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Notations

e X = Minkowski space with signature + — ——
® i, V,... = spacetime indices = 0,1,2,3

® 7,7,... = spatial indices or group indices

e repeated indices are summed

e (G = gauge group = compact, connected Lie group
(usually U(n),SU(n),0(n))
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Conventions

e Maxwell theory = theory of electromagnetism =
abelian theory

e Yang—Mills theory = nonabelian (gauge) theory
e Spacetime = Minkowski space
e Functions are continuous or smooth

e Manifolds are C'*°

e h=1,c=1
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Dictionary

base space
structure group
principal bundle
principal
coordinate bundle
connection
curvature
holonomy

bundle reduction
section 0: X — F
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spacetime

gauge group
gauge theory
gauge theory in a
particular gauge
gauge potential
gauge field

phase factor
symmetry breaking
Higgs fields



Lecture 1

Electric—magnetic duality
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Gauge invariance

Consider an electrically charged particle in an
electromagnetic field:

e Described by a wavefunction ¢ (x)
e 1)(x) not measurable, only | (z)|?
e Freedom in redefining phase ~» gauge symmetry

e Yang and Mills generalized this phase freedom to
an arbitrary element of a Lie group

How can we compare the phases at neighbouring points
in spacetime?

How can we ‘parallelly propagate’ the phase?

Answer: we can if given a potential A4, (x)

Potential transforms as (S(z) € G)

Au(z) = S(@) Au(z) S™H(z) — (3) 0uS(x) S~ (2)



Gauge variables

Introduce gauge field
Fuu(@) = 8,4,(x) — 0, A, (z) +iglAu(z), A, ()]

In classical electromagnetism there is no need to
introduce the potential.

The Bohm—Aharonov experiment demonstrates
that the potential is necessary to describe the motion
of a quantum particle (e.g. an electron) in an
electromagnetic field.

This really vindicates the geometric description of
gauge theory we have now.

Yang has proved that it is the set of variables
comprising the holonomy of loops which describes a
gauge theory exactly:

$(C) = Pexpig /C A ()



Gauge group

In building a physical theory, we must look among
experimental facts to collect our ingredients. The
potential fixes only the Lie algebra. To select out
from among the locally isomorphic ones the correct
Lie group we must look at the particle spectrum, that
is, what kind of and how many particles exist or are
postulated to exist.

In electromagnetism all charges are multiples (in
fact, just +1) of a fundamental charge e, so that
wavefunctions transform as

,(p — e:l:ieAw7

we can parametrize the circle group U(1) corresponding
to the phase by [0, 27 /e]. In fact, charge quantization
is equivalent to having U(1) as the gauge group of
electromagnetism.



Gauge group

For pure electromagnetism without charges, the
only relevant gauge transformation are those of A,:

A, A, + 0N\,
so that the group will just be the real line given by the
scalar function A(x).

Similarly for Yang—Mills theory, e.g. su(2). If it
contains particles with a 2-component wave function

Y = {'Lﬁw 1= 1,2}, then
b S, S e SUQ),

so that the effect of S and —.S are not identical. Hence
gauge group is SU(2). If there are no charges then
the effects on A, of S and —S are identical

Ay SA, St — éaﬂs g1

Hence gauge group is SO(3).



Sources and monopoles

For the moment we wish to distinguish between two
types of charged particles: sources and monopoles.

In a pure gauge theory, we have Yang—Mill's
equation:
D,F*" = 0.

Electric sources are those particles that give rise to
a nonvanishing right hand side of the above equation:

D, FH = —ji  # = gihyHa.

Magnetic monopoles are topological in nature and
are represented geometrically by nontrivial G-bundles.
They are classified by elements of 71 (G).

However, in view of the electric-magnetic duality
we shall study, the concepts of ‘electric’ and ‘magnetic’
are interchangeable depending on which description
one uses.



Abelian duality

¥y — _%E,uupana

Classical Maxwell theory is invariant under duality:

8,F" = 0 [d*F =0
8, F* = 0 [dF =0

Poincaré lemma:

Fu(@) = 0,A4u(x) 8,4, (x)
Fuo(®) = 0,Au(e) — 0,4, ().

The two potentials transform independently:

Au(z)  — Au(z) +0,A(2),

Au(z) — Au(z) + A ().

10



Abelian duality

This means that the full symmetry of this theory is
doubled to U(1) x U(1).

