
SIAM J. SCI. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 33, No. 5, pp. 2519–2535

A SINC FUNCTION ANALOGUE OF CHEBFUN∗

MARK RICHARDSON† AND LLOYD N. TREFETHEN†

Abstract. Chebfun is an established software system for computing with functions of a real
variable, but its capabilities for handling functions with singularities are limited. Here an analogous
system is described based on sinc function expansions instead of Chebyshev series. This experi-
ment sheds light on the strengths and weaknesses of sinc function techniques. It also serves as a
review of some of the main features of sinc methods, including construction, evaluation, zerofinding,
optimization, integration, and differentiation.

Key words. Chebfun, sinc function, barycentric interpolation, spectral method

AMS subject classifications. 41-04, 65D05, 65T40

DOI. 10.1137/110825947

1. Introduction. Chebfun is a widely used MATLAB tool for calculating with
functions of a real variable. In Chebfun, every function is represented by a piecewise
polynomial, with each piece consisting of a polynomial interpolant through appro-
priately scaled Chebyshev points. The speed and accuracy for many problems are
remarkable, even when the polynomial degrees are in the thousands [22].

Polynomials, however, are not efficient at representing functions with singularities.
Point discontinuities (e.g., sign(x)) are no problem for Chebfun, which introduces
breakpoints quickly and accurately to represent them. More genuine singularities are
a challenge, however (x1/2, x log x,Γ(x), . . .). Chebfun addresses this challenge in three
ways [23, Chap. 9]. One is the explicit incorporation of singularities of the xα type,
where α can be any real number, either user-specified or automatically determined. If
0 < α < 1, then Chebfun attempts to approximate the function f(x) = g(x)x1−α, for
which it is hoped that an efficient representation can be obtained and then related back
to g in the obvious way. Though building such an approximation is often possible,
further computations can be awkward; for example, even the seemingly innocuous
task of adding a constant to g is difficult. Another method is the use of variable
transformations, particularly for square root singularities. This can be effective, but
it is limited in generality. A third technique is the automatic subdivision of an interval
in “splitting on” mode, allowing representation of very general singularities at some
cost in speed and smoothness. Detailed in [16], this strategy is similar to the hp-
adaptivity commonly employed in finite element methods.

Nevertheless, despite these features, Chebfun has nothing like the speed and re-
liability for functions with singularities that it enjoys for smooth ones. For example,
though Chebfun can construct short single-piece representations of p(x) = x0.3 and
q(x) = x0.5 on [0, 1], the computation of p+ q is problematic.

There is a well-known technology for representing functions with quite general
endpoint singularities: expansions in mapped sinc functions. Over the years a number

∗Submitted to the journal’s Software and High-Performance Computing section February 28,
2011; accepted for publication (in revised form) June 29, 2011; published electronically October 13,
2011. This work was supported by the Engineering and Physical Sciences Research Council (UK),
EP/E045847.

http://www.siam.org/journals/sisc/33-5/82594.html
†Oxford University Mathematical Institute, 24–29 St. Giles’, Oxford OX1 3LB, UK (mark.

richardson@maths.ox.ac.uk, http://people.maths.ox.ac.uk/richardsonm/, trefethen@maths.ox.ac.uk,
http://people.maths.ox.ac.uk/trefethen/).

2519

2520 MARK RICHARDSON AND LLOYD N. TREFETHEN

of people have advocated these methods, especially Frank Stenger of the University
of Utah, who has written two books on the subject [18, 19], the second serving as a
user’s guide for the Sinc-Pack MATLAB package. In principle, this technique offers
the prospect of treating nearly arbitrary singularities in a uniform manner. The price

to be paid is a slowdown in convergence from C−N to C−√
N as a function of the

number N of sample points, even for analytic functions.
How does it work in practice? Can sinc functions be used as the basis of a

Chebfun-like system which quickly and reliably computes with functions on intervals,
even when there are endpoint singularities? This paper reports the construction of
a Sincfun system, modeled as closely as possible on Chebfun, which was built to
try to answer these questions. More precisely, Sincfun approximately duplicates the
original “classic” Chebfun of Battles and Trefethen before the introduction of general
intervals [a, b], piecewise representations, solution of differential equations, and other
enhancements [1]. The result is a working system which can readily be compared with
Chebfun in all kinds of respects.

Before describing the design of Sincfun, we give an indication of its capabilities.
In Chebfun, the function f(x) = x log x on [0, 1] is represented by a polynomial of
degree more than 30,000:

>> f = @(x) x.*log(x);

>> fc = chebfun(f,[0 1]);

length(fc)

ans = 32528

(Chebfun in “splitting on” mode gets a shorter representation, but it takes longer and
lacks smoothness for operations like differentiation.) In Sincfun the number of sample
points shrinks by a factor of more than 100:

>> fs = sincfun(f,[0 1]);

length(fs)

ans = 306

Both the Chebfun and Sincfun representations are accurate and effective for further
computations, as we illustrate by computing the definite integral of f2, whose exact
value is 2/27:

>> tic, sum(fc.^2), toc

ans = 0.074074074074074

Elapsed time is 0.168881 seconds.

>> tic, sum(fs.^2), toc

ans = 0.074074074074074

Elapsed time is 0.049372 seconds.

Sincfun outperforms Chebfun by a factor of 3, though the difference is not as large as
one may have expected, given the size of the initial representations. This discrepancy
is due to various inefficiencies present in the Sincfun construction process.

The aim of this paper, then, is to set forth some of the issues that arise in designing
a Sincfun system, and to draw conclusions about the advantages and disadvantages
of sinc function methods for practical computation. We assume that the reader is
familiar enough with Chebfun to understand readily the examples just given. Our
conclusions are presented in section 8.

