(e−πn/3) ≈ O(2.849−n).(13.6)
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This has the optimal geometric behavior up to a constant factor of about 2 in the
sense that n has to be about twice the value of n in the best approximation case to
reach the same error.

Alternative applications of the trapezoidal rule to approximation of et are dis-
cussed in section 15, and the underlying rational approximations are investigated
in [172]. In particular, contour plots in the complex plane are presented in [172] com-
paring best rational approximations to et on (−∞, 0] with approximations derived
from the trapezoidal rule on hyperbolic, parabolic, and Talbot Hankel contours as
discussed in section 15.

14. Exponential and Double Exponential Quadrature Rules. When a function
y(ξ) defined on [−1, 1] is smooth, there are all kinds of ways to integrate it efficiently,
such as Gauss–Legendre or Clenshaw–Curtis quadrature [170, Chapter 19]. If there
are singularities at the endpoints, however, such methods converge very slowly. One of
the striking applications of the trapezoidal rule is to the integration of functions with
endpoint singularities, by first transplanting y(ξ) to a function w(x) on the real line
as in section 5 or sometimes to a periodic function v(θ) on an interval as in section 3.
Methods of this kind were introduced in the 1960s [143, 148] and developed much
further in the 1970s by Mori, Takahasi, and other Japanese researchers [85, 128, 131,
161, 162, 163].12 They can be amazingly effective at treating nearly arbitrary endpoint
singularities. For a very readable personal account, see Mori’s recollections [130].

We shall mainly discuss methods of the first type, based on a mapping ξ = φ(x)
from R to [−1, 1], which alters the integral according to the formula∫ 1

−1

y(ξ)dξ =

∫ ∞

−∞
y(φ(x))φ′(x)dx.(14.1)

A possible mapping, proposed in [148] and [162], is the

tanh rule: ξ = tanh(x).(14.2)

One can see the power of this change of variables by considering the example∫ 1

−1

dξ√
1− ξ2

=

∫ ∞

−∞

dx

cosh(x)
.(14.3)

On the left, there are inverse square root singularities at both ends—integrable, but
not even bounded. On the right, the integrand decays like O(e−|x|) as |x| → ∞,
and it is analytic in a strip of half-width a = 1

2π. By Theorem 5.1, the trapezoidal
rule will converge geometrically at a rate O(exp(−π2/h)), and if it is truncated to
N = 2n + 1 points as in (5.4), the choice h = π/

√
n as in the first row of Table 6.1

gives exp(−π
√
n) convergence.

Square root singularities could be integrated in many ways, such as Gauss–Jacobi
quadrature. The point about transplantation methods is that they are very general,
requiring no particular structure in the integrand. For the tanh rule, the following
theorem shows that the root-exponential convergence just described is typical. In
practice, almost any integrand of interest will satisfy the conditions of this theorem,
since it places no restriction on the nature of any branch cuts or other singular behavior

12An example close to our interests can be found in [127, p. 35]. Of course, the idea of changing
variables to improve an integral originated long before the 20th century.
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along (−∞,−1] and [1,∞). In this theorem, I denotes the exact integral (14.1) and
IN is its N -point quadrature approximation.

Theorem 14.1. Let y(ξ) be analytic in a neighborhood of (−1, 1) that includes
the intersection of a neighborhood of ξ = −1 with the wedge −a < arg(ξ + 1) < a for
some a > 0, where it satisfies y(ξ) = O(|ξ + 1|τ ) for some τ > −1, and similarly at
ξ = 1. If h = cn−1/2 for some c > 0, then as N = 2n+ 1 → ∞, for some C > 0,

IN − I = O(e−C
√
N ).(14.4)

Proof. For any a with 0 < a < π, the function ξ = tanh(x) maps the infinite strip
−a < Im(x) < a in the x-plane to the lens-shaped region about (−1, 1) in the ξ-plane
bounded by circular arcs intersecting at ±1 with half-angle a. The result follows from
this observation together with Theorem 5.1. Also see [112, 156].

The tanh transformation has been applied to good effect by many authors and
is at the heart of the sinc function techniques used by Stenger and others for the
solution of ODEs and PDEs and related problems [156, 158]. Its weakness is the
root-exponential convergence, which one would like to improve upon. With this in
mind, Takahasi and Mori also proposed two other transformations in [162] and [163],
respectively:

erf rule: ξ = erf(x),(14.5)

tanh-sinh or DE rule: ξ = tanh(12π sinh(x))(14.6)

(the constant 1
2π is justified below). The first of these maps has Gaussian behavior,

and the second has exponential-of-exponential or “double exponential” behavior. We
can see these effects by noting that the maps transform (14.3) to

2√
π

∫ ∞

−∞

exp(−x2)

(1− erf2(x))1/2
dx,

π

2

∫ ∞

−∞

cosh(x)

cosh(12π sinh(x))
dx,

respectively, with integrands of size O(exp(− 1
2x

2)) and O(exp(− 1
4πe

|x|)) as |x| → ∞.
If truncation and discretization errors are balanced as in section 6, one obtains the
excellent convergence rates summarized in Table 14.1.13

Table 14.1 The three most commonly used transplantations from [−1, 1] to R. The convergence rates
apply to many integrands, though precise theorems require careful hypotheses [141, 175].

Name Formula References Convergence

tanh ξ = tanh(x) [148, 156, 162] exp(−cN1/2)

erf ξ = erf(x) [162] exp(−cN2/3)

tanh-sinh or DE ξ = tanh( 1
2
π sinh(x)) [163] exp(−cN/ log(N))

Of the methods we have mentioned, tanh-sinh quadrature with its nearly ge-
ometric convergence has attracted the most attention. Bailey, Borwein, and their

13The reader is invited to confirm that for the example (14.3), the optimal step sizes for the three
transformations are approximately h = πn−1/2, 2.92n−2/3, and n−1 log(4πn), leading to convergence
rates of exp(−πn1/2), exp(−4.28n2/3), and exp(−π2n/ log(4πn)), respectively. Here N = 2n + 1.
For the erf transformation, it will be necessary to know that the complex roots of erf(x) + 1 = 0
closest to the real axis are located approximately at 1.3548 ± 1.9915i; cf. [162].
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collaborators have applied it with remarkable effect to problems of high-precision
experimental mathematics [12, 13, 14], and in [14] they write,

It is the nearest we have to a truly all-purpose quadrature scheme at the

present time.

For most of the remainder of this section, we explore properties of the tanh-sinh
method, highlighting both its power and its limitations in floating point arithmetic, a
problem that to varying degrees afflicts most quadrature methods based on variable
transformations. At the end, we comment briefly on some of the other methods.

Consider the quadrature rule∫ 1

−1

y(ξ)dξ =

∫ ∞

−∞
y(φ(x))φ′(x)dx ≈ h

n∑
k=−n

y(φ(kh))φ′(kh),(14.7)

where for some μ > 0,

φ(x) = tanh(μ sinh(x)), φ′(kh) = μ cosh(x)sech2(μ sinh(x)),

and N = 2n + 1. We now explain why μ = 1
2π is optimal for the class of entire

functions y. The larger μ is, the faster the integrand decays. However, the mapping
introduces poles where cosh(μ sinh(t)) = 0. The two poles nearest the real axis are
located at x = arcsin(12π/μ)i and its conjugate. The maximum distance these poles
can be from the real axis is 1

2π, which is the case for all 0 < μ ≤ 1
2π; as μ increases

beyond the value 1
2π, the poles approach the real axis. The choice μ = 1

2π therefore
maximizes the width of the strip of analyticity and at the same time guarantees rapid
decay of the integrand.

To estimate the optimal step size for (14.7), we match discretization and trunca-
tion errors as usual. We have seen that the half-width of the strip of analyticity for
entire functions is 1

2π, but singularities of y(φ(x)) in the x-plane may limit it further.
Hence we estimate the discretization error as usual by O(exp(−2πa/h)), where now
a ≤ 1

2π. The truncation error can be estimated as φ′(nh) = O(exp(− 1
2πe

nh)). By
balancing the two we obtain the formula

2π
a

h
=

1

2
πenh,(14.8)

which leads to

h =
W (4an)

n
,(14.9)

where W is the Lambert W -function.14 This choice of step size perhaps does not
appear in the literature except in [141]; instead, in the original paper [163] and later,
(14.8) is solved by asymptotic iteration after taking the logarithm. With a starting
value h = 1/n, one improvement leads to

h =
log(4an)

n
,(14.10)

which agrees with (14.9) in view of the fact that W (x) ∼ log(x) as x → ∞. Despite
this equivalence for large n, it turns out that (14.9) often leads to markedly superior

14W (x) is defined implicitly by wew = x. For its properties and applications, see [34].
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results for intermediate n, as we shall see below. In either case, the convergence is
asymptotically of the form O(exp(−2πan/ log(n))) as n → ∞.