This dual symmetry means that what we call
‘electric’ or ‘magnetic’ is entirely a matter of choice.

In the presence of electric charges:

o,Fr" = —4F

0,"F* = 0.
Alternatively:

o,F*" = 0

o, Ft = —3".

If both types of charges existed in nature:

9, FH = —jh
o

_j,u.
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Wu-Yang criterion

The free Maxwell action is:

Ap = —1 / F,, FH.

he true variables of the theory as we said before are
the A,,, so we should put in a constraint to say that
F,. is the curl of A

A=A} + /AN(GV*FW).

Varying w.r.t. F,,,, we obtain 0, F*¥ = 0.

Dually, start with
A0 =1 / F T, A= AL+ / R (B, ).

and obtain J0,*F'*Y = (.
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Wu-Yang criterion

This method applies to the interaction of charges
and fields as well. Start with the free field plus free
particle action:

A =yt [ (i = myw,
add monopole constraint
A= A0 4 / Ma(B 1 4 5.

Obtain full set of equations of motion:

o, F*"
o,"F** = —3¥
(ia/f)’u — m)¢ _éA,u'YM¢

|
-

13



Nonabelian duality?

We would of course like to generalize this duality
to the nonabelian Yang—Mills case.

First of all, despite appearances the Yang—Mills
equation

D, FF" =0
and the Bianchi identity

D,)"FFY =0

are not dual-symmetric, because the correct dual of
the Yang—Mills equation ought to be

~

D,*F# =0,

where D, is the covariant derivative corresponding to
a dual potential.
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Nonabelian duality?

Secondly, the Yang—Mills equation, unlike its
abelian counterpart, says nothing about whether the
2-form *F' is closed or not. Nor is the relation

Fuu (@) = 0, 4,(x) — 0,A4,(2) + ig[A, (), A, (o)

about exactness at all.

In other words, Yang—Mills equation does not
guarantee the existence of a dual potential, in contrast
to the Maxwell case.

In fact, Gu and Yang have constructed a counter-
example.

Because the true variables of a gauge theory are the
potentials and not the fields, this means that Yang—
Mills theory is not symmetric under the Hodge star
operation.
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Generalized duality

Nevertheless, electric-magnetic duality is a very
useful physical concept. So the natural step is to
seek a more general duality transform (7) satisfying the
following properties:

L )™=+ ),
2. electric field F,, <~ magnetic field F,,,

3. both A, and A, exist as potentials (away from
charges),

4. magnetic charges are monopoles of A,,, and electric
charges are monopoles of A4,,

5. " reduces to * in the abelian case.
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Generalized duality

A,, exists as
potential for F),,
(F=dA)

|

Principal A,
bundle trivial

GEOMETRY

Poincaré

Defining constraint
0, FH’ =
(dF =0)

:HGauss

No magnetic
monopole €

PHYSICS
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Loop variables

Recall that we define the Dirac phase factor ®(C)
of a loop C

27
Bl¢ = Puexpig [ ds Au(6())€4(s).
0
where we parametrize the loop C:

C: {g(s):s=0—2m, £(0) =&(2m) = o}

and a dot denotes differentiation with respect to the
parameter s.
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Loop variables

GMV[€|S] — 6V(S)FH[€‘S]_5M(S)Fu[€|8]+ig[FH[§|s]7 Fu[§|5]]

F,ul/(f(s))
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Loop variables

The action:

Ay = [ 86| dsTeEEls P glal) o)

In pure Yang—Mills theory, the constraint:

Guvlls] =

Wu—Yang criterion gives Polyakov equation

0 (s)FF[E]s] =

In the presence of a monopole charge —

Guvléls] = —Juvl€ls]
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Nonabelian duality

New variables:

B,[€ls] = @e(s, 0)F[¢]s]@; (s, 0)

Equations become

0y (s)ELlEls] — 0u(s)Ev[Els] = O
H(s)ELlEls] = 0

S+
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Nonabelian duality
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Lecture 2

Some questions in present-day
theoretical particle physics

Porto, 20-24 September 2001.
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Standard Model: spectrum

Vector bosons (also known as gauge bosons):
v WHWT,2%g

(photon; massive vector bosons; gluons)

Quarks: t,b; ¢, s; u,d

(top, bottom; charm, strange; up, down)
Leptons: 7,vr; u,v,; e,V

(tauon, tau neutrino; muon, muon neutrino;
electron, electron neutrino)