A SINC FUNCTION ANALOGUE OF CHEBFUN 2521

2. Sinc and transplanted sinc interpolants. Throughout this paper we will
be concerned with functions on the problem domain [0, 1], the x variable, and their
transplants to functions on the Fourier domain R, the s variable. To keep the two
settings clear we use lowercase letters for the former and uppercase for the latter: g(x)
and G(s). A typewriter font such as g labels computer variables such as the Sincfun
representation of g.

Following [18] and [19], we define the basic sinc function by

S(s) =
sin(πs)

πs
,(2.1)

taking the value 1 at s = 0 and 0 at other integers s ∈ Z. Shifting and scaling to the
grid hZ for some h > 0 gives the sinc function

S
(h)
k (s) = S

(s

h
− k

)
(2.2)

for any k ∈ Z, which takes the value 1 at s = kh and 0 at other points s ∈ hZ. If G
is a function defined on R that decays sufficiently fast as |s| → ∞, then the series

G(h)(s) =

∞∑
k=−∞

G(kh)S
(h)
k (s)(2.3)

converges absolutely and gives an approximation to G. This function goes by various
names, including the Whittaker cardinal function or the sinc, band-limited, or Fourier
interpolant to g. Clearly G(h) interpolates G on hZ, and it can be equivalently defined
by Fourier analysis: G(h) is the function obtained if you take the semidiscrete Fourier
transform Ĝ of G on hZ, which is a function defined on [−π/h, π/h], and then evaluate
the inverse transform formula not just for s ∈ hZ but for all s ∈ R. Thus G(h) is band-
limited in the sense that it contains energy only at wave numbers ξ ∈ [−π/h, π/h].
See Chapter 2 of [20].

If G is smooth, then G(h) converges rapidly to G as h → 0. In particular, for
d > 0, let Hd denote the infinite strip in the complex plane defined by −d < Ims < d.
If G is analytic and bounded and decays sufficiently fast as |s| → ∞ in Hd, then

‖G−G(h)‖ = O(e−πd/h), h → 0,

where ‖ · ‖ is the ∞-norm over R. In other words, sinc interpolants on an infinite grid
in R are spectrally accurate. See Chapter 4 of [20].

Next, we transplant these ideas to x ∈ [a, b] using a function ϕ : (a, b) → R:

s = ϕ(x) = log

(
x− a

b− x

)
, x = ϕ−1(s) =

a+ bes

1 + es
.(2.4)

The function ϕ−1 is essentially a hyperbolic tangent. For any d < π, it maps the strip
Hd in the complex s-plane onto the lens-shaped region Ld in the complex x-plane
bounded by two circular arcs meeting with half-angle d at x = a and x = b. See
Figure 2.1.

Suppose f is a continuous function defined on [a, b]. By subtracting off a linear
function taking the same values as f at the endpoints, we obtain a function g satisfying
g(a) = g(b) = 0. To approximate g on [a, b], we transplant it to the function

G(s) = g(ϕ−1(s))(2.5)

2522 MARK RICHARDSON AND LLOYD N. TREFETHEN

Fig. 2.1. The function ϕ−1 maps the infinite strip Hd in the s-plane onto the lens-shaped
region Ld in the x-plane. Below, a sinc function on the regular grid in R and its image on
the mapped grid in (a, b).

defined for s ∈ R. For any h > 0, the sinc interpolant G(h) gives an approximation to
G, and transplantation back to [0, 1] gives an approximation to g,

g(h)(x) = G(h)(ϕ(x)) =
∑
k∈Z

g(ϕ−1(kh))S
(h)
k (ϕ(x)).(2.6)

Equations (2.3) and (2.6) represent sinc and transplanted sinc interpolants on an
infinite grid. For numerical work, we need a finite grid, and accordingly we truncate
the infinite sum. Given integers m ≤ n, typically with m � 0 � n, we define

G(h,m,n)(s) =

n∑
k=m

G(kh)S
(h)
k (s)(2.7)

and the corresponding transplantation to [a, b],

g(h,m,n)(x) = G(h,m,n)(ϕ(x)) =

n∑
k=m

g(ϕ−1(kh))S
(h)
k (ϕ(x)).(2.8)

In this crucial formula we see the two approximations that are made in working with
sinc interpolants. On the one hand, there is a sampling error associated with the
finite size of h. If g is analytic, this error can be expected to decay exponentially as a
function of h−1. On the other hand, there is an error associated with truncating the
infinite sum to a sum from m to n. If g satisfies, for some real α, β > 0,

g(x) =

{ O(|x − a|α), x → a,
O(|x − b|β), x → b,

(2.9)

then G will decay exponentially as s → ∞, so this error can be expected to decay
exponentially as a function of |m| and n. It is common to pick

N = O(min(|m|, n)), h = O(N−1/2).(2.10)

With these choices, one expects the two sources of error to approximately balance,

giving a total error of O(C−√
N) for some C > 1.

We make these ideas precise with the following theorem.
Theorem 2.1. Let g satisfy the condition (2.9) and be analytic in the lens-

shaped region Ld for some d ∈ (0, π). Let also the Fourier transform of the function

A SINC FUNCTION ANALOGUE OF CHEBFUN 2523

G(s) = g(ϕ−1(s)) decay exponentially, satisfying |Ĝ(ξ)| = O(e−γ|ξ|) as |ξ| → ∞ for
some γ > 0. If g(h,m,n) is defined by (2.8), with any choices of h,m, n satisfying

h ≤ C1N
−1/2, |m| ≥ C2N

1/2, n ≥ C3N
1/2

for constants C1, C2, C3 > 0, and sufficiently large N defined by (2.10), then

‖g − g(h,m,n)‖ = O(C−√
N

4)

as N → ∞ for some C4 > 1.
Proof. See [18, pp. 137–138] or [19, pp. 26–29].
The assumptions of this theorem enable the approximation of certain classes of

function, and disallow others. For example, the condition (2.9) enables us, in theory,
to work with all singularities of the form xα where α > 0 (in practice, very small values
of α can be problematic, but this is due to limitations of finite-precision arithmetic,
rather than a fundamental mathematical reason). On the other hand, functions that
would be disallowed include, for example, those of the explicit form xα where α < 0,
and functions that oscillate infinitely frequently near the singularity such as sin(1/x).