To appreciate the difference between (14.9) and (14.10), it is interesting to con-
sider the integration of a constant function,15∫ 1

−1

1dξ =
π

2

∫ ∞

−∞

cosh(x)

cosh2(12π sinh(x))
dx.(14.11)

Here a = 1
2π, as mentioned above. With n = 12, for example, the formulas (14.9)

and (14.10) specify that the interval should be truncated at the quite different values
|x| = 3.56 and 4.32, respectively. In the latter case, the integrand is as small as
8.5×10−50 at the truncation point, which is quite incommensurate with the expected
discretization error of exp(−π2/h) = 1.3 × 10−12. Using (14.9) produces the more
balanced estimates 4.7× 10−15 and 5.9× 10−17 for the truncation and discretization
errors, respectively.

In deriving (14.9) and (14.10), we assumed that the function y itself makes no
appreciable contribution to the decay rate. If |y(ξ)| decreases to 0 as ξ → ±1, the
transformation can be modified; see [163] for a suggestion. Consider, for example,∫ 1

−1

√
1− ξ2dξ =

π

2

∫ ∞

−∞

cosh(x)

cosh3(12π sinh(x))
dx.(14.12)

Comparison with (14.11) shows that a = 1
2π as before, but the decay as |x| → ∞ has

now improved from O(exp(− 1
2πe

nh)) to O(exp(− 3
4πe

nh)). This example shows that,

curiously, a singular function such as
√
1− ξ2 can in fact be more suitable for this

type of integration than an entire function such as a constant, even if the difference
is only slight. Pursuing arguments such as these, it is possible to show that if y(ξ)
is of the form (1 − ξ2)α−1g(ξ) for some α > 0, where g(ξ) is bounded away from 0
at ξ = ±1, the estimates (14.8)–(14.9) can be improved to 2πa/h = (π/2)αenh and
h = W (4an/α)/n, with a small gain in accuracy. If y(ξ) has a zero at only one of the
endpoints, one can exploit this by truncating the sum (14.7) at different values of n
left and right.

The discussion above is rather informal and intended for practical situations. A
rigorous error bound of the form C exp(−c1n/ log(c2n)) for (14.7) can be established,
but for functions y(ξ) in a certain class. This is the class of functions defined on
(−1, 1) that can be extended analytically into a domain defined by the image of the
strip |Im(x)| < a under the transformation = tanh(12π sinh(x)), which is an infinitely
sheeted Riemann surface that wraps around ξ = ±1. A proof can be found in [165],
where related theorems for other single and double exponential transformations are
also given. Further variations are considered in [1, 141].

As mentioned above, the tanh-sinh transformation has been a particular success in
the field of experimental mathematics, where integrals are required to accuracies much
higher than standard double precision [12]. It owes its success to its fast convergence,
robustness against endpoint singularities, and simplicity, since the weights and nodes
are explicitly given, unlike those of Gauss–Legendre quadrature, for example. For a
comparison of the performance of tanh-sinh transformation with erf transformation
and Gauss quadrature in the high-accuracy setting, we refer the reader to [13].

15LNT first learned of some of these quadrature formulas as a graduate student visiting Peter
Henrici at the ETH in Zurich in 1979. Henrici introduced him to Jörg Waldvogel and laughed, “Dr.
Waldvogel has a new quadrature formula that doesn’t even integrate constants right!”
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Fig. 14.1 Convergence of tanh-sinh quadrature applied to the integral (14.13) after linear scaling
to [−1, 1]. Cases (a) and (b) correspond to symmetric truncations of (14.7) with h given
by (14.10) and (14.9), respectively. For case (c), h, n+, and n− have been chosen cor-
responding to a nonsymmetric truncation of (14.7) to exploit the different decay rates of
the integrand as x → ±∞. In each case the curves show theoretical approximations based
on balancing various error estimates and the dots are the actual computed errors.

Motivated by these high-accuracy computations, let us consider as an example
an integral from [12],∫ 1

0

(ξ + 1)−1 log6(ξ)arctan
( √

3ξ

2− ξ

)
dξ = 4.742841654850862 . . . .(14.13)

Convergence curves for the tanh-sinh rule for different choices of h are shown in
Figure 14.1. To quantify the convergence rates seen, we note that the half-width of
the strip of analyticity is determined by the point where the argument of the arctan
term in (14.13) assumes the values ±i; the value is a = arcsin(2/3) ≈ 0.7297. Two
of the curves in the figure correspond to the choices (14.9) and (14.10), reaffirming
the superiority of the choice based on the Lambert function. In the third and best
error curve, we have taken into account the fact that unequal truncation points in
(14.7) are advantageous for this integrand; see the discussion above and below (14.12).
In particular, the sixfold zero at ξ = 1 in (14.13) allows one to truncate (14.7) at
n = −n− and n = n+ with n+ � n−. By balancing discretization and truncation
errors, it is possible to find the optimal relationship between n− and n+, which was
used to generate the error curve (c) in Figure 14.1 (with N = 1 + n− + n+).

The great drawback of exponential and double exponential quadrature rules is
their difficulties with underflow, overflow, and cancellation errors in floating point
arithmetic. Using the erf rule (14.5), for example, the integrand of (14.3) transforms

to g(x) = (2/
√
π)e−x2

(1− erf2(x))−1/2. In standard double precision arithmetic, the
domain is limited to |x| ≤ 6, approximately, because for larger |x| the value of erf(x)
rounds precisely to 1 and the integrand becomes effectively singular. Yet the true
value is g(6) ≈ 4 × 10−8, which means the truncation error can be made no smaller
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than this number. In this case the remedy is easy, which is to exploit the identity
1 − erf(x) = erfc(x). However, not all integrands can be adjusted in such a way,
and certainly not without user intervention. This difficulty has prevented variable
transformation methods from becoming general tools in floating point arithmetic.

The mappings of Table 14.1 all map [−1, 1] to R. The so-called periodizing
transformations, on the other hand, map R to [−π, π]. One example is the

tan rule: x = tan(θ/2),(14.14)

intended for slowly decaying integrands onR. The following is a test example from [163]:∫ ∞

−∞

dx

1 + x4
=

1

2

∫ π

−π

1 + tan2(θ/2)

1 + tan4(θ/2)
dθ.(14.15)

The transplanted integrand is 2π-periodic, and the singularities at θ = ±π are remov-
able, so Theorem 4.2 predicts a convergence rate of O(e−aN ) ≈ O(e−0.88N ), where
a = arctanh(2−1/2). This agrees perfectly with the numerical results reported in [163].
The singularities at θ = ±π in (14.15) are not always removable, however, as is shown
by the example ∫ ∞

−∞

e−x2

1 + x2
dx =

1

2

∫ π

−π

e− tan2(θ/2)dθ.(14.16)

Here, the essential singularities at x = ±∞ have been transplanted to θ = ±π, and
Theorem 3.2 is not applicable as there is no analyticity in any strip around [−π, π].
One still obtains algebraic convergence of all orders since the derivatives at θ = ±π
vanish. This particular integral was analyzed in [179], where it was shown that the

convergence rate is O(e−
3
2N

2/3

), similar to the second example in Table 6.1.
There are also periodizing transformations that map finite intervals to finite in-

tervals. The first of these, one of the earliest examples of a transformation method, is
by Sag and Szekeres [143]. Perhaps the most famous is the IMT rule of Iri, Moriguti,
and Takasawa, given not in explicit form but as an indefinite integral [85].

Polynomial-based periodizing transformations were proposed by Korobov and
Laurie [94, 102], and a sinm-transformation by Sidi [151, 152]. Because these are not
exponential transformations, they do not achieve exponential accuracy but, rather,
high algebraic order O(hp). At the same time they do not suffer to the same extent
from floating point difficulties because they do not space the points as densely as
the exponential rules do. These transformations have been used in the integration of
multivariate functions [94].