In a full quantum theory, these particles all have
corresponding antiparticles

Postulated: scalars called Higgs
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Standard Model: symmetries

SU(3) x SU((2) x U(1)/Zg

Everything occurs 3 times: 3 generations

Very similar properties except for masses e.g.:

m,:m,: me = 3000: 200: 1

U triad in generation space not aligned with D
triad ~ mixing (CKM for quarks, MNS for leptons)
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Symmetry breaking

Physical idea: the action is invariant under the action
of the gauge group, but the vacuum is invariant under
only a proper subgroup

Strong interaction: SU(3) exact
Electroweak interaction: U(2) broken
su(2) ® u(1) has generators Ty, 11,15, T3

Symmetry breaking effected by extra term in Yang—
Mills action

Ay = / D,$D¥é + V(9)

with
V(g) = o2 = 318l* (A >0)

~(5)

and
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Symmetry breaking

Covariant derivative D, will contain four gauge
components: W, W7, W corresponding to the su(2)
part with coupling g2, and Y, to the u(1) part with
coupling g;.

If u? < 0, the vacuum (with V(¢) minimum) is
given by

ol = —u?/A=n#0
Now choose a gauge

(8

Thus, the vacuum corresponds to a particular
direction in the space of su(2) @ u(1) and once this
choice is made, the physics will no longer be invariant
under the whole of the U(2) group.
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Symmetry breaking

¢ complex means there will be a phase rotation
left over after fixing a direction as above, and it is
this ‘little group’ U(1) that is identified as the abelian
electromagnetic group we studied before.

Geometrically the group U(2) is a torus S x ST,
and the residual symmetry group is a ‘diagonal’ U(1)
of this torus, generated by a linear combination of Tj
and T3 as shown below.

Quantum excitations give rise to a new scalar field

0
¢(w)=<n+a\<}g>>
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Symmetry breaking

Define now the Weinberg angle

: (751
sin Oy = > >
V 91 T 95
and new fields
A, = —sinfw Wi + cos by Y,
Z,, = cosbw Wg’ +sinOw Y,

Can re-write the action A% + Apy in terms of the
- 1 1172
new fields o, W, , W}, Z,,, A,..

Compare with Klein—Gordon lagrangian
—0, 0" — m*¢?

can identify the massive fields o, W, W2, Z,,, while
the field A, which remains massless we can identify as
the electromagnetic field.

29



Symmetry breaking with fermions

Introduce further terms in the action

A= [ 9D+ [ pbrévn-+ he
With only one generation (e and v.)

€

Ve
¢L=< ) , Yr=¢€Rr, Y=v%r+Ygr
L
with e, = 2(1 + v5)e,er = 2(1 — 75)e and v, purely
left-handed.

Compare with Dirac langrangian

@b(iau')’ﬂ —m)y

conclude that the electron acquires a mass through the
Higgs field ¢ in the Yukawa term. The purely left-
handed neutrino remains massless in this formulation.
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Fermion mass matrices

Symmetry breaking via Higgs mechanism is only
way for particles to acquire mass.

By confronting the three component groups SU(3),
SU(2), and U(1) of the Standard Model with what
is observed (or desired to be observed), we have the
following situation as regards the mass.

Of the gauge bosons, the 8 gluons of colour SU(3)
are massless, so is the particular generator of SU(2) x
U(1) identified as the photon. The 3 remaining gauge
bosons are massive.

Of the fermions (which are the charges), both the
quarks and the charged leptons acquire mass through
Yukawa terms involving the Higgs field.

There is no theoretical reason to demand that the
neutrinos are massless, and indeed they most probably
have a small mass.
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Running mass matrices

Quantum field theory as presently formulated can
only yield measurable quantities by a perturbative
calculation, and the only realistic way to do so is
by summing Feynman diagrams.

Even putting aside the question of ghost terms for
a nonabelian gauge theory, we are immediately faced
with two problems.

Firstly each individual Feynman diagram usually
contains divergent integrals.

And even after regularizing these integrals one
has to make sure that the perturbative series can
be sensibly summed.

These issues are dealt with under the heading of
‘renormalization’.