3. Sincfuns and the Sincfun constructor. Mathematically, a sincfun is a fi-
nite series (2.8), plus a linear function to accommodate possible nonzero values at the
endpoints. Computationally, it is a member of a class in MATLAB which has a num-
ber of fields, of which the following are the principal ones. As the variable g.domain
indicates, sincfuns are defined on arbitrary intervals [a, b], though for simplicity the
mathematical formulas discussed in this paper usually refer to [0, 1].

• g.domain = vector [a, b] specifying the interval of definition, default [0, 1]
• g.sdomain = vector [sleft, sright] outside which G(s) is negligible
• g.numterms = integer vector [|m|, n]
• g.vals = vector of values at the grid points
• g.endvals = vector [g(a), g(b)] of values at the endpoints

These data, together with (2.1)–(2.8), fully define the value g(x) for all x ∈ [a, b].
The reason for taking the default interval to be [0, 1] rather than [−1, 1] as in Chebfun
has to do with accuracy of sinc representations and floating-point arithmetic, matters
discussed in sections 7 and 8.

Given a function g to be represented, how does the system decide the values of
these parameters? Following the pattern used by Chebfun, the aim is, by sampling
g at various points, to determine m,n, h and so on, so that the representation cap-
tures the function to high accuracy. In Chebfun, the function would be sampled at
9, 17, 33, . . . Chebyshev points until convergence to machine precision was deemed to
have occurred, based on the decay of Chebyshev coefficients.

On the face of it, construction of a sincfun should be more complicated since
there are three essential parameters to determine rather than one: m, n, and h. This
corresponds to the

√
N type of convergence suggested by Theorem 2.1. However, we

have found that a simple two-step approach is effective. In a first step, we sample G
at values s � 0 and s
 0. By processes of bisection, we determine values sleft and
sright such that G appears to be negligible outside [sleft, sright]. From this point on,
the construction of the sincfun becomes a matter of Fourier discretization in a fixed
interval, converging at a rate governed by N , not

√
N .

Specifically, we have a function G(s) on the interval [sleft, sright] decaying expo-
nentially to (nearly) 0 at both ends. Because of the exponential decay, it is a good

2524 MARK RICHARDSON AND LLOYD N. TREFETHEN

approximation to regard G as periodic. We now want to represent G by a Fourier
series through equispaced points, and the only computational issue is to decide how
many such points are needed. This is done in the Chebfun fashion. The function is
sampled at 256, 512, 1024, . . . points, and for each of these grids, the Fourier coeffi-
cients of the trigonometric interpolant are computed by the fast Fourier transform
(FFT). When these decay to a level of about 10−15 relative to the scale of G, the
grid is deemed to be fine enough. Engineering safeguards are included to minimize
the risk of the process being fooled.

The choice of grid sizes beginning at 256 marks a difference from Chebfun, which
samples functions on grids of 9, 17, 33, . . . points. The reason is that it is rare for
a sincfun to have length less than a few hundred, since one would hardly expect to
encounter functions of the form (2.8) for small m and n in the wild. (A special case
is a linear function, which the system quickly reduces to length 0—all the content in
this case is in the vector g.endvals.)

To illustrate sincfun construction, consider the function f(x) = −√
x log x. In

the initial bisection process, the constructor samples F at the left, for x ≈ 0, at
approximately the following values of s:

−88.5, −44.3, −66.4, −77.5, −83.0, −80.2, −81.6, −80.9, −80.6, −80.8, −80.9.

The last value is s ≈ −80.85335, corresponding to x = 7.78 × 10−36, where f takes
the value 2.24× 10−16, which is approximately machine precision. At this point, the
constructor has decided that F appears to be negligible for s < sleft, and nonnegligible
for s > sleft.

Next, the constructor bisects on the right, for x ≈ 1, sampling F at approximately
these values of s:

36.0, 18.0, 0, 27.0, 31.5, 33.8, 34.9, 35.4, 35.6, 36.0.

In this case the final value corresponds to x ≈ 1 − 2.22 × 10−16, that is, 1 minus
machine precision. This is no coincidence, since f is analytic at x = 1.

From this point forward, the approximation interval [sleft, sright] ≈ [−80.85, 36.04]
is fixed. Over this interval, F (s) looks as shown in Figure 3.1.

Fig. 3.1. Example function F (s) corresponding to f(x) = −√
x log x, shown on linear

and log scales. In the first stage of the construction process, the interval [sleft, sright] is
determined on which F (s) is not negligible.

Figure 3.2 shows the absolute values of the Fourier coefficients |Ĝ(kh)| obtained
with the FFT, for grids of size 256, 512, and the final choice, 434. In the first plot,

A SINC FUNCTION ANALOGUE OF CHEBFUN 2525

Fig. 3.2. Fourier coefficients of the function restricted to this interval. In the second
stage of the construction, a grid number is determined that resolves the function to machine
precision.

the coefficients have not yet fallen to machine precision: h is too large. In the second,
there are many coefficients down at that level: h is too small. For this function (as
indeed for many functions) N = 512 proves to be the first power of 2 that resolves
the function to machine precision.

4. Evaluation and composition of sincfuns. Evaluating a sincfun requires
a way of computing the expansion (2.8) for arbitrary x ∈ [a, b]. Perhaps the most
obvious and straightforward way of doing so is to evaluate each of the sinc functions

S
(h)
k (ϕ(x)), multiply by the function coefficients gk = g(ϕ−1(kh)), and then sum over

k. This is the method used in Sinc-Pack [19] and it involves the evaluation of |m|+n+1
sine functions. Computations for vector-valued x follow from using the appropriate
MATLAB componentwise vector operators.