Finally, we mention the mapping X = sinh(x), which maps R to R with the
purpose of improving the decay of slowly converging integrals such as (14.15). We
shall apply this transformation for solving a PDE in section 16.

15. Laplace Transforms and Hankel Contours. The Laplace transform and its
inverse are defined by

f̂(s) =

∫ ∞

0

e−stf(t)dt, f(t) =
1

2πi

∫ σ+i∞

σ−i∞
estf̂(s)ds, σ > σ0,(15.1)

assuming convergence of the integrals, where σ0 is a number known as the convergence
abscissa. The second formula, known as the Bromwich integral, is the one that has
to be evaluated numerically when tables of Laplace transforms fall short. Two of its
key properties are as follows:
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(i) The factor f̂(s) is analytic not only in the half-plane Re(s) > σ0, but also,
in many cases, in much of the rest of the complex plane.

(ii) The factor est is likewise analytic and decays rapidly as Re(s) → −∞.
These properties allow one to deform the Bromwich line Re(s) = σ into a contour that
is better suited for computation, exploiting the rapid decay to turn the integral into
the kind treated by the trapezoidal rule in sections 3–6 and section 14. For all kinds
of applications, this idea has proved effective. Many of the examples of sections 16
and 17 are of this type.

The idea of deforming the contour and applying the trapezoidal rule seems to have
originated independently in two different hemispheres in the mid-1950s. In England,
Alan Talbot and his doctoral student J. S. Green considered integrating the Bromwich
integral on a steepest descent contour [69]. Around the same time, at a conference in
Australia, John Butcher suggested a Hankel contour in the form of a parabola

. . . which bends towards the negative half-plane [thus introducing] an ex-
ponentially decreasing factor which may speed up the overall convergence
of the integral [29].

Butcher never returned to this work, but Talbot did, and twenty years later he
published a much cited paper [164] in which he generalized and improved the earlier
work of Green.

Consider a Hankel contour parameterized by a real variable x,

Γ : s = s(x), x ∈ R,(15.2)

with the property that s(±∞) = −∞ ± iγ for some positive γ (possibly infinite).
Examples can be seen in Figures 1.2, 15.2, and 15.3. The line Re(s) = σ in (15.1) can

be deformed to the contour Γ, provided it remains in the domain of analyticity of f̂(s).

There is also a restriction on the decay of f̂(s) in the left half-plane, namely, that

f̂(s) → 0 uniformly in Re(s) ≤ σ0 as |s| → ∞ [164, 172]. This rules out transforms

such as f̂(s) = e−s or e−
√
s, which correspond to functions f(t) with singularities at

t = 0.
The contour deformation (15.2) leads to

f(t) =
1

2πi

∫ ∞

−∞
es(x)tf̂(s(x))s′(x)dx,(15.3)

and approximation by the truncated trapezoidal rule yields

f(t) ≈ h

2πi

n∑
k=−n

eskts′kf̂k.(15.4)

Here h is the uniform node spacing, and

xk = kh, sk = s(xk), s′k = s′(xk), f̂k = f̂(sk).(15.5)

If it is more convenient to use the midpoint rule, then xk = (k + 1
2 )h and the upper

limit of the sum (15.4) is n− 1 instead of n.

Observe that if f̂(s) is real-valued when s is real, and if the contour Γ is symmetric
with respect to the real s-axis, then the terms in the sum (15.4) appear as conjugate
pairs, which cuts the cost in half. This is a significant savings in PDE problems, for
example, where each evaluation of f̂k requires the solution of a large linear system.

Just as there are many quadrature rules that can be applied to (15.3), so there
are many choices for the Hankel contour (15.2). Most of these can achieve geomet-
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ric convergence as n → ∞ if certain parameters are well chosen. Our plan for the
remainder of this section is, first, to outline five particular choices of contours, sum-
marized in Table 15.1: parabolas, hyperbolas, circles, and so-called Talbot contours
and modified Talbot contours. The first two are based on transplantations to the real
line as in (15.3), and the other three on transplantations to [−π, π]. Then, focusing
on the simplest case of parabolas, we will show the kind of analysis that can be used
to derive the optimal parameters listed in the table.

Table 15.1 Choices of contours for the numerical inversion of the Laplace transform by the approx-
imation (15.4), showing the best asymptotic convergence rates in the case where f̂(s)
has singularities on the negative real axis and t is fixed. Formulas for the parabola and
hyperbola are given after scaling the trapezoidal formula to θ ∈ [−π,π] via x = (nh/π)θ.

If f̂ has real symmetry, only nodes in [0, π] are used; if not, nodes in θ ∈ [−π, π] are
needed and the listed convergence rate is cut effectively in half. For comparison, the
final line lists the asymptotic convergence rate of algorithms based on the use of actual
best ∞-norm rational approximations of es on (−∞, 0], an idea that shows promise but
has received relatively little study.

Name, eq. Convergence Refs. Formula: s = (n/t)×
parabola (15.8) O(e−2.09n) [182] 0.2618 − 0.2387θ2 + 0.5iθ

hyperbola (15.9) O(e−2.32n) [182] 4.4921(1 − sin(1.1721 − 0.3443iθ))

circle O(e−0.91n) – −0.3533 + 0.5569 exp(iθ)

Talbot (15.7) O(e−1.90n) [180] −0.4814 + 0.6443θ cot(θ) + 0.3642iθ

mod. Talbot (15.7) O(e−2.72n) [40] −1.2244 + 1.0034θ cot(0.6407θ) + 0.5290iθ

best approx. O(e−4.46n) [31, 172]

To show in the most concrete way how effective these formulas can be, we consider
as an example the plot of |Γ(z)| shown in Figure 15.1, the absolute value of the gamma
function in the complex plane. This example is based on the Laplace transform
formula

tz−1

Γ(z)
=

1

2πi

∫
Γ

ests−zds,(15.6)

which can be found in most tables of integrals. Following [146, 168], Figure 15.1 has
been computed by evaluating this integral, with t = 1, on a modified Talbot contour
discretization with 32 points. The figure shows |Γ(z)| on a grid with spacing 0.1 in
each direction of the complex plane. (The symmetry with respect to the real axis
in the figure is not exploited.) The complete MATLAB code (except for plotting
commands) is as follows:

n = 16;

th = [-n+0.5:n-0.5]*pi/n; % Nodes in [-pi,pi]

sg = -1.2244; mu = 1.0034; nu = 0.5290i; bt = 0.6407; % Modified T. parameters

s = n*(sg+mu*th.*cot(bt*th)+nu*th); % Talbot pts in s-plane

sp = n*(mu*(cot(bt*th)-bt*th./sin(bt*th).^2)+nu); % Derivative of s

x = linspace(-3.5,4,76); y = linspace(-2.5,2.5,71);

[xx,yy] = meshgrid(x,y); zz = xx+1i*yy; % Plotting grid

gi = zeros(size(zz));

for k = 1:2*n; % Loop over contour pts

gi = gi+exp(s(k))*sp(k)*s(k).^(-zz);

end

gi = 1/(2i*n)*gi; % 1/Gamma(z) on grid

gamma = 1./gi; % Gamma(z) on grid
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Fig. 15.1 Modulus of the gamma function in the complex plane computed by a short MATLAB code
segment based on a 32-point modified Talbot contour discretization of (15.6), with t = 1,
following [146, 168]. The computation gives 10- to 15-digit accuracy over most of the
domain and takes less than a half a second on an ordinary laptop.

If the function is costly to evaluate at each node, as would be the case when
solving PDEs (section 16), the for loop can be replaced by a parallel for loop.

This code segment is based on the contour

s = σ + μθ cot(βθ) + ν iθ, θ ∈ [−π, π].(15.7)

Note that we have implemented the midpoint rule version, as it avoids the need to
compute the value of s at the removable singularity at θ = 0.

The contour (15.7) with β = 1 is the original contour of Talbot [164]. The version
with 0 < β < 1 is known as the modified Talbot contour [40]. The optimal choices
of parameters in the modified contour appear in the code and in Table 15.1, where
the expected rate of convergence is also listed. At a fixed value of z, say 1 + i, the
absolute errors in 1/Γ(z) for n = 5 and n = 10 are about 1.6× 10−5 and 2.2× 10−11,
respectively. This represents an empirical convergence rate of O(e−2.70n), which is in
excellent agreement with the theoretical O(e−2.72n) listed in the table.