The renormalization procedure introduces a scale
dependence on the physical quantities in the theory.
Example: ‘running coupling constant’.
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Running mass matrices

The dependence on scale t of any given quantity,
such as the mass matrix, is explicitly known, via
the relevant ‘renormalization group equation’. For
example, for the quarks we have:

dU 3
— = 327T2(UUT — DDV + (T, — AU

dD 3
= = DD —UUND + (X, — A,))D
dt 32772( UUND + (¥4 = Aa)

For a mass matrix with both eigenvalues and
eigenvectors depending on scale, it is not obvious how
one can define the physical mass and the physical state
vector.

In the next lecture we shall make a proposal for
doing so in the Dualized Standard Model.

33



't Hooft’s theorem and duality

There is an unexplained lopsidedness about the
SM: exact colour with confined charges but broken
electroweak with free charges.

't Hooft introduces two loop operators:

e A(C) measures the magnetic flux through C and
creates electric flux along C

e B(C) measures the electric flux through C' and
creates magnetic flux along C

They satisfy the commutation relation

A(C)B(C") = B(C"YA(C) exp(2min/N)

He defined only

AC) =tro(C)
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't Hooft’s theorem and duality

These two operators play dual roles in the sense we
have been considering in the first lecture. However,
there was no “magnetic’ potential available at the
time, so that the definition of B(C’) was not explicit,
only through the commutation relation above.

But we have now in fact constructed the magnetic
potential A,, and we can prove the commutation
relation, so that we know that our duality is the same

as 't Hooft's.

This also means that we can apply the following
result to the duality we find.

't Hooft’s Theorem. [f the Wilson loop operator
of an SU(N) theory and its dual theory satisfy the
commutation relation given above, then:

SU(N) confined <= S/(_]\(N) broken

— N—"

SU(N) broken <= SU(N) confined
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Lecture 3

Dualized Standard Model

Porto, 20-24 September 2001.
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Dualized Standard Model

THEORY

T N—"

e SU(N)~ SU(N) x SU(N)

— N—"

e SU(N) confined <= SU(N) broken

EXPERIMENT

e SU(3) colour is confined

e 1 3 generations of fermions, very similar except for
masses

DSM MAIN ASSUMPTION

e Generation symmetry = dual colour
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Questions in SM

3 generations
mass hierarchy
fermion mixing

origin of Higgs
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Higgs fields

RECALL: dual transform involves local rotation
matrices w(x) relating the two gauge frames

Rows transform as 3 of colour

Columns transform as 3 of dual colour
Promote to fields: 3 triplets ¢

(a) = 1,2, 3 label the 3 triplets

a =1, 2,3 label their 3 dual colour components
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Higgs fields

Introduce potential to break SU(3) completely:

Vigl = —p) [+ A 9]
(a) (a)

tr ) |9
(a)#(b)

Vacuum given by

€T 0 0
pMV=¢cl 0|, ¢@=¢cly |, s®=¢|o0
0 0 2

with

2yt +22 =1, (=/p/2)
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Mass matrix

Fermions acquire mass through Yukawa terms in
Lagrangian

X 2 xy 2
m=mr| vy |(zyz)=mr| zy y?> yz
z Tz Yz z°

where the fermion type T'=U, D, L, N.

Renormalization Group Equation

e does not change factorized form

T T

_d _ 3 2 ~
A | Y | T a2 | Y
2 z

e T etc. simple known rational functions of z, v, z.
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Mass matrix

e Normalized vector v = (z,y, z) rotates with scale

(w.lo.g. x>y > 2)
e Vector v lies on the unit sphere S?
e Each type of fermion has its v: vy, vp, v, vN

e p same for all types T

e ~ vy, vp,vr,vN all on same RGE trajectory on S?

Most of the results come from study of this rotating

unit vector.
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Trajectory of v

Neutrino 1
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Fermion masses and states

e m has only one nonzero eigenvalue

e cigenvalues and eigenvectors depend on scale u

e RGE has 2 fixed points:

— v =(1,0,0) at high energy
— v =(1/v3,1//3,1/4/3) at low energy

A PROPQOSAL: a working criterion

1. run m to scale where u = m(u)
2. corresponding e-vector is state vector vq

3. do same with 2 X 2 remaining submatrix
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Fermion masses and states

e lepton state vectors always orthogonal
e mixing matrix always unitary

e mass hierarchy automatic
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Fermion mixing

Gauge eigenstates # mass eigenstates

Mixing matrix = direction cosines of the 2 triads
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The Quark CKM Matrix

