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PDEs and integrals
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Last spring | taught a course on PDEs. A theme struck
me as | collected my thoughts towards the end of the
course. PDEs are defined by differentiation, but how
often in analysing them we make use of integrals!

An example is the theory of pseudo-differential
operators (and its cousin microlocal analysis). In one
dimension for simplicity, we can write a function as
an integral of its Fourier transform:

u(x):%/_m/_weik(x_ﬁu(y)dydk. 0]

Since the derivative of ¢/** is (ik)e’**, it follows that
u’ can be written

u’(x):%/ / ik F N u(y) dy dk. ()

Similarly, #” corresponds to multiplication by
(ik)?, and so on. In other words, applying a
constant-coefficient linear differential operator to
a function u corresponds to multiplying its Fourier
transform 4(k) by a polynomial p(k), which is
called the symbol. But now the magic comes from

allowing p to be more general than a polynomial.

If p(k) = (ik)Y2, we have taken ‘half a derivative’
(omitting technical details). And we can let the symbol
depend on x too, so a pseudo-differential operator
is defined by

1 0 [ .
Lu(x) = 5 / / Pp(x, k) e* D u(y) dy dk.
©)
Remarkably, differentiation has become a special
case of integration. Note that pseudo-differential
operators are usually non-local.

Water waves — say, ripples on a pond — illustrate
these ideas. Approximately speaking, they are
governed by an equation du/dt = Lu where L is not
a differential but a pseudo-differential operator with
symbol p(k) = i|k['/2. We can see the physics of the
non-locality by noting that a stationary flat patch of
surface may accelerate upward because it is pushed

from below by the pressure due to a higher surface
elsewhere.

Figure 1. Water waves are governed by an integral
rather than differential operator, related to the notion
of “half a derivative.” (Photo from iStock.)

Another example of integrals at the heart of PDE
theory is the theory of distributions. If a function
is smooth, we can define it pointwise, but we
lose smoothness as we take derivatives. How can
we rigorously define the Dirac delta function, for
example, which should in some sense be the
derivative of a step function? The answers come
from integrals. A distribution u is defined as a
linear functional acting on C* test functions ¢ with
compact support: u : ¢ — (u,$). When u is an
orginary function, the functional is just (u,¢) =
f_w u(x)¢(x) dx. Integration by parts gives 4’ : ¢ —
—(u,¢"), u”’ : ¢ — (u,¢’") and so on. We, thus,
find that, viewed as a distribution, every function is
infinitely differentiable.

From distributions, it is a small step to weak solutions
of PDEs, a standard tool of PDE theory and practice.
In the end, the very definition of PDE problems
thereby comes down to integrals. Perhaps this brings
the science full circle, since PDEs are so often derived
by taking limits Ax — 0 of conservation and balance
laws expressed in integral form.
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