Another idea listed in Table 15.1 is a parabolic contour,

s = (ix+ a)2, x ∈ R,(15.8)

with a > 0, already used in section 13. This idea goes back to Butcher [29], and
optimal parameters were derived in [182].

A third idea is a hyperbola, and the contour

s = μ(1 + sin(ix− α)), x ∈ R,(15.9)
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was considered in [105, 106]. (This formula does indeed describe a hyperbola, as be-
comes clear when the sine term is expanded in its real and imaginary parts.) The
parameter α ∈ (0, 1

2π) can be adjusted to control the asymptotic angle of the hy-

perbola, which makes this a popular choice for transforms f̂ with singularities in a
wedge-like region around the negative real axis. These arise when solving differential
or integral equations involving sectorial operators as in section 16. (However, in prac-
tice it does not matter much if one uses a hyperbolic, parabolic, or other contour for
inverse Laplace transforms of sectorial operators, since es < 10−16 for Res < −37. In
machine arithmetic, the complex plane is a half-plane.)

One way to compare these various contours is to view their connection with the
double exponential quadrature formulas of section 14.16 To see the connection, note
that on the parabolic contour (15.8) and the hyperbolic contour (15.9), the integral
(15.3) has Gaussian and double exponential decay, respectively, as can be seen from

|est| = O(e−tx2

), |est| = O(e−
1
2μt(sinα)e|x|

), |x| → ∞.(15.10)

This is assuming that the transform f̂(s) does not contribute to the decay rate. The
original Talbot contour, (15.7) with β = 1, corresponds to faster than double expo-
nential decay, namely,

|ezt| = O(e−2π2μt/(π2−θ2)), |θ| → π.(15.11)

The decay here is like that of a bump function with essential singularities at θ = ±π,
which makes it similar to the IMT rule (section 14). This decay is too fast, and the
reason for considering 0 < β < 1 in (15.7) is precisely to control it better [40, 180].

Figure 15.2 shows most of the contours we have discussed. The figure illustrates
the conclusion, also evident in Table 15.1, that while the modified Talbot method
achieves a given accuracy with the least number of nodes, there is not a great difference
between the various Hankel contours.

The circle is simple and has been used to good effect on the Γ(z) example; see
[168]. As it is not a true Hankel contour, it commits a branch cut “crime” in crossing
the negative real axis. By moving the crossing point further into the left half-plane,
however, the magnitude of the crime can be made as small as desired, and to derive the
optimal center and radius listed in Table 15.1, we balanced it against the discretization
and truncation errors. The circle is inferior to the Hankel contours not because of the
branch crime, but because it wastes so many of its nodes far in the left half-plane.
Using an optimal half-circle improves the convergence rate marginally, to O(e−1.11n).

As mentioned earlier, we will now conclude the section by outlining an example of
the kind of analysis by which good parameters for these contours can be found. Even
though the parabola does not represent the fastest convergence in the present group
of methods, we shall restrict our analysis to this contour because of its simplicity.
Also, it leads to explicit formulas, which is not the case for the other contours.

We follow the argument of [180] and consider the conformal mapping (15.8), with
x now extended into the complex plane. See Figure 15.3 for a schematic representation
of this map. A strip of analyticity in the x-plane is mapped to the cut s-plane, with
the cut along the negative real axis. Note that the strip on the right is bounded
from above by the singularity at Im(x) = a, but there is no restriction in the lower

16It is curious to note that the people working on the inverse Laplace transform (Butcher, Green,
Talbot) and quadrature by variable transformation (Mori, Schwartz, Takahasi) were doing effectively
the same thing at around the same time, but they seem to have been unaware of each other.
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Modified Talbot (15)
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Fig. 15.2 Quadrature nodes for four of the contours with parameters optimized to achieve the con-
vergence rates shown in Table 15.1. In each case the value of n (shown in the legend)
is chosen so that the accuracy is approximately 10−16, as marked by the vertical dashed
line. To avoid clutter the actual contours (connecting the dots) are not drawn.

Re(s)

Im(s)

Γ

Im(x) = a+ → a

Im(x) = 0

Im(x) = −a−

Re(x)

Im(x)

Im(x) = −a−

Im(x) = a+ → a ia

Fig. 15.3 Conformal map of the parabola (15.8). The interior (resp., exterior) of the contour of inte-
gration Γ in the s-plane maps to the upper (resp., lower) half of the w-plane. Theorem 5.1
is applied to each half-plane to estimate errors and hence compute optimal parameters.

half-plane. The latter property is inherited from the fact that the integrand in the
s-plane is analytic in the exterior of the parabola.

We now estimate discretization errors by applying Theorem 5.1; specifically, the
generalization of that theorem to the case of an unsymmetric strip of analyticity,
as discussed below (5.15). Hence, consider in Figure 15.3 (right diagram) the half-
strips Im(x) ∈ [0, a+] and Im(x) ∈ [−a−, 0], where 0 < a+ < a, 0 < a−. The
error associated with [0, a+] is O(e−2πa+/h), and if we assume the only singularities

of f̂(s) are on the negative real axis we can let a+ → a to obtain O(e−2πa/h). The
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Fig. 15.4 On the left, a graphical representation of the derivation of the optimal parameters a
and h of (15.13) for the parabolic contour (15.8). In region (a) of the parameter plane,
the discretization error associated with the singularities on (−∞, 0] dominates, of size
O(e−2πa/h). In (b), the discretization error associated with the magnitude of est in the

right half s-plane dominates, of size O(e(π/th2)(2ath−π)). In (c), the truncation error

from replacing the infinite sum by a finite one dominates, of size O(et(a
2−(hn)2)). The

white curves are the boundaries of the regions as defined by (15.12). The color bands
represent absolute errors of magnitude 10−�, � = 0, 1, . . . , 15, counting from the outside
in. This is for the special case t = 1 and n = 15, with all implied constants set to 1. On
the right, actual errors for the 1/Γ(z) example at z = 1 + i, using the parabolic contour
with n = 15. The cross marks the location of the theoretical optimal parameters (15.13).

error associated with [−a−, 0] is O(e(a+a−)2te−2πa−/h), where the first and second
exponential terms come from the factor M and the denominator of (5.6), respectively.
Minimizing with respect to a−, as was done below (4.2), gives the optimal value as
a− = −a + π/(th), assuming h sufficiently small for this quantity to be positive.

The corresponding error contribution is O(e(π/th
2)(2ath−π)). Finally, there is also a

truncation error of magnitude O(et(a
2−(hn)2)). Balancing these three error terms gives

−2πa

h
=

π

th2
(2ath− π) = t(a2 − (nh)2),(15.12)

from which it follows that

a =
1

2

√
πn

3t
, h =

1

2

√
3π

tn
.(15.13)

The corresponding convergence rate is O(e−2πn/3). These formulas for a and h cor-
respond to the formulas used in the rational approximation problem discussed at the
end of section 13, where t = 1 and n is replaced by n/2.

In Table 15.1 we chose to scale all these contours to the interval θ ∈ [−π, π], which
is done by setting x = (nh/π)θ. Substituting this as well as (15.13) into (15.8) gives
s = (n/t)(π/12− 3/(4π)θ2 + iθ/2), as recorded in the first line of the table.

In Figure 15.4 the theoretical analysis above is summarized and validated against
an actual example, namely, the computation of 1/Γ(z) discussed above. The agree-
ment between theory and experiment is striking. This would be a good time, how-
ever, to point out the limitations of the analysis. It was assumed that the transform
f̂(s) made only O(1) contributions to the various discretization and truncation error

estimates; the only information of f̂(s) that was actually used is the fact that its
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singularities are on the negative real axis. This is a valid assumption for a trans-
form like f̂(s) = (s + λ)−1, with λ > 0, which is the appropriate model problem for
parabolic PDEs; see section 16 and [182]. In the case of the gamma function, however,

f̂(s) = s−z can have large or small magnitude when z is far in the left or right half-
planes and the contour parameters (15.13) can become less reliable [145]. The same
thing was pointed out in the case of the generalized Mittag-Leffler function in [55].