Following the analogous technique for evaluating polynomials described in [3],
Sincfun uses a barycentric representation to compute (2.8). First documented by
Berrut [2], the barycentric formula for sinc functions enables the expansion to be
computed without the need to evaluate any sine functions. Our experiments show
that using such a representation leads to a computational saving of approximately a
factor of 4 compared to evaluating (2.8) directly.

Following [2] we provide a brief derivation of the weighted barycentric formula
used in Sincfun. Noting first that sin

[
π
(
s
h−k

)]
=(−1)k sin

(
πs
h

)
, we see that the sine

term may be factored out of the sum in (2.3) in order to write

G(h)(s) =
h

π
sin

(πs
h

) ∞∑
k=−∞

(−1)k

s− kh
G(kh).(4.1)

Though this formula is simple enough in appearance, it is in fact numerically unstable,
since large errors are introduced when s is close to one of the interpolation abscissae.
In order to combat this, we first represent the constant function 1 using (4.1),

1 =
h

π
sin

(πs
h

) ∞∑
k=−∞

(−1)k

s− kh
,(4.2)

2526 MARK RICHARDSON AND LLOYD N. TREFETHEN

and use this to replace the factors multiplying the sum in (4.1) to obtain

G(h)(s) =

∞∑
k=−∞

(−1)k

s− kh
G(kh)

∞∑
k=−∞

(−1)k

s− kh

.(4.3)

The fact that any large terms now appear in both the numerator and the denomi-
nator of (4.3) has the effect of eliminating the numerical instability present in (4.1).
Moreover, since a constant function is band-limited, (4.2) and (4.3) both provide ex-
act representations. However, upon truncation, the right-hand side of (4.2) converges
only linearly towards 1, so unfortunately (4.3) is not of much practical use.

Berrut’s solution is to replace the constant function 1 in (4.2) with a rapidly
decreasing weight function w whose decay should approximately match that of the
transplanted function G. Making this replacement and truncating the sums to |m|+
n+ 1 terms then yields the weighted barycentric formula used in Sincfun:

g(h,m,n)
w (x) = w(ϕ(x))

n∑
k=m

(−1)k

s− kh
gk

n∑
k=m

(−1)k

s− kh
w(kh)

.(4.4)

Among the several candidates for w considered in [2], a transformed Gaussian
appears to offer the best combination of accuracy and computational flexibility. How-
ever, in developing this aspect of Sincfun, we found that it was necessary to make
some adjustments to Berrut’s techniques in order to deal with asymmetric trunca-
tions of the sum. This situation arises when f is singular at an endpoint, requiring
Sincfun to demand an asymmetric [sleft, sright] interval. Typically, if the singularity
is at x = 0, then |sleft|
 sright, and using a standard Gaussian will result in slow
convergence, since the decay of w will not match the decay of G. Instead, we propose
to scale the function w(s) = e−M(s)2 , where M is a Möbius transformation. The
asymmetric decay conditions are met by imposing

(1) w(sleft) = εm, (2) w(0) = 1, (3) w(sright) = εm,

where εm = 2−52 ≈ 2.22× 10−16 in IEEE double precision. Solving then yields

M(s) =
s

p− qs
, κ =

√
− loge(εm),

p =
sleft
κ

(
sleft + sright
sleft − sright

+ 1

)
, q =

sleft + sright
κ(sleft − sright)

.

A further method of evaluating the sinc interpolant was suggested by Gautschi [11]
and involves a simple reordering of (2.8). However, while this preserves the exact
representation, the computation does not appear to be possible to vectorize, since
Gautschi’s rearrangement requires a new index set to be computed for each evaluation.
It is therefore our opinion that, at least for an implementation in MATLAB, (4.4)
provides the best available method for evaluating the sinc expansion.

A SINC FUNCTION ANALOGUE OF CHEBFUN 2527

Once this has been implemented, further operations on sincfuns become possi-
ble. In particular, if f is a sincfun, and op(·) is a standard MATLAB mathematical
function handle or another sincfun, then the composition op(f) is well defined com-
putationally. The output is then a further sincfun defined over the same domain
as f.

As in Chebfun, composition has been implemented by overloading the standard
mathematical operators such as exp, log, and sin. In each case, a function handle
representing op(f(x)) is sent to the Sincfun constructor, ensuring that the result is
also a uniformly accurate mapped sinc interpolant. The procedure is very similar
to the construction process described in section 3. For each evaluation vector x of
256, 512, . . . points, the vector f(x) is first computed with the barycentric formula.
Next, the operator op is applied to the vector in order to compute op(f(x)), and
the Fourier coefficients are computed with the FFT. In the case where op is another
sincfun, for the computation op(f) to make sense, the range of f must lie within the
domain of op. In this case, the barycentric formula is used twice in succession; first
to evaluate f(x), and then op(f(x)).

5. Rootfinding. We now consider the crucial problem of approximating the
zeros of the transplanted functions on s ∈ R. Provided these can be computed ac-
curately, approximations to the roots of functions on [a, b] may be obtained with the
inverse mapping ϕ−1. These are then the basis of many subsequent operations [1].

In Sincfun, the transplanted functions G(s) = g(ϕ−1(s)) decay to zero as |s| →
∞ and are smooth enough to be represented by a convergent Fourier series over
[sleft, sright]. In such a setting, the standard technique for approximating roots is to
compute the eigenvalues of a companion matrix [17]. On a bounded interval, other
approximation bases may be used, and equivalent formulations of the problem exist.
For example, in Chebfun [1], roots are approximated by computing the eigenvalues of
a colleague matrix, a method based upon expansions in Chebyshev polynomials [12].