Vud Vus Vub
Vea Ves Ve
Via Vis Vi

Experimental

0.9742 — 0.9757 0.219 — 0.226 0.002 — 0.005
0.219 — 0.225 0.9734 — 0.9749 0.037 — 0.043
0.004 — 0.014 0.035 — 0.043 0.9990 — 0.9993

Theoretical

0.9752 0.2215 0.0048
0.2211 0.9744 0.0401
0.0136 0.0381 0.9992
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The Leptonic MNS Matrix

Ue 1 UeQ Ue3
Uul Uu2 Uu3
U'T 1 UT 2 UT 3

Experimental

* 04-0.7 0.0-0.15
* * 0.96 — 0.83

X X *

Theoretical

0.97 0.24 0.07
0.22 0.71 0.66
0.11 0.66 0.74
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Mixing pattern from classical differential
geometry

Serret—Frenet—Darboux formulae for two neighbouring
triads {N,T, B} at As apart

1 —KkgAs —T4As
KgAs 1 Kn\s
TgAs  —KpAsS 1
1 —KkgAs 0
sphere
~> KgAs 1 As
0 —As 1

N=normal to surface
‘I'=tangent to curve
kg=geodesic curvature
kn=normal curvature(=1)
Tg=geodesic torsion(=0)
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Neutrinos

In standard SM only v, so massless
Can introduce vy as for other fermions

vr can have large Majorana mass

See-saw mechanism produces small physical v mass

0 M :
v B | one small eigenvalue

Vr,Vy,, Ve NOt mMass eigenstates
~» v oscillations

DSM can naturally incorporate this feature
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Near high energy fixed point

035 T T L T T L T T L T T L
my/mr

0.25 -

0.15

Angle theta in radians

me/my

0.05 | Vivs Viss Veb

0 L L | L L | L L | L L 1 L L L
0.01 0.1 1 10 100 1000

Scale mu in GeV

e Lowest generation masses wu,d,e sensibly
hierarchical but numerically inaccurate

e Their state vectors good because fixed at second
generation positions
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Near low energy fixed point

Should not extrapolate 1-loop calculation over whole
energy range

Scale of m,, ~ 0.05 eV very near low energy fixed
point

Can approximate state vector of v3 by fixed point
(1//3,1/4/3,1/4/3): confirmed by calculation

Get near maximal ‘atmospheric’ angle U3 and small
‘Chooz’ angle U.3: again confirmed by calculation

‘Solar’ angle U, not so good, as depending on how
trajectory approaches fixed point (i.e. tangent)
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Other consequences of DSM

Three broad areas of application

e Exchange of dual colour gauge bosons ~» flavour-
changing neutral current effects ~» a lower bound
for mass ~ 500 TeV

— rare hadron decays e.g. K — eTpu™

— mass differences e.g. K;, — Kg

— coherent muon-electron conversion on nuclei e.g.
w-+Ti—e” +T%

— muonium conversion e.g. uTe” — et~

— neutrinoless double beta decay e.g. "°Ge —
6Se + 2e~

e Rotating mass matrix ~» lepton flavour violation or
‘transmutation’

— decays e.g. T — pErT
— photo-transmutation e.g. ve~ — Y7~
— transmutational Bhabha e.g. ete™ — eTu™

e ultra high energy neutrinos
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Air Showers

Cosmic rays with energy > 10?° eV (beyond the
Greisen—Zatsepin—Kuz'min bound) pose a problem in
astrophysics:

e about 12 events over last 30 years

e each event produces about 10!! charged particles
e if protons will lose energy quickly by p+72.7 — A+47
e GZK: if proton then nearer than 50 Mpc away

e no obvious proton source that near

e some possible pairs or triples, would have been
deflected if proton

e weakly interacting neutrino not enough cross-section
with air neuclei
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Air Showers

DSM offers a possible solution—at energy above

dual colour gluon mass neutrinos will have become
strongly interacting

GZK: lower bound of ~ 500 TeV (cf. FCNC)

v can escape strong em field around any source,
e.g. AGN

v can survive long journey through microwave
background

Near hadronic cross-section with air nuclei

Pairs (or triplets) not deflected by inter-galactic em
field

Highest energy event at 3 x 10%° eV with no
abundant lower energy events in same direction:
v strongly only at high energy
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To be done . ..

Understand dual transform

Further study Higgs field as frame vectors
Geometric origin to Yukawa terms?
Better picture of middle-energy range
Further understanding of neutrinos

and more . . .
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