If f̂(s) has singularities off the real axis, the contour parameters (15.13) are
likewise not applicable. If the singularities lie in a parabolic region enclosing the
negative real axis, however, the analysis can be adapted by limiting the value of a+
by a value strictly less than a. This situation arises, for example, in solving linear
advection-diffusion PDEs by the method described in section 14. Formulas for optimal
parabolas were derived in [83, 181], where it was shown that the convergence is still
geometric but the decay constant gets smaller the wider the region. In the extreme
case when the singularities extend to infinity along the imaginary axis (as is the
case in wave-type PDEs), all accuracy is lost, signalling the failure of these contour
deformation methods.

An issue we have not discussed in this section is the fact that the optimal contours
all scale with n; see Table 15.1. A contour that extends well into the right half-
plane will therefore make the integrand of (15.1) large. The result can be destructive
cancellation errors on a computer even when a formula should mathematically be
accurate. Roundoff control in the case of parabolas, hyperbolas, and Talbot contours
is discussed in [181], [106], and [40], respectively.

Another issue worthy of mention is that the contour deformation technique we
have described is not the only approach to the numerical inversion of the Laplace
transform that makes use of the trapezoidal rule. A popular alternative is an expan-
sion in Laguerre polynomials

f(t) = eσt
∞∑
j=0

cje
−btLj(2bt), t > 0,(15.14)

known as the Weeks method [177]. Here σ is defined as in (15.1), b is a positive
constant, and the expansion coefficients cj are defined by the power series

2b

1− z
f̂(s) =

∞∑
j=0

cjz
j, s = σ + b

1 + z

1− z
,(15.15)

with radius of convergence determined by the singularities of f̂ . For derivations of
(15.15) we refer the reader to [177, 178], both of which also provide guidelines for
choosing the parameters σ and b. The coefficients cj are computed from (15.15) by
trapezoidal rule approximation and the FFT, as described in section 12; see also [115].

A closely related method is one for computing the Fourier integral (5.7) when
w(x) is slowly decaying on R. (When it is rapidly decaying, (5.7) can simply be
truncated.) This method, which leads to a Laguerre expansion for ŵ(ξ) similar to
(15.14), is due to Weber [176].

Both the Weeks method for the Laplace transform and the Weber method for the
Fourier transform are related to the tan rule (14.14). A clue to this is the fact that

the argument of f̂ in (15.15) reduces to s = σ + ib cot(θ/2) when z = eiθ. The use
of the trapezoidal rule, however, is shifted away from the direct computation of the
integrals, (5.7) or (15.1), to the computation of expansion coefficients as in (15.15).

D
ow

nl
oa

de
d 

03
/3

0/
18

 to
 7

7.
15

7.
19

4.
21

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE EXPONENTIALLY CONVERGENT TRAPEZOIDAL RULE 441

16. Partial Differential Equations. The geometrically converging trapezoidal
rule has been used in many ways in algorithms for the numerical solution of PDEs.
In this section we concentrate on methods exploiting Hankel contour integrals as
described in the last section.

Consider the system of ODEs

du

dt
= Au, u(0) = u0,(16.1)

u ∈ Cm, A ∈ Cm×m, which arises upon semidiscretization of a PDE such as ut = Au.
This could be the heat equation, with A the Laplacian operator in some coordinate
system and A its matrix approximation based on finite differences, finite elements, or
spectral methods. The solution of (16.1) is u(t) = exp(At)u0, so what we are about to
describe can be seen as a method for computing the action of the matrix exponential
on a vector without computing the exponential itself. More general functions f(A)
besides the exponential are the subject of section 18.

Taking the Laplace transform of (16.1) with respect to t leads to the integral

u(t) =
1

2πi

∫ σ+i∞

σ−i∞
estû(s)ds, û(s) = (sI −A)−1u0,(16.2)

where the contour passes to the right of all eigenvalues of A.17 Deforming the contour
to the type of Hankel curve described in section 15 leads to

u(t) ≈ h

π
Im

{
n∑

k=0

′
eskts′kûk

}
,(16.3)

where we have used the symmetry considerations alluded to below (15.5) to reduce
the cost. The numbers sk and s′k are defined by (15.5), and the vectors ûk are the
solutions of the equations

(skI −A)ûk = u0, k = 0, 1, . . . , n.(16.4)

The major expense in a practical implementation of (16.3) is the solution of the
shifted systems (16.4), which are typically large and require complex arithmetic even
when A is real. When the structure of A is such that these systems can be solved
efficiently by a direct method, the summation (16.3) can be implemented in a parallel
for loop as the summands may be computed independently.18 When direct methods
are impractical, Krylov subspace iteration can be considered. A key point is that
because of shift-invariance, only one Krylov basis needs to be constructed for all the
systems (16.4). This reduces the problem to solving, instead of (16.4), a sequence of
upper-Hessenberg systems of much smaller dimension; see [125, 153]. For a comparison
of Krylov methods with parallel direct methods we refer the reader to [83], where the
important issue of preconditioning is also addressed.

Another way to reduce the cost is to pick a good contour so that the number of
linear systems (16.4) to be solved is small. If A arises from discretization of the heat
equation, its spectrum is typically on the negative real axis, and an optimal contour
can be constructed by the type of analysis that led to (15.13).

17More generally, the same formulas apply if A is a closed linear operator generating a C0 semi-
group [137].

18In [71] the term “backslash matrix” is proposed for such matrices.
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The formula (16.3) computes the solution directly at a given value of t. In certain
applications this can give the method an advantage over the method-of-lines approach,
in which (16.1) is integrated on all of [0, t] by some Runge–Kutta or multistep formula.
While (16.3) can be applied at two or more values of t for the same set of ûk, one should
keep in mind that the optimal contours are t-dependent; cf. (15.13), for example. If
the contour is picked optimally for a particular value of t, the accuracy may drop
significantly for other values of t; see [106, 182].

As far as we are aware, the first mention of the use of (16.2) as a method for solving
the heat equation goes back to the original paper of Talbot [164], but no numerical
results were reported there. Since then, numerous variants of the method have been
proposed and numerical results presented for the heat equation and more general
parabolic PDEs. Relevant papers include [58, 83, 181, 182] (parabolic contours),
[106, 123, 150, 182] (hyperbolic contours), and [40, 172] (Talbot contours). A recent
monograph devoted to the topic is [59].

The greatest impact of the contour integral method has been in the area of
parabolic problems. However, there also exists a contour integral formulation for
elliptic PDEs defined on cylindrical domains [59]. To illustrate this, consider the
second-order analogue of (16.1),

d2u

dξ2
+Au = 0, u(0) = 0, u(1) = u1,(16.5)

with ξ ∈ (0, 1). If A is an approximation to an elliptic operator in d dimensions
with suitable boundary conditions, the system of ODEs (16.5) is an approximation
to an elliptic PDE in d + 1 dimensions. Again, one should think of A as a suitable
discretization of the Laplacian. The assumption that the boundary conditions are
independent of ξ restricts the problem to a cylindrical domain.

Taking the Laplace transform of (16.5), one obtains, in analogy to (16.2),

u(ξ) =
1

2πi

∫ σ+i∞

σ−i∞
E(ξ; s)û(s)ds, û(s) = (sI −A)−1u1,(16.6)

where E(ξ; s) is the normalized sine function

E(ξ; s) =
sin(ξ

√
s)

sin(
√
s)

.(16.7)

The contour in (16.6) passes to the right of the spectrum of A, as before. What is new
is that E(ξ; s) now has singularities, which lie at s = π2 and its positive multiples,
putting a further restriction on the location of the contour. In practice one would
therefore select a contour that intersects the real axis in (0, π2).

In [59] a method based on contour deformation of (16.6) is proposed and analyzed.
Because the function E(ξ; s) in (16.6) does not decay as rapidly in the left half-plane
as the function est in (16.2), however, the contour deformation is perhaps less crucial
here. Instead, one can solve the problem on a vertical line in combination with a sinh
transformation as in section 14. Based on the type of parameter tuning arguments
seen elsewhere in the paper, we propose

s(x) =
1

2
π2(1 + i sinh(x)), x ∈ R.

