Almost Kähler 4-manifolds of Constant Holomorphic Sectional Curvature are Kähler

M. Upmeier

Joint work with

M. Lejmi

Based on discussions with Luigi Vezzoni

Cogne, January 2018
Preliminaries

Definition
An almost Kähler manifold \((M, \omega, g, J)\) is equipped with

\[\omega \in \Omega^2(M), \quad J: TM \to TM, \quad g \text{ metric} \]

such that

\[d\omega = 0, \quad J^2 = -1, \quad \omega = g(J\cdot, \cdot). \]
Preliminaries

Definition
An almost Kähler manifold \((M, \omega, g, J)\) is equipped with
\[\omega \in \Omega^2(M), \quad J: TM \to TM, \quad g \text{ metric} \]
such that
\[d\omega = 0, \quad J^2 = -1, \quad \omega = g(J\cdot, \cdot). \]

Definition
The Hermitian connection (or Chern connection) is
\[\nabla_X Y := D^g_X Y - \frac{1}{2} J(D^g_X J) Y. \]

- \(\nabla g = 0, \nabla J = 0\), but \(\nabla\) may have torsion.
Holomorphic sectional curvature

Hermitian curvature tensor $R^\nabla \in \Lambda^2 \otimes \Lambda^{1,1}$ has fewer symmetries.

The Hermitian holomorphic sectional curvature is

$$H(X) := |X|^{-4} \cdot R^\nabla_{X,JX,X,JX}, \quad X \in TM.$$

It is called

1. constant at p if $H(X) = k_p$ for all $X \in T_pM$,
2. globally constant if $H(X) = k$ for all $X \in TM$.

Problem (Gray–Vanhecke 1979)

Classify all manifolds of globally constant holomorphic sectional curvature within your favourite class of almost Hermitian manifolds.
Holomorphic sectional curvature

Hermitian curvature tensor \(R^\nabla \in \Lambda^2 \otimes \Lambda^{1,1} \) has fewer symmetries.

The Hermitian holomorphic sectional curvature is

\[
H(X) := |X|^{-4} \cdot R^\nabla_{X,JX,X,JX}, \quad X \in TM.
\]

It is called

1. **constant** at \(p \) if \(H(X) = k_p \) for all \(X \in T_pM \),
2. **globally constant** if \(H(X) = k \) for all \(X \in TM \).

Problem (Gray–Vanhecke 1979)

Classify all manifolds of globally constant holomorphic sectional curvature within your favourite class of almost Hermitian manifolds.
Statement of Result

Theorem (U.–Lejmi, 2017)

Let M be a closed almost Kähler 4-manifold of globally constant Hermitian holomorphic sectional curvature $k \geq 0$.

Then M is Kähler–Einstein, holomorphically isometric to:

1. $(k > 0)$ $\mathbb{C}P^2$ with the Fubini–Study metric.
2. $(k = 0)$ a complex torus or a hyperelliptic curve with the Ricci-flat Kähler metric.

Similar result for $k < 0$ under assumption that Ricci is J-invariant.
Statement of Result

Theorem (U.–Lejmi, 2017)

Let M be a closed almost Kähler 4-manifold of globally constant Hermitian holomorphic sectional curvature $k \geq 0$.

Then M is Kähler–Einstein, holomorphically isometric to:

- $(k > 0)$ \mathbb{CP}^2 with the Fubini–Study metric.
- $(k = 0)$ a complex torus or a hyperelliptic curve with the Ricci-flat Kähler metric.

Similar result for $k < 0$ under assumption that Ricci is J-invariant.

Remark

The above conclusion is known for Kähler manifolds, so we just need to prove integrability.
Background

Related Work

Balas–Gauduchon 1985 Any Hermitian metric of constant nonpositive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler
Background
Related Work

Balas–Gauduchon 1985 Any Hermitian metric of constant nonpositive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler

Gray–Vanhecke 1979 (Classification of) Almost Hermitian manifolds with constant holomorphic sectional curvature.
Background

Related Work

Balas–Gauduchon 1985 Any Hermitian metric of constant nonpositive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler

Gray–Vanhecke 1979 (Classification of) Almost Hermitian manifolds with constant holomorphic sectional curvature.

Sekigawa 1985 On some 4-dimensional compact Einstein almost Kähler manifolds.
Background
Related Work

Balas–Gauduchon 1985 Any Hermitian metric of constant nonpositive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler

Gray–Vanhecke 1979 (Classification of) Almost Hermitian manifolds with constant holomorphic sectional curvature.

Sekigawa 1985 On some 4-dimensional compact Einstein almost Kähler manifolds.

Armstrong 1997 On four-dimensional almost Kähler manifolds.
Background
Related Work

Balas–Gauduchon 1985 Any Hermitian metric of constant nonpositive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler

Gray–Vanhecke 1979 (Classification of) Almost Hermitian manifolds with constant holomorphic sectional curvature.

