Orientation problems for PDEs and instanton moduli spaces

Markus Upmeier

University of Oxford

Oberseminar Differentialgeometrie
Universität Freiburg

July 8, 2019
Overview

1. Background on gauge theory
2. Special holonomy and PDEs
3. Instanton moduli spaces
4. Results and techniques
Overview

1. Background on gauge theory
2. Special holonomy and PDEs
3. Instanton moduli spaces
4. Results and techniques
Gauge theory

Fix a Hermitian vector bundle $\pi: E \to M$ over a manifold.

- M covered by local gauges $\Phi_\alpha: E|_{U_\alpha} \cong U_\alpha \times \mathbb{C}^m$, but not global.
- Unique up to local gauge transforms $\gamma: U_\alpha \to U(m)$. In particular,

$$\Phi_\alpha = \gamma_{\alpha\beta} \cdot \Phi_\beta \quad \text{over} \quad U_\alpha \cap U_\beta.$$
Gauge theory

Fix a Hermitian vector bundle $\pi: E \to M$ over a manifold.

- M covered by local gauges $\Phi_\alpha: E|_{U_\alpha} \cong U_\alpha \times \mathbb{C}^m$, but not global.
- Unique up to local gauge transforms $\gamma: U_\alpha \to U(m)$. In particular,

$$\Phi_\alpha = \gamma_{\alpha\beta} \cdot \Phi_\beta \quad \text{over} \quad U_\alpha \cap U_\beta.$$

A section $s: M \to E$ is a map with $\pi \circ s = \text{id}_M$. In a local gauge corresponds to vector-valued $f_\alpha = \Phi_\alpha \circ s: U_\alpha \to \mathbb{C}^m$ satisfying $f_\alpha = \gamma_{\alpha\beta} \cdot f_\beta$ over $U_\alpha \cap U_\beta$.

Remark

Can replace $U(m)$ by gauge Lie group G; mostly $G = SU(2), U(2), SO(3)$
Connections and curvature

Definition

A connection A is a family $A_\alpha \in \Omega^1(U_\alpha; u(m))$ satisfying

$$A_\beta = \gamma_{\alpha\beta}^{-1} \cdot A_\alpha \cdot \gamma_{\alpha\beta} + \gamma_{\alpha\beta}^{-1} \cdot d\gamma_{\alpha\beta}.$$
Connections and curvature

Definition

A connection A is a family $A_\alpha \in \Omega^1(U_\alpha; u(m))$ satisfying

$$A_\beta = \gamma^{-1}_{\alpha\beta} \cdot A_\alpha \cdot \gamma_{\alpha\beta} + \gamma^{-1}_{\alpha\beta} \cdot d\gamma_{\alpha\beta}.$$

- Global ‘covariant’ derivative $\nabla_A s := \Phi^{-1}_\alpha(df_\alpha + A_\alpha \cdot f_\alpha)$
- Connections differ by 1-form with values in $u_E = \text{End}^\text{skew}_\mathbb{C}(E)$
- Space of connections A_E modelled on $\Omega^1(M; u_E)$, Fréchet space topology
- Curvature $F_A := dA_\alpha + A_\alpha \wedge A_\alpha \in \Omega^2(M; u_E)$
Connections and curvature

Definition

A connection A is a family $A_\alpha \in \Omega^1(U_\alpha; u(m))$ satisfying

$$A_\alpha = \gamma^{-1}_{\alpha\beta} \cdot A_\alpha \cdot \gamma_{\alpha\beta} + \gamma^{-1}_{\alpha\beta} \cdot d\gamma_{\alpha\beta}.$$

- Global ‘covariant’ derivative $\nabla_A s := \Phi^{-1}_{\alpha}(df_\alpha + A_\alpha \cdot f_\alpha)$
- Connections differ by 1-form with values in $u_E = \text{End}_{\mathbb{C}}^{\text{skew}}(E)$
- Space of connections \mathcal{A}_E modelled on $\Omega^1(M; u_E)$, Fréchet space topology
- Curvature $F_A := dA_\alpha + A_\alpha \wedge A_\alpha \in \Omega^2(M; u_E)$

Definition

A gauge transformation $\Psi \in \mathcal{G}_E$ is a unitary bundle automorphism $\Psi : E \to E$.

- $(\nabla_{\Psi^* A}) s := \Psi^{-1}\nabla_A(\Psi \circ s)$, so $\mathcal{G}_E \curvearrowright \mathcal{A}_E$
- $F_{\Psi^* A} = \Psi^{-1} F_A \Psi$
Fix Hermitian vector bundle $E \rightarrow M$. Low-dimensional ‘elliptic’ examples:

Example

For $\dim M = 2$ and $\dim M = 3$, $A \in \mathcal{A}_E$ is a flat connection if $F_A = 0$.

In 4D, the problem is Fredholm modulo gauge. When M has special holonomy, there are natural analogues of these non-linear PDEs for $\dim M > 4$.

Markus Upmeier (University of Oxford)

Orientations for PDE moduli spaces
Instanton PDEs

Fix Hermitian vector bundle \(E \rightarrow M \). Low-dimensional ‘elliptic’ examples:

Example

For \(\dim M = 2 \) and \(\dim M = 3 \), \(A \in \mathcal{A}_E \) is a flat connection if \(F_A = 0 \).