The approximation is then

u(ξ) ≈ h

π
Im

{
n∑

k=0

′
E(ξ; sk)s

′
kûk

}
,(16.8)
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Fig. 16.1 A particle undergoing Brownian motion in a rectangular box. A trajectory has been se-
lected that hits an end before the sides; in this 2×1×1 geometry the fraction of trajectories
with this property is ≈ 0.038. For a 10×1×1 box, the case calculated by a contour integral
method in the text, this figure shrinks to 7.30 × 10−10.

where sk = s(kh) and s′k = s′(kh) = 1
2π

2 cosh(kh)i, and ûk = (skI − A)−1u1. Note
that in this method the dimension of the problems to be solved has been reduced
by 1. A two-dimensional elliptic problem can be solved by solving a sequence of
one-dimensional problems, namely, one resolvent system for each quadrature node.
Likewise, a three-dimensional problem can be reduced to two-dimensional problems,
etc. The method gives one the option of computing the solution at a specified value of
ξ, without having to compute it through the entire domain as is the case with many
other methods. Accuracy is lost as ξ → 1, however. As with (16.2), the resolvent
systems can be solved in parallel.

As an example, consider the last problem of the SIAM 100-Digit Challenge [25].
This involved a particle in a 10× 1 rectangle undergoing a two-dimensional Brownian
motion. Assuming the motion starts from the center, the problem was to compute the
probability that the particle will reach one of the ends before it touches the sides. To
make the problem more challenging, we consider here the three-dimensional version,
i.e., a rectangular box of dimensions 10× 1× 1; see Figure 16.1.

The problem can be posed as a Laplace problem for the determination of a har-
monic measure; see [25, Chapter 10]. We consider a box of dimensions 2b × 2a× 2a
and, making use of the symmetries, we reduce the problem to solving (16.5) on the
domain [−b, b] × [0, a] × [0, a] with boundary conditions 0 on one end and 1 on the
other. Here A is an approximation to the Laplacian on the square [0, a]× [0, a] with
Dirichlet conditions on two adjacent sides and Neumann conditions on the others. For
A, we therefore use

A = I ⊗D +D ⊗ I,(16.9)

where D is the Chebyshev spectral differentiation matrix on [0, a] that incorporates
homogeneous Neumann and Dirichlet conditions at the left and right endpoints, re-
spectively. The matrix I is the identity of the same dimension as D, and ⊗ denotes
the Kronecker product [168].

This method yields a probability 7.298818× 10−10, which is correct to all digits
shown (as verified by a series solution). This accuracy is achieved by using an 8× 8
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differentiation matrixD and 30 terms in the quadrature sum (16.8), with a step size of
h = 0.2773 (as prescribed by the parameter tuning). Note that the total cost involved
is the solution of 30 resolvent systems, each of size 64 × 64. If the same method
is applied to the original two-dimensional example, it yields the required ten digits,
namely, 3.837587979× 10−7, at the cost of solving 30 resolvent systems of dimension
8× 8.

As a final example, consider a semidiscretization of a fractional-time diffusion
equation

dαu

dtα
= Au, u(0) = u0,(16.10)

where the so-called Caputo fractional derivative on the left is defined for 0 < α < 1
by

dαu

dtα
=

1

Γ(1− α)

∫ t

0

u′(y)
(t− y)α

dy.

The analytic solution of (16.10) is given by

u(t) = Eα(t
αA)u0, where Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
.

The function Eα(z) is the Mittag-Leffler function, which reduces to ez and ez
2

erfc(−z)
in the special cases α = 1 and α = 1

2 , respectively; see [55] and [118].
By taking a Laplace transform of (16.10), one can derive a contour integral rep-

resentation and its approximation identical to (16.2) and (16.3), but the transform is
now [118]

û(s) = (sI − s1−αA)−1u0.(16.11)

Note that if α = 1, this reduces to the standard heat equation (16.2). On the other
hand, when 0 < α < 1, the transform involves a branch cut. If this cut is defined to
be on the negative real axis, the contours displayed in Table 15.1 should still be good
choices.

As an experiment, we used the same Talbot contour displayed in the code segment
of section 15 to invert (16.11). For A we chose a spectral collocation approximation to
the Laplacian on a tensor-product grid of 32× 32 Chebyshev points; cf. (16.9). With
n = 16 nodes on a midpoint discretization of the Talbot contour the results are as
shown in Figure 16.2. Note that because of symmetry, only eight resolvent systems
were solved for each α, each of which involved a matrix of size 322 × 322.

The numerical examples presented in this section are primarily of academic inter-
est. One area of more realistic applications is mathematical finance, where convection-
diffusion equations such as the Black–Scholes and Heston PDEs can be solved by these
techniques [83, 103].

A related integral transform method, in which the trapezoidal rule is applied on
a hyperbolic contour, has been applied by Fokas and colleagues to solve a variety
of evolutionary and stationary PDEs [47, 48, 49]. Another variation on the theme
is the use of the method known as convolution quadrature [107]. This approach is
not restricted to parabolic operators to the same extent as the method (16.3), and
applications to wave equations are described in [15, 16, 35]. Parallelization in time is
effected by clever use of the z-transform, which is inverted numerically by applying
the trapezoidal rule on a circle.
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t = 0 t = 0.005, α = 1 t = 0.005, α = 1
2

Fig. 16.2 Diffusion under (16.10) computed by the inverse Laplace transform discretized by the
trapezoidal rule on a Hankel contour. The left image shows the initial condition. The
middle, with α = 1, shows ordinary diffusion. The right, with α = 1/2, corresponds to
diffusion governed by a fractional time derivative.

17. Special Functions. Integrals evaluated by variants of the trapezoidal rule
are one of the mainstays of special function evaluation. Such applications have been
illustrated already by Poisson’s example in section 1 (elliptic functions), the Bessel
function example of section 4, and the gamma function of section 15.

Some of the early attempts in the computer era at table generation were directly
based on this strategy. An example is the complex error function, also known as the
plasma dispersion or Faddeeva function, w(z) [44, 167]. For z in the upper half-plane,
the function can be expressed as the Hilbert transform of the Gaussian,

w(z) =
i

π

∫ ∞

−∞

e−t2

z − t
dt,(17.1)

with the integral to be interpreted in the principal value sense when z is real. It can
also be written in terms of the complementary error function,

w(z) = e−z2

erfc(−iz) = e−z2
(
1 +

2i√
π

∫ z

0

et
2

dt
)
.

Several other functions can be related to it, such as the Fresnel and Voigt functions,
as well as Dawson’s integral. In 1954, Faddeeva and Terent’ev compiled a set of tables
for w(z) in the rectangle z = x+ iy, 0 ≤ x ≤ 5, 1 ≤ y ≤ 5 [44]. (For 0 ≤ y ≤ 1 they
used Taylor series, which are more effective, and in the other quadrants symmetry
formulas can be applied.) By bounding the error with the Euler–Maclaurin formula,
they were able to generate values to an accuracy of about 10−8, an impressive feat at
the time. The success of the trapezoidal rule when applied to (17.1) is partially due
to the Gaussian decay of the integrand (just as in the example of section 4). The fact
that the integrand in (17.1) has a pole at z, however, limits the width of the strip
of analyticity and hence the convergence rate. This is why, in [44], the trapezoidal
rule was used only for y ≥ 1. Later authors explicitly removed the pole by a residue
subtraction [4, 30, 81, 121, 129]. One must be mindful, however, of the possibility of
floating point cancellation errors in the resulting formula [166].

When the decay of the integrand is not as rapid as Gaussian, a useful strategy
to force a more rapid decay is contour deformation. Methods of this kind based on
general Hankel contours were discussed at length in section 15. Another contour
deformation strategy is to integrate along a path of steepest descent or stationary
phase in order to eliminate oscillations.
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Table 17.1 Examples of special functions computable by the trapezoidal rule. The symbols z and x
denote formulas that are valid for complex and real arguments, respectively. An asterisk
in the second column indicates that some contour deformation/transformation in the
classical integral formula is applied to map to the real line. The special functions of
[110, 111] were also discussed earlier in [109].

Function Type References

Airy, Ai(z) real line* [60]
Bessel, Jn(z), In(z) periodic interval [46, 110, 111, 149, 160]

Bessel, Jν(z), Yν(z), Kν(z) real line* [46, 80, 110, 111, 149]
Complete elliptic integrals, E(k), F (k) periodic interval [110, 111]
Error and related, w(z), erf(z), erfc(z) real line [44, 46, 110, 111, 121, 129]

Gamma, Γ(z) real line* [145]
Incomplete gamma, Γ(a, z) real line* [6]

Mittag-Leffler, Eα(x) real line* [55]
Parabolic cylinder, U(a, z) real line* [61]

Psi, Ψ(a, b;x) real line* [7]
Zeta, ζ(z) real line* [8, 149, 173]

A summary of special functions for which the trapezoidal rule has proved effective
is presented in Table 17.1.