Though the Fourier setting is natural for sinc interpolants, we have found that
rather than solving a companion matrix eigenvalue problem, it is in fact more eco-
nomical to reapproximate F (s) using an expansion in Chebyshev polynomials and
work with the corresponding colleague matrix. Two observations motivate this.

First, the function G(s) that Sincfun approximates on (a truncation of) R is
not a direct transplant of the function f(x) on [a, b], but rather a transplant of the
function g(x) = f(x)−h(x), where h(x) is a linear function satisfying h(a) = f(a) and
h(b) = f(b). Though there does not appear to be a trivial relationship between the
roots of G(s) on [sleft, sright] and the roots of f(x) on [a, b], the roots of the function
F (s) = f(ϕ−1(s)) are directly related to the roots of f by the inverse mapping ϕ−1.
Since in general F does not decay to zero as |s| → ∞, it is not possible to represent
F over [sleft, sright] with a Fourier series without “flipping” the function in order to
make it artificially periodic. This of course doubles the length of the representation.
Second, contrary to their Fourier counterparts, Chebyshev interpolants do not require
periodicity of the underlying function, only smoothness. If one wishes to approximate
a function over an arbitrary subset of its initial domain of definition, in general this
will not be possible with a Fourier basis, since the function will not be periodic there.
These considerations lead us to the idea of expressing F (s) as a finite Chebyshev
series on [sleft, sright] and using an adaptive subdivision scheme to ensure that the size
of each individual colleague matrix is never too large.

Sincfun uses a variation of the recursive subdivision technique originally proposed
by Boyd [8] and now also used in Chebfun. The process involves first sampling

2528 MARK RICHARDSON AND LLOYD N. TREFETHEN

G(s) over the interval [sleft, sright] at a set of 100 scaled Chebyshev points. These
are then transformed into Chebyshev coefficients using an algorithm based on the
FFT. If the coefficients decay in such a way that some are below a certain tolerance
(typically 10−15), then the unneeded terms are truncated from the expansion, and a
colleague matrix eigenvalue problem is constructed and solved to yield the roots over
the interval. If on the other hand the coefficients have not decayed sufficiently, then
the interval [sleft, sright] is approximately divided in half, and the process is repeated
on each subinterval. This occurs recursively until the function has been resolved over
all of [sleft, sright] by a sequence of polynomials of degree 100 or less. A colleague
matrix is formed for each piecewise interpolant, and the results combined to yield
approximations to the roots over the entire interval.

Algorithms based upon recursive subdivision typically lead to drastically reduced
complexity of the rootfinding problem, often down from O(N3) to O(N2) [1, 8]. This
is because rather than solving a single large eigenvalue problem corresponding to
a global interpolant, the computation is instead broken down into several smaller
steps, each corresponding to a local interpolant. In Sincfun, we also obtain an O(N2)
method, and some sample timings displaying this are shown in Figure 5.1.

Fig. 5.1. Timings for the rootfinding algorithm applied to the Sincfun representation of
the function f7(x) =

√
x cos(kπx) on [0, 1], where k takes successive values from the set {15,

19, 23, 29, 35, 45, 55, 67, 83, 103, 127, 157, 193}, and N = |m|+n+1. The convergence is
better than O(N2). Though the slope of the displayed dashed line matches the experimental
timings for this function, we do not claim that Sincfun’s algorithm is in general O(N1.3).

Since the eigenvalues of a colleague matrix are exactly equal to the roots of a
corresponding finite Chebyshev series, the errors in Sincfun’s computed roots are of
approximately the same order of magnitude as the approximation error of the sinc
interpolant. Thus, if an adaptive sincfun construction has converged, we may expect
the computed roots to be accurate to machine precision. See Table 5.1 for some
examples of this involving three oscillatory functions.

Table 5.1

Details of sample rootfinding computations for functions approximated on [0, 1].

Sincfun length Time (s) || · ||∞ error

f8 sin(4πx) 496 0.065234 8.33× 10−16

f9 sin(40πx) 1659 0.121728 2.28× 10−15

f10 sin(400πx) 10771 1.431303 4.44× 10−16

A SINC FUNCTION ANALOGUE OF CHEBFUN 2529

6. Integration and differentiation. Following Chebfun, definite integration
in Sincfun has been implemented by overloading the MATLAB method sum(). The
standard quadrature formula for sinc expansions is beautiful in its simplicity, and we
derive it following Stenger [18, pp. 189–190].

We consider first the function

ρ(x) =
g(x)

ϕ′(x)
, where ϕ′(x) =

b− a

(x− a)(b − x)
.(6.1)

If g is analytic in the lens-shaped region Ld, then ρ is analytic there also, and it is
possible to construct the following |m|+ n+ 1 term sinc approximation:

ρ(h,m,n)(x) =

n∑
k=m

ρkS
(h)
k (ϕ(x)), ρk =

g(xk)

ϕ′(xk)
.(6.2)

As before, we have that ‖ρ − ρ(h,m,n)‖ = O(C−√
N

5) for some C5 > 1, where N =
min(|m|, n). From (6.1) and (6.2), we see that

∫ b

a

g(x)dx =

∫ b

a

ρ(x)ϕ′(x)dx ≈
n∑

k=m

ρk

∫ b

a

S
(h)
k (ϕ(x))ϕ′(x)dx.

Then, using the identity

∫ b

a

S
(h)
k (ϕ(x))ϕ′(x)dx = h,

we arrive at the approximation to the integral,

∫ b

a

g(x)dx ≈ h
n∑

k=m

g(xk)

ϕ′(xk)
.(6.3)

One of the attractive features of Chebfun is that all the adaptivity is confined to
the initial construction stage. Once a chebfun has been instantiated, evaluating the
integral is simply a matter of working with a precomputed vector of numbers consisting
of the values of the interpolant at Chebyshev points. In Chebfun, Clenshaw–Curtis
quadrature (a method based on integrating the polynomial interpolant) is used to
compute definite integrals. In general, the results of such computations are at least
as accurate as the interpolant [21], and the same principle holds in Sincfun. If the
initial construction process has converged satisfactorily, then the interpolant—and
any subsequent integral computation—will be accurate to an approximate relative
level of 10−15. Formally, there exists a constant C6 > 1 such that

∣∣∣∣∣
∫ b

a

g(x)dx− h

n∑
k=m

g(xk)

ϕ′(xk)

∣∣∣∣∣ = O(C−√
N

6).