Sekigawa 1985 On some 4-dimensional compact Einstein almost Kähler manifolds.

Armstrong 1997 On four-dimensional almost Kähler manifolds.

Lejmi–Vezzoni 2017 Left-invariant structures on almost Kähler 4-dimensional Lie algebras.
Proposition

Pointwise constant holomorphic sectional curvature $H = k$ is equivalent to

1. $W^- = 0$

2. $\ast \rho = r$ for two Ricci contractions of R^∇:

$$\rho_{\alpha\bar{\beta}} = i R^\nabla_{\alpha\bar{\beta}\gamma} \quad \gamma,$$

$$r_{\alpha\bar{\beta}} = i R^\nabla_{\gamma\alpha\bar{\beta}},$$

Moreover,

$$\nu := \frac{\text{Scal}^g}{12} \leq \frac{k}{2}$$

with equality if and only if M is Kähler.
Sketch of Proof for $W^- = 0$

Use

\[
R_{XYZW} = R_{XYZW}^g + g((\nabla_X A_Y - \nabla_Y A_X - A_{[X,Y]})Z, W) - g([A_X, A_Y] Z, W).
\]

Play off the symmetries of $R^g : \Lambda^2 \rightarrow \Lambda^2$ against the assumption on R^∇ (which gives it a special form).

\[
R^g = \begin{bmatrix}
\Lambda^+ & \Lambda^-\\
\mathcal{W}^+ + \frac{\text{Scal}^g}{12} g & R^T_0 + \frac{\text{Scal}^g}{12} g\\
R_0 & \mathcal{W}^- + \frac{\text{Scal}^g}{12} g
\end{bmatrix}, \quad \Lambda^2 = \Lambda^+ \oplus \Lambda^-
\]
Sketch of Proof for $W^- = 0$

Use

$$R^\nabla_{XYZW} = R^g_{XYZW} + g((\nabla_X A_Y - \nabla_Y A_X - A_{[X,Y]} Z, W) - g([A_X, A_Y] Z, W).$$

Play off the symmetries of $R^g : \Lambda^2 \rightarrow \Lambda^2$ against the assumption on R^∇ (which gives it a special form).

$$R^g = \begin{bmatrix} \mathbb{R} \omega & \Lambda^{(2,0)+(0,2)} & \Lambda^{1,1}_0 \\ d \cdot g & W^+_F & R_F \\ (W^+_F)^T & W^+_0 + \frac{c}{2} g & R^T_0 \\ R^T_F & R^T_{00} & W^- + \frac{\text{Scal}^g}{12} g \end{bmatrix}$$
Sketch of Proof for $W^{-} = 0$

Use

$$R_{XYZW}^\nabla = R_{XYZW}^g$$

$$\alpha \in \Lambda^2 \otimes \Lambda^{2,0+0,2}$$

$$\beta \in \Lambda^{1,1} \otimes R \cdot \omega$$

Play off the symmetries of $R^g : \Lambda^2 \rightarrow \Lambda^2$ against the assumption on R^∇ (which gives it a special form).

$$R^\nabla = \begin{bmatrix}
\mathbb{R} \omega & \Lambda^{(2,0)+(0,2)} & \Lambda^{1,1}_0 \\
\frac{s c}{2} g & 0 & * \\
?? & 0 & ?? \\
* & 0 & *
\end{bmatrix}$$
Sketch of Proof for $W^- = 0$

Use

$$R_{XYZW}^\nabla = R_{XYZW}^g$$

Play off the symmetries of $R^g : \Lambda^2 \to \Lambda^2$ against the assumption on R^∇ (which gives it a special form).

$$R^\nabla = \begin{bmatrix}
R_\omega & \Lambda^{(2,0)+(0,2)} & \Lambda_{0}^{1,1} \\
\frac{sc}{2} g & 0 & R_F \\
(W_F^\perp)^T & 0 & R_{00} \\
-R_F^T & 0 & \frac{s_g}{12} g
\end{bmatrix}$$
From the differential Bianchi identity:

Proposition

Let M be a closed almost Kähler 4-manifold of pointwise constant holomorphic sectional curvature k. Then

\[
\int_M |R_{00}|^2 = \int_M |W_F^+|^2 + |W_{00}^+|^2 + 4(5k - 7\nu)(k - 2\nu) \tag{1}
\]

\[
\chi = \frac{-1}{8\pi^2} \int_M |W_{00}^+|^2 + (60\nu^2 - 72k\nu + 18k^2) \tag{2}
\]

\[
\frac{3}{2} \sigma = \frac{1}{8\pi^2} \int_M 2|W_F^+|^2 + |W_{00}^+|^2 + 6(2k - 3\nu)^2 \geq 0 \tag{3}
\]

Recall: $\nu := \frac{\text{Scal}^g}{12} = \frac{k}{2}$ implies Kähler.
Corollary (Signature zero case)

Let M be closed almost Kähler 4-manifold of pointwise constant holomorphic sectional curvature k. Suppose $\sigma = 0$.