18. Functions and Eigenvalues of Matrices and Operators. One of the most
powerful applications of the trapezoidal rule in scientific computing involves the com-
putation of functions f(A), where A is a matrix or linear operator and f is a function
such as exp(z), log(z), or z1/2. For a comprehensive presentation of this problem,
including precise definitions of f(A), see Higham’s book Functions of Matrices [77].
A related application concerns the computation of eigenvalues.

The power of these techniques stems from a conjunction of two circumstances
(already relevant in section 16, though not discussed explicitly there). On one hand
is the mathematical fact that a special kind of Cauchy integral, sometimes known as
the Dunford–Taylor integral, provides a representation for general functions. If A is
a matrix or a bounded operator in a Banach space and f is analytic in a region of the
complex plane that encloses the spectrum of A, then

f(A) =
1

2πi

∫
Γ

(zI −A)−1f(z)dz,(18.1)

where Γ is any contour in the complex plane that encloses the spectrum while lying
within the region of analyticity [91]. This equation is a natural candidate for quadra-
ture by the trapezoidal rule, which approximates (18.1) by matrices or operators of
the form

fN(A) =

N∑
j=1

cj(zjI −A)−1(18.2)

for appropriate weights cj (depending on f). In simple cases Γ may be a circle, and in
other situations it may be a Hankel contour as considered in sections 15 and 16, which
can be regarded as devoted to the important special case f(z) = ez. (Here one may
employ a generalization of (18.1) to unbounded operators.) Note that whereas the
integrand of (12.8) has a single pole inside the contour of integration, that of (18.1)
will have as many as n poles if A is an n× n matrix, namely, the eigenvalues of A.

The other circumstance that makes (18.2) so powerful is a fact of numerical linear
algebra. Suppose A is a matrix and we wish to apply fN(A) to a particular vector v
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of the appropriate dimension,

fN (A)v =
N∑
j=1

cj(zjI −A)−1v.(18.3)

Then the jth summand of (18.3) is the vector xj that is the solution of a linear system
of equations:

fN (A)v =

N∑
j=1

cjxj , (zjI −A)xj = v.(18.4)

Now the solution of linear systems of equations is the most highly developed task in
all of computational science. Methods exist that can solve (zjI − A)xj = v for xj

even when A has dimension in the millions, as will often be the case for matrices
arising in the discretization of PDEs. Thus the magic of (18.4) is that it reduces the
matrix function problem for the general function f to the case of the matrix function
we know almost everything about, z−1. An additional bonus is that the algorithm
is easily parallelizable on a computer, as mentioned in section 16, since each of the
summands may be computed independently. A drawback is that complex arithmetic
is usually required, which may be more costly than real arithmetic. However, in many
cases one may recover a factor of 2 by exploiting the symmetry between two solves
involving zj and zj .

Here is a prototypical theorem on the geometrical convergence of these methods,
a generalization of Theorem 12.2. We shall not give a proof.

Theorem 18.1. Let Γ be the circle |z − z0| = r in the complex plane for some
z0 and r > 0, let A be a matrix or linear operator whose spectrum lies within the disk
|z − z0| < ρ for some ρ < r, and let f be a function analytic in the disk |z − z0| ≤ R
for some R > r. Then in any matrix norm,

‖f(A)− fN(A)‖ = O(max{(r/R)N , (ρ/r)N})(18.5)

as N → ∞.
For many years, as the subject of numerical linear algebra was developing, nu-

merical methods derived from (18.1) did not get much attention. In fact, the first
three editions of the landmark text by Golub and Van Loan described this formula as
“fairly useless from the computational point of view.” In the past decade, however,
contour integrals have come to be recognized as practical methods for computing
matrix functions, and the comment was dropped from the 2013 fourth edition [64].

Sometimes, the trapezoidal rule can be applied directly on a circle as described
above. For example, this method is used for computing phi functions in [90, 146].

In other applications, the trapezoidal rule becomes competitive after a change of
variables corresponding to a conformal map. This idea was put forward in [71]. In the
problem considered in that paper, A is a matrix whose spectrum lies in an interval
[m,M ] of the positive real axis, and f is a function that is analytic in the complex
plane minus the negative real axis (−∞, 0]. This configuration covers the important
cases of log(A), A1/2, or more generally Aα for a symmetric positive definite matrix
A, whose condition number will be at most κ = M/m. Now suppose one applies the
trapezoidal rule directly. To enclose the spectrum while staying away from the line of
singularities of f , the circle of integration will have to pass through the gap between
z = 0 and z = m, as in Figure 18.1. Theorem 18.1 indicates that the trapezoidal rule
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0 m M

Γ

spectrumline of singularities

z−plane

Fig. 18.1 One way to apply the trapezoidal rule for evaluating f(A), where A is symmetric positive
definite with spectrum in [m,M ] and f is analytic except on the negative real axis (figure
from [71]). According to Theorem 18.1, the convergence rate will be just O((1− κ−1)N ),
which is intolerably slow if κ � 1.

0 m M

z−plane
Ωs−plane

A

Fig. 18.2 By a conformal map to an annulus, the rate of convergence can be improved greatly to
O((1− (log(κ))−1)N ) (figure from [71]).

will require N = O(κ) quadrature points per digit of accuracy, an intolerably slow
rate of convergence for ill-conditioned matrices.

A conformal map, however, can improve this figure drastically to N = O(log(κ))
quadrature points per digit, as shown in Figure 18.2. Let the whole complex plane,
minus the negative real axis and the interval [m,M ], be conformally mapped onto an
annulus in the s-plane, with [m,M ] mapping to the inner boundary and (−∞, 0] to
the outer one, and let the trapezoidal rule be applied on a circle in the annulus. (The
details of the conformal map, which involves a Jacobi elliptic function, are spelled out
in [71].) Now the convergence is quite satisfactory. Experiments in [71] show 10-digit
accuracy achieved for A1/2 or log(A) for a matrix with condition number 104.

The technique just outlined is called “Method 1” in [71] and applies for functions f
with arbitrary singularities on (−∞, 0]. In the common situation where (−∞, 0] is just
a branch cut of f , with no singularity except at z = 0, a modified conformal map can
be used that leads to a “Method 2” converging twice as fast. For the particular case
f(z) = z1/2, a further “Method 3” simplification reduces the whole problem to one of
real arithmetic, and an example is given in [71] where it takes one second to compute
the square root of a matrix of dimension 4096 on a computer for which the MATLAB
sqrt command, employing a Schur decomposition of the matrix, requires 26 minutes.
In this particular application, it is pointed out in [71] that the equispaced nodes of
the trapezoidal rule, which we have seen in section 13 can be regarded as poles of a
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meromorphic approximation, are related to the equispaced poles of a Jacobi elliptic
function utilized by Zolotarev in 1877 to derive best rational approximations [189].

Methods of this kind are applied to the solution of fractional-in-space reaction-
diffusion equations in [28], including the fractional Fisher and Allen–Cahn equations.

Other problems of functions of matrices and operators benefit from other confor-
mal maps. An example of interest to physicists concerns the Fermi–Dirac function of
electronic structure analysis. Here the function tanh(A) arises, and Lin et al. have
presented remarkable results based on conformal maps and the trapezoidal rule [104].
Different conformal maps are needed for the analysis of insulators, whose Hamiltoni-
ans have a gap in the spectrum, and conductors, where there is no such gap.

Up to now, we have spoken of functions of matrices that couple all the eigencom-
ponents, which correspond mathematically to an integral (18.1) in which the contour
Γ encloses all the eigenvalues of A. Another door is opened when one considers the
same integral with Γ enclosing just some of the eigenvalues, which leads to a projec-
tion of f(A) onto the eigenspace associated with those eigenvalues. In the simplest
case f(z) = I, (18.1) becomes

P =
1

2πi

∫
Γ

(zI −A)−1dz.(18.6)

If A is an n × n matrix regarded as a linear operator on Cn, then P is precisely the
projection of Cn onto the eigenspace just mentioned.