For a detailed derivation of this result, see [18, p. 190].
We evaluate the Sincfun approximations to the definite integrals of the functions

fj(x), j = 1, . . . , 10, in Table 6.1. It is interesting to note that, due to the severity
of the singularities, Sincfun’s adaptive construction procedure did not converge for
functions f5 and f6, yet the computed integrals are still remarkably accurate.

2530 MARK RICHARDSON AND LLOYD N. TREFETHEN

Table 6.1

Approximation errors for definite integral computations in Sincfun.

|| · ||∞ error || · ||∞ error

f1 x log(x) 0 f6 (1− x)1/2 5.55e−16

f2 x1/4 log(x) 0 f7 x1/2 cos(19x) 3.39e−16

f3 x1/8 log(x) 1.11e−16 f8 sin(4πx) 3.34e−17

f4 x1/20 log(x) 0 f9 sin(40πx) 1.12e−16

f5 x1/30 log(x) 3.33e−16 f10 sin(400πx) 1.11e−15

Integrating sincfuns, then, is reasonably straightforward. Differentiating them,
however, is far more problematic. There are two factors to consider here. First,
and perhaps most obviously, if a function is singular at an endpoint, then its deriva-
tive could possibly be unbounded. While the issue of how to represent unbounded
functions is not an intractable one (Chebfun has some capability in this regard for
example), it is certainly beyond the current capabilities of Sincfun. The second is-
sue is more fundamental and restricts us even from approximating the derivatives of
smooth functions. To see why, consider differentiating the expansion (2.8),

d

dx
g(h,m,n)(x) = ϕ′(x)

d

ds
G(h,m,n)(s).(6.4)

Recalling that s = ϕ(x), we see that this consists of the approximation to the deriva-
tive of the transplanted function multiplied by the derivative of the transplanting
map. Though the absolute error in the d

dsG
(h,m,n) term is small for all s, the relative

error may be large, perhaps even O(1), for |s|
 0. Since the ϕ′ term diverges to
infinity as x approaches the endpoints of [a, b], any errors present in the d

dsG
(h,m,n)

term are amplified, and the result is a significant loss of accuracy.

7. Performance and accuracy. Sincfun was designed in order to enable Chebfun-
like computation with singular functions. For many calculations of this kind, it excels.
As an example, consider the following functions with singularities at x = 0:

>> f = @(x) 3*besselj(0.3,20*x); ff = sincfun(f);

>> g = @(x) 2*sqrt(x).*cos(12*x).*log(x); gg = sincfun(g);

The lengths of these representations are 1193 and 776, respectively. As a very basic
check of accuracy, we can evaluate the sincfuns and compare the interpolated values
to the original functions:

>> xx = rand(1000,1); [norm(f(xx)-ff(xx),inf) norm(g(xx)-gg(xx),inf)]

ans =

3.674838211509268e-14 3.774758283725532e-15

Computing the integral of the difference between these functions is straightforward:

>> sum(ff-gg)

ans =

1.082105033952097e-01

A SINC FUNCTION ANALOGUE OF CHEBFUN 2531

Similarly, the roots of the difference between the sincfuns will give us the intersections.
This computation can be performed, and the results plotted, with just a couple of
commands (see Figure 7.1):

>> plot(ff), grid on, hold on, plot(gg,’--’), ylim([-1.3 2.4])

>> r = roots(ff-gg); plot(r,ff(r),’.’), hold off

Fig. 7.1. Plot of the sincfuns ff and gg, together with their intersections.

Theorem 2.1 established that finite sinc expansions converge at the rateO(C−√
N).

However, from our discussion of the Sincfun construction process in section 3, we re-
call that in practice the convergence looks like O(C−N) down to the level of machine
precision. The constant C here depends upon the length of the interval [sleft, sright]
outside of which G(s) is negligible. We confirm this effect in Figure 7.2, which shows
the approximation error of the Sincfun representations for four functions with in-
creasingly extreme singularities but similar oscillatory behavior. Clear exponential
convergence is apparent, down to the level of rounding errors.

Fig. 7.2. ||fj − f
(h,m,n)
j || for f1(x) = x log(x), f2(x) = x1/4 log(x), f3(x) = x1/10 log(x),

f4(x) = x1/20 log(x) on [0, 1], where N = |m|+ n+ 1. The ∞-norm error was estimated by

sampling fj and f
(h,m,n)
j for each j = 1, 2, 3, 4 at 2000 equally spaced points on [0, 1].

In Table 7.1 we display, for the trial functions fj considered in this paper, the
[sleft, sright] interval, the corresponding [xleft, xright] interval, the number of terms m,n
in the sinc expansion (2.8), and the grid spacing h. These parameters were determined
by the adaptive Fourier discretization process described in section 3.

2532 MARK RICHARDSON AND LLOYD N. TREFETHEN

Table 7.1

Parameters for ten functions approximated over the default Sincfun interval [0, 1], where xleft =
ϕ−1(sleft) and xright = ϕ−1(sright). The constructor converged for all of the functions except f5

and f6, for which we see that even taking more than 216 points is insufficient. The problem is simply
that the singularities are too severe to be accurately resolved in double precision. For f6, though we
are only dealing with a square root, the fact that it is located at x = 1 rather than x = 0 means that
Sincfun fails to converge.