Then $k = 0$ and M is Kähler, with a Ricci-flat metric.
Corollary (Signature zero case)

Let M be closed almost Kähler 4-manifold of pointwise constant holomorphic sectional curvature k. Suppose $\sigma = 0$.

Then $k = 0$ and M is Kähler, with a Ricci-flat metric.

Proof.

1. From $0 = \frac{3}{2} \sigma = \frac{1}{8\pi^2} \int_M 2|W_F^+|^2 + |W_{00}^+|^2 + 6(2k - 3\nu)^2$ we get $W_F^+ = 0, W_{00} = 0, 2k = 3\nu$.

2. Put this into

$$\int_M |R_{00}|^2 = \int_M |W_F^+|^2 + |W_{00}^+|^2 + 4(5k-7\nu)(k-2\nu) = -\frac{4}{9}k^2 \text{Vol}(M)$$

to get $k = \nu = 0$.

\[\blacksquare \]
Corollary (‘Reverse’ Bogomolov–Miyaoka–Yau inequality)

If M is closed almost Kähler of globally constant holomorphic sectional curvature $k \geq 0$, then for the Euler characteristic

$$3\sigma \geq \chi.$$

Equality holds if and only if M is Kähler–Einstein.
End of the proof

Theorem
M^4 closed almost Kähler of constant holomorphic sectional curvature $k \geq 0$. Then M is Kähler.
End of the proof

Theorem

M^4 closed almost Kähler of constant holomorphic sectional curvature $k \geq 0$. Then M is Kähler.

Proof.

- Suppose that M is not Kähler: $v < \frac{k}{2}$ somewhere.
End of the proof

Theorem

\(M^4\) closed almost Kähler of constant holomorphic sectional curvature \(k \geq 0\). Then \(M\) is Kähler.

Proof.

- Suppose that \(M\) is not Kähler: \(v < \frac{k}{2}\) somewhere.

\[
\int_M c_1(TM) \cup \omega = \int_M \frac{sc}{2\pi} = \int_M \frac{3k}{2\pi} + \int_M \frac{k-2v}{2\pi} > 0.
\]

\[\geq 0\]
End of the proof

Theorem

M^4 closed almost Kähler of constant holomorphic sectional curvature $k \geq 0$. Then M is Kähler.

Proof.

- Suppose that M is not Kähler: $v < \frac{k}{2}$ somewhere.
- $\int_M c_1(TM) \cup \omega = \int_M \frac{s_c}{2\pi} = \int_M \frac{3k}{2\pi} + \int_M \frac{k-2v}{2\pi} \geq 0.$
- SW-theory $\implies M$ symplectom. to ruled surface or $\mathbb{C}P^2$
Theorem

M^4 closed almost Kähler of constant holomorphic sectional curvature $k \geq 0$. Then M is Kähler.

Proof.

- Suppose that M is not Kähler: $v < \frac{k}{2}$ somewhere.

$$\int_M c_1(TM) \cup \omega = \int_M \frac{s_c}{2\pi} = \int_M \frac{3k}{2\pi} + \int_M \frac{k-2v}{2\pi} \geq 0.$$

- SW-theory \implies M symplectom. to ruled surface or $\mathbb{C}P^2$

- $M = \mathbb{C}P^2$ has $3\sigma = \chi$.
End of the proof

Theorem

M^4 closed almost Kähler of constant holomorphic sectional curvature $k \geq 0$. Then M is Kähler.

Proof.

- Suppose that M is not Kähler: $\nu < \frac{k}{2}$ somewhere.
- $\int_M c_1(TM) \cup \omega = \int_M \frac{sc}{2\pi} = \int_M \frac{3k}{2\pi} + \int_M \frac{k-2\nu}{2\pi} > 0.$

- SW-theory \Rightarrow M symplectom. to ruled surface or $\mathbb{C}P^2$
- $M = \mathbb{C}P^2$ has $3\sigma = \chi$.
- M rational \Rightarrow $\sigma \leq 0 \Rightarrow \sigma = 0.$
End of the proof

Theorem

\(M^4 \) closed almost Kähler of constant holomorphic sectional curvature \(k \geq 0 \). Then \(M \) is Kähler.

Proof.

- Suppose that \(M \) is not Kähler: \(v < \frac{k}{2} \) somewhere.
- \(\int_M c_1(TM) \cup \omega = \int_M \frac{sc}{2\pi} = \int_M \frac{3k}{2\pi} + \int_M \frac{k-2v}{2\pi} \geq 0 \).
- SW-theory \(\implies \) \(M \) symplectom. to ruled surface or \(\mathbb{C}P^2 \)
- \(M = \mathbb{C}P^2 \) has \(3\sigma = \chi \).
- \(M \) rational \(\implies \sigma \leq 0 \implies \sigma = 0 \).
- By previous propositions, ‘=’ implies Kähler, contradiction!