This idea is a powerful one in computational science, where some components of
a large matrix or linear operator are often the dominant ones for the application at
hand. In the simplest application of this kind of thinking, suppose one wants to find
the eigenvalues and eigenvectors enclosed by Γ of a large matrix A, which we suppose
are known to be k in number. If P is applied to k randomly chosen vectors in Cn,
then with probability 1, the resulting k vectors will exactly span the eigenspace in
question, and from that point, eigenvalues and eigenvectors can be determined by
standard methods of numerical linear algebra (see [11]). This idea has been proposed
as the basis for numerical algorithms by Sakurai and coauthors (see [82, 144] and other
publications in the Japanese literature) and Polizzi, whose FEAST algorithm has
applied such ideas to large-scale applications in physics [140]. In practical algorithms,
P is not applied exactly but is approximated by a quadrature formula, and an outer
iteration is introduced to improve the approximation. An obvious choice for some
applications is the trapezoidal rule in a circle, though FEAST itself is based on Gauss
quadrature. Nonlinear analogues have been considered [10, 22, 188], and spectral
projectors are analyzed from other angles in [17]. We expect that algorithms of this
kind will be applied to many problems in the years ahead.

19. Integral Equations. Together with PDEs, integral equations are among the
core techniques of mathematical physics. Discretizations related to the trapezoidal
rule have been used by many authors over the years, including [4, 27, 43, 73, 93,
98]. We shall not attempt a thorough review of this large subject, but restrict our
discussion to an example and a few comments.

The starting point is the idea of an integral equation of the first kind,∫
K(x, y)f(y)dy = g(x),(19.1)

or the second kind,

f(x) +

∫
K(x, y)f(y)dy = g(x).(19.2)
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Here K is a given kernel function and g is a given forcing function; the problem is
to find the unknown function f(x). The integral is over a prescribed domain in the
y variable, and when it comes to computation, numerical methods for evaluating the
integral are at the heart of the matter. Often the domain of integration is equivalent
to a circle or some other smooth closed curve, and consequently the trapezoidal rule
makes a regular appearance in the computational integral equations literature.

In a simple quadrature problem, one has an integrand to be integrated approx-
imately by a quadrature formula. For an integral equation, however, the integrand
is unknown and one must find it approximately by solving a system of equations.
The basic idea of deriving systems of equations from quadrature formulas goes by the
name of the Nyström method [33, 100, 133].

As an example, consider the solution of Laplace’s equation inside an ellipse pa-
rameterized by x = 2 cos(θ), y = sin(θ), 0 ≤ θ ≤ 2π, and taking boundary values√
2 + y on its perimeter. The solution at the origin, say, is given by

u(0, 0) =

∫ 2π

0

μ(φ)

2 cos2(φ) + 1
2 sin

2(φ)
dφ,(19.3)

where μ(θ) is described by the Fredholm integral equation of the second kind,

πμ(θ) + 2

∫ 2π

0

μ(φ)

5− 3 cos(θ + φ)
dφ =

√
2 + sin(θ), 0 ≤ θ ≤ 2π;(19.4)

see [32, Chapter VI].19

If one approximates the integral in (19.4) by the trapezoidal rule with spacing
h = 2π/N , a linear system is obtained from which the function values μ(kh), k =
1, . . . , N , can be determined. The system has coefficient matrix A = πI + 2hB with
bkj = 1/(5− 3 cos((k + j)h)), and the right-hand side has entries

√
2 + sin(kh). The

matrix A has dimension N ×N , but the symmetry about the y-axis can be exploited
to reduce it to a matrix of half the size. Once the μ(kh) are known, the value of u(0, 0)
can be computed from (19.3), again with the trapezoidal rule. The results show the
lightning-fast convergence we have seen over and over in this paper:

h u(0, 0)

2π/8 1.41
2π/16 1.37649
2π/32 1.3760930
2π/64 1.3760929841944823

Assuming a convergence rate of O(e−2πa/h), an empirical fit of the data suggests
a ≈ 0.55. This is consistent with the singularities of the denominator in (19.3), which
are located at Im(φ) = ±arcsinh(1/

√
3) ≈ ±0.549. With a different right-hand side

in (19.4), the convergence rate may be determined not by the denominator in (19.3),
but rather by the singularities of the numerator, μ(φ). We emphasize, however, that
it is not obvious a priori that the convergence order for the quadrature rule carries
over to that of the approximation solution of the integral equation; this is a theorem
that requires proof [21, 33, 100].

19This example fills JACW with no small amount of nostalgia. It was while solving this problem
as part of a B.Sc. Honours project in 1979 that he discovered the remarkable speed of convergence
of the trapezoidal rule for himself.
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Although this example is a simple one, the same ideas of Nyström’s method
combined with the trapezoidal rule feature in advanced applications as well. For
example, an application in three-dimensional scattering is described in [27]. It is
impossible to do justice here to the vast field of integral equations, which encompasses
topics including singular integral equations, boundary integral equations, equations
of convolution type, and many others. We already noted the concept of convolution
quadrature in section 16, and for its application to integral equations of Abel–Volterra,
Wiener–Hopf, and other types, we refer the reader to the many papers by Lubich and
coworkers ([107] reviews many of these developments and contains a large number of
references). Likewise, we noted the Hilbert transform at the end of section 15, which
arises in the the study of airfoils and potential theory and many other applications.

20. Afterword. It would be hard to argue that the fast-converging trapezoidal
rule is ever indispensable. It is only a quadrature formula, and there are others.
Gauss quadrature is always an option, for example, and now that algorithms with
O(N) complexity are available in Chebfun and elsewhere that make it easy to com-
pute Gauss nodes and weights even for millions of points [23, 72], the traditional
avoidance of Gauss quadrature for problems with large N has lost its justification.
Clenshaw–Curtis quadrature has much the same behavior as Gauss quadrature in
many circumstances, and is easy to implement [169, 170]. Indeed, Clenshaw–Curtis
quadrature is equivalent to the trapezoidal rule combined with the Joukowski trans-
formation. Finally, for many problems where an algorithm based on quadrature is
effective, there may be equally good or better alternatives based on series, best ap-
proximations, or other ideas. For example, the trapezoidal rule method used to com-
pute the gamma function for Figure 15.1 is not the best possible algorithm for that
problem, and alternatives are discussed in [146].

One reason why the fast-converging trapezoidal rule is nevertheless so valuable is
that in some applications it is clearly the most natural tool to use. This is especially
apparent for problems involving integration over a periodic interval or a circle. If v(θ)
is periodic on [0, 2π], one could ignore the periodicity and apply Gauss or Clenshaw–
Curtis quadrature anyway, at the cost of just a constant factor approximating π/2.
But this would seem a very odd approach, and in some applications a factor of π/2
might matter a great deal. On the real line or a Hankel contour, on the other hand,
the conceptual or practical advantages of the trapezoidal rule are more nuanced.

The most obvious advantage of the trapezoidal rule is its great simplicity, which
has been at the heart of its appeal all along. One aspect of its simplicity is its ready
accessibility when a user wants to figure out how to get the job done. Another is more
mathematical. Since the trapezoidal rule converges at a geometric rate associated with
a disk, annulus, half-plane, or strip of analyticity, its use almost automatically brings
along a known convergence rate for many problems. This easily understood behavior is
what makes it so straightforward to determine what step size and truncation point to
use in a sum like (5.4), for example, to achieve O(exp(−CN1/2)) convergence. Other
methods may be able to achieve the same convergence rate, but rarely with such easy
analysis. Relatedly, the mathematical simplicity of the trapezoidal rule means that in
theoretical applications it may provide explicit formulas. For example, in section 13
we saw how it could be used to derive the explicit formulas (13.3) and (13.4) for nearly
optimal rational approximations to |ξ| on [−1, 1] and et on (−∞, 0].

Finally, an easy tool in widespread use can reveal connections between topics.
In this article we have described connections between rational approximations and
inverse Laplace transforms, between Cauchy integrals and matrix eigenvalue software,
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and between Nyquist sampling and Gauss quadrature. The trapezoidal rule links
different corners of applied mathematics.
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approximation, SIAM J. Numer. Anal., 20 (1983), pp. 420–436.
[172] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational

approximations, BIT, 46 (2006), pp. 653–670.D
ow

nl
oa

de
d 

03
/3

0/
18

 to
 7

7.
15

7.
19

4.
21

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

458 LLOYD N. TREFETHEN AND J. A. C. WEIDEMAN

[173] A. M. Turing, A method for the calculation of the zeta-function, Proc. Lond. Math. Soc., 48
(1943), pp. 180–197 (written in 1939).
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