−sleft sright xleft 1− xright −m n h

f1 x log(x) 40.53 35.78 2.49e−18 3.33e−16 162 143 2.502e−1

f2 x1/4 log(x) 162.93 35.00 1.73e−71 6.66e−16 568 122 2.869e−1

f3 x1/8 log(x) 325.57 34.43 3.38e−142 1.11e−15 1069 113 3.047e−1

f4 x1/20 log(x) 708.29 33.83 2.46e−308 2.00e−15 2052 98 3.452e−1

f5 x1/30 log(x) 708.29 33.53 2.45e−308 2.78e−15 62462 2957 1.134e−2

f6 (1− x)1/2 36.04 35.97 2.22e−16 2.22e−16 32792 32728 1.099e−3

f7 x1/2 cos(19x) 71.63 35.92 7.81e−32 2.22e−16 652 327 1.099e−1

f8 sin(4πx) 38.44 35.89 2.02e−17 2.22e−16 256 239 1.502e−1

f9 sin(40πx) 40.85 35.94 1.82e−18 2.22e−16 882 776 4.631e−2

f10 sin(400πx) 43.15 35.97 1.82e−19 2.22e−16 5874 4896 7.346e−3

In general, severe singularities correspond to large [sleft, sright] intervals. We ob-
serve this effect for the functions f1, . . . , f4 in Table 7.1, for which the sright values
remain roughly constant, while the sleft values increase in magnitude. This behavior
is typical for functions that are singular at x = 0 and highlights an important limiting
factor inherent in the problem.

Suppose a function has a singularity at x = a, and that we wish to construct a sinc
approximation to within a uniform relative accuracy of 10−15 on [a, b]. The severity
of the singularity that can be coped with at a is constrained by the location of the
nearest floating-point number to a in the interval (a, b]. This in turn is dependent upon
the computational precision. For example, if a = 0, then in standard IEEE double-
precision arithmetic, the nearest normalized floating-point number to a is xmin :=
2−1022 ≈ 2.2 × 10−308 [14, 15]. The function f4(x) = x1/20 log(x) is near to the
limit of Sincfun’s capabilities, and it is no coincidence that the corresponding xleft

value in Table 7.1 is close to xmin, since f4(xmin) ≈ εm. In this precision, it would
not be possible to fully resolve a function with an even severer singularity, such as
f5(x) = x1/30 log(x), since f5(xmin) = O(10−8), a value several orders of magnitude
larger than εm.

A further consequence of this observation is that mapped sinc approximation is
only fully effective if the singular behavior is located at x = 0. To see why, consider the
function f6(x) =

√
1− x, which has a square root at x = 1. The closest floating-point

number to 1 in double precision is 1− 2−53 = 1− εm/2, and as before, f6(1− εm/2) =
O(10−8)
 εm. The density of floating-point numbers is again insufficient to capture
the function to high precision.

For the most part, composition of sincfuns with mathematical operators is un-
problematic. For instance, given the Sincfun representation fs of f(x) = x log(x)
from section 1, computations such as sin(10*fs) or exp(5*fs.^3) converge quickly.
However, when the composition may introduce a new singularity, such as in the case of
applying sqrt(), the construction process is unlikely to converge. The reason is that
the Sincfun interpolant cannot be sampled accurately enough close to the singularity

A SINC FUNCTION ANALOGUE OF CHEBFUN 2533

in order to resolve the composition satisfactorily. In other words, the [sleft, sright]
interval does not extend far enough towards s = −∞. For example, we find

>> p = @(x) sin(x);

>> ps = sincfun(p,[0 1]);

>> sqps = sqrt(ps);

Warning: Sincfun did not converge!

It is important to note, however, that it would be perfectly possible to construct the
desired representation by sampling the function

√
sin(x) directly. It is only because

the original Sincfun representation of ps did not require a large [sleft, sright] interval
that the construction failed.

8. Discussion. We undertook this project to answer a question: Could the
Chebyshev techniques that make Chebfun so successful for computation with smooth
functions be replaced by sinc function techniques with much greater ability to han-
dle singularities at endpoints, without too great a cost in efficiency? In short, are
sinc methods ready for daily use? It seemed to us that the only way to reach an
answer with confidence would be to develop a Sincfun software package, following the
Chebfun model, since Chebfun incorporates such a wide range of capabilities such as
algebraic operations, composition of functions, integration, differentiation, rootfind-
ing, and optimization. We would faithfully attempt to match each such capability by
a well-tuned sinc algorithm. (Chebfun also solves differential equations, but we would
not attempt to go that far.)

And so we wrote Sincfun, described in this paper, reproducing much of the func-
tionality of Version 1 Chebfun [1]. It is a real pleasure to run Sincfun and watch it
handle a function like x log x without a hiccup. Readers who wish to experiment for
themselves may contact the first author for a copy of the software.

Nevertheless, the conclusion we have reached is that sinc methods cannot compete
with Chebyshev methods for general use. There are two aspects to this conclusion,
one quite focused and essentially a well-known problem, the other more conceptual
and open-ended.

The first is the matter of accuracy difficulties near endpoints. The whole purpose
of sinc function methods is to achieve flexibility in treating singularities at endpoints,
yet despite our best efforts, a difficulty persists in Sincfun that has been a well-
known problem throughout the history of sinc methods. The changes of variables
used by these methods bring sample points extraordinarily close to the endpoints,
leading to a need for pointwise accuracy that floating-point arithmetic cannot meet.
To minimize this problem, we followed the long tradition in sinc methods of putting
one endpoint at x = 0 where possible, to take advantage of the scale-invariance
of floating-point arithmetic. Even this does not eliminate all problems, however,
as illustrated in section 7 by the difficulty of taking the square root of a Sincfun
representation of sinx, since that representation lacks the extra accuracy needed to
build the square root. As discussed in section 6, the endpoint problem becomes
especially acute in the computation of derivatives. For a further approach to this
issue, see [6].

So sinc methods’ signal advantage, accurate treatment of singularities, remains
elusive. To make progress here it seems to us that one might have to go beyond
the usual floating-point arithmetic near endpoints. This may be feasible, but it was
beyond the scope of this investigation.

2534 MARK RICHARDSON AND LLOYD N. TREFETHEN

To explain the second kind of difficulty, we observe that the name “sinc methods”
actually describes algorithms combining two components: (i) the use of sinc function
approximations (Fourier interpolants) on the real axis, and (ii) a conformal mapping
such as ϕ−1(s), or tanh(s), from the real axis R to a finite interval [a, b]. Our study
has highlighted complications in both of these steps.

Regarding (i), sinc function approximations, we do not see a good reason to use
sinc functions at all. The crucial aspect of our experience that leads to this conclusion
is the discovery that the best procedure for representing a function f(x) on [a, b] is
to map it once and for all to a function F (s) on an appropriate interval [sleft, sright],
and then leave [sleft, sright] fixed while refining the grid within. In other words, the

famous
√
N balance at the heart of standard sinc methods theory between grid spacing

errors and grid extent errors is best treated asymmetrically in practice: fix the grid
extent, then adjust the grid spacing. Once you do this, you are working simply with
a function F on a fixed interval [sleft, sright]. As has been noted previously [4, 9],
the key to the method is the mapping, not the choice of basis. Sincfun faithfully
uses sinc functions to represent F , but for this to work it has to subtract a linear
function to impose zeros at the ends and rely on the exponential decay, so that F
can be regarded as numerically periodic. All this seems weakly motivated; why not
simply use a Chebyshev representation on [sleft, sright]? Then no zeros or periodicity
are needed, and the cost is in principle no more than a factor of π/2 in the number
of samples [5, 13]. Moreover, as discussed in section 3, for efficient rootfinding one
wants to subdivide the interval recursively anyway, and then one is pressed all the
more strongly to use Chebyshev technology. For a related approach to constructing
spectral methods on unbounded domains, see [7, 10].

Regarding (ii), the conformal maps, we think that the usual ϕ−1(s) and tanh(s)
transforms are wasteful and can be improved. Experience shows that Sincfun requires
hundreds of samples to represent virtually any function, whereas Chebfun often suc-
ceeds with tens of samples. This may seem like the inevitable price of a move from

O(C−N) to O(C−√
N) convergence, but we note that over and over again Sincfun

seems to use more sample points than “ought” to be necessary. Typically 80% of the
points fall in the edge regions, as is evident in Figure 3.1. Moreover, often surpris-
ingly many points per wavelength are used, even in the interior regions. These effects
are the consequences of the use of a particular conformal map, which is not the only
possible choice. We think this situation can be improved by the use of alternative
variable transforms based on a different balance between resolution in the interior and
resolution near the endpoints, and we will pursue this idea in future research.

Acknowledgments. The authors would like to thank Andre Weideman and
Sheehan Olver for valuable discussions about aspects of this paper.

REFERENCES

[1] Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and
operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743–1770.

[2] J.-P. Berrut, Barycentric formulae for cardinal (SINC-)interpolants, Numer. Math., 54
(1989), pp. 703–718.

[3] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46
(2004), pp. 501–517.

[4] J. P. Boyd, Polynomial series versus sinc expansions for functions with corner or endpoint
singularities, J. Comput. Phys., 64 (1986), pp. 266–269.

[5] J. P. Boyd, Chebyshev domain truncation is inferior to Fourier domain truncation for solving
problems on an infinite interval, J. Sci. Comput., 3 (1988), pp. 109–120.

A SINC FUNCTION ANALOGUE OF CHEBFUN 2535

[6] J. P. Boyd, The asymptotic Chebyshev coefficients for functions with logarithmic endpoint
singularities, Appl. Math. Comput., 29 (1989), pp. 49–67.

[7] J. P. Boyd, The rate of convergence of Fourier coefficients for entire functions of infinite order
with application to the Weideman-Cloot sinh-mapping for pseudospectral computations on
an infinite interval, J. Comput. Phys., 110 (1994), pp. 360–372.

[8] J. P. Boyd, Computing zeros on a real interval through Chebyshev expansion and polynomial
rootfinding, SIAM J. Numer. Anal., 40 (2002), pp. 1666–1682.

[9] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., Dover, Mineola, NY, 2001.
[10] A. Cloot and J. A. C. Weideman, An adaptive algorithm for spectral computations on un-

bounded domains, J. Comput. Phys., 102 (1992), pp. 398–406.
[11] W. Gautschi, Remark: Barycentric formulae for cardinal (SINC-)interpolants, Numer. Math.,

87 (2001), pp. 791–792.
[12] I. J. Good, The colleague matrix, a Chebyshev analogue of the companion matrix, Quart. J.

Math., 12 (1961), pp. 61–68.
[13] N. Hale and L. N. Trefethen, New quadrature formulas from conformal maps, SIAM J.

Numer. Anal., 46 (2008), pp. 930–948.
[14] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,

2002.
[15] M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadel-

phia, 2001.
[16] R. Pachón, R. Platte, and L. N. Trefethen, Piecewise smooth chebfuns, IMA J. Numer.

Anal., 30 (2010), pp. 898–916.
[17] W. Specht, Die Lage der Nullstellen eines Polynoms. IV, Math. Nachr., 21 (1960), pp. 201–

222.
[18] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, New York,

1993.
[19] F. Stenger, Handbook of Sinc Numerical Methods, CRC Press, Boca Raton, FL, 2010.
[20] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.
[21] L. N. Trefethen, Approximation Theory and Approximation Practice, manuscript in prepa-

ration.
[22] L. N. Trefethen et al., Chebfun software package, www.maths.ox.ac.uk/chebfun/.
[23] L. N. Trefethen et al., Chebfun Guide, www.maths.ox.ac.uk/chebfun/guide/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