Example

\(\dim M = 4 \) with oriented Riemannian structure \(\implies \exists \) Hodge operator on forms with \(*^2|_{\Omega^2} = 1 \implies \Omega^2 = \Omega^+ \oplus \Omega^- \). \(A \in \mathcal{A}_E \) is an ASD-connection if

\[*F_A = -F_A \iff F_A^+ = 0. \]
Instanton PDEs

Fix Hermitian vector bundle $E \to M$. Low-dimensional ‘elliptic’ examples:

Example

For $\dim M = 2$ and $\dim M = 3$, $A \in \mathcal{A}_E$ is a flat connection if $F_A = 0$.

Example

$\dim M = 4$ with oriented Riemannian structure $\implies \exists$ Hodge operator on forms with $*^2|_{\Omega^2} = 1 \implies \Omega^2 = \Omega^+ \oplus \Omega^-$. $A \in \mathcal{A}_E$ is an ASD-connection if

$$*F_A = -F_A \iff F_A^+ = 0.$$

- $\forall \Psi \in \mathcal{G}_E : \Psi^*A$ another solution \implies not Fredholm
- In 4D, the problem is Fredholm modulo gauge.
Instanton PDEs

Fix Hermitian vector bundle $E \to M$. Low-dimensional ‘elliptic’ examples:

Example

For $\dim M = 2$ and $\dim M = 3$, $A \in \mathcal{A}_E$ is a flat connection if $F_A = 0$.

Example

For $\dim M = 4$ with oriented Riemannian structure $\Rightarrow \exists$ Hodge operator on forms with $\ast^2|\Omega^2 = 1 \Rightarrow \Omega^2 = \Omega^+ \oplus \Omega^-$. $A \in \mathcal{A}_E$ is an ASD-connection if

$$\ast F_A = -F_A \iff F_A^+ = 0.$$

- $\forall \Psi \in \mathcal{G}_E : \Psi^* A$ another solution \Rightarrow not Fredholm
- In 4D, the problem is Fredholm modulo gauge.
- When M has special holonomy, there are natural analogues of these non-linear PDEs for $\dim M > 4$
Overview

1. Background on gauge theory
2. Special holonomy and PDEs
3. Instanton moduli spaces
4. Results and techniques
Definition

- $\phi \in \Lambda^3 V^*$ on a 7-dimensional vector space is non-degenerate if

$$\iota_X \phi \wedge \iota_X \phi \wedge \phi \neq 0 \quad \forall X \in V \setminus \{0\}.$$
\(G_2\)-structures

Definition

- \(\phi \in \Lambda^3 V^*\) on a 7-dimensional vector space is **non-degenerate** if

 \[\iota_X \phi \wedge \iota_X \phi \wedge \phi \neq 0 \quad \forall X \in V \setminus \{0\}. \]

- There exists a unique metric \(g_{\phi}\) and orientation on \(V\) with

 \[g_{\phi}(X, Y) \text{vol}_{g_{\phi}} = \iota_X \phi \wedge \iota_Y \phi \wedge \phi. \]
G_2-structures

Definition

- $\phi \in \Lambda^3 V^*$ on a 7-dimensional vector space is non-degenerate if
 \[\iota_X \phi \wedge \iota_X \phi \wedge \phi \neq 0 \quad \forall X \in V \setminus \{0\}. \]

- There exists a unique metric g_ϕ and orientation on V with
 \[g_\phi(X, Y) \operatorname{vol}_{g_\phi} = \iota_X \phi \wedge \iota_Y \phi \wedge \phi. \]

- A G_2-structure on a manifold M^7 is a non-degenerate smooth 3-form ϕ.

- A G_2-structure is torsion-free $\iff d\phi = 0$ and $d(\star_{g_\phi} \phi) = 0$.

Markus Upmeier (University of Oxford)
Orientations for PDE moduli spaces

8 / 21
G\textsubscript{2}-structures

Definition

- \(\phi \in \Lambda^3 V^* \) on a 7-dimensional vector space is **non-degenerate** if
 \[\iota_X \phi \wedge \iota_X \phi \wedge \phi \neq 0 \quad \forall X \in V \setminus \{0\}. \]

- There exists a unique metric \(g_\phi \) and orientation on \(V \) with
 \[g_\phi(X, Y) \text{ vol}_{g_\phi} = \iota_X \phi \wedge \iota_Y \phi \wedge \phi. \]

- A **\(G\textsubscript{2} \)-structure** on a manifold \(M^7 \) is a non-degenerate smooth 3-form \(\phi \).

- A \(G_2 \)-structure is **torsion-free** \(\iff \) \(d\phi = 0 \) and \(d(*_{g_\phi} \phi) = 0 \).

Example (prototype)

In coordinates on \(V = \mathbb{R}^7 \) we have

\[
\phi_{\text{std}} = dx^{123} + dx^1 (dx^{45} + dx^{67}) + dx^2 (dx^{46} - dx^{57}) + dx^3 (dx^{47} + dx^{56})
\]

Then \(G_2 := \left\{ A \in \text{GL}(7, \mathbb{R}) \mid A^* \phi_{\text{std}} = \phi_{\text{std}} \right\} \). Alternatively, \(G_2 = \text{Aut}(\mathbb{O}) \).
Example

We have embeddings of Lie groups

\[\text{SU}(2) \to \text{SU}(3) \to G_2 = \text{Aut}(\mathbb{O}). \]

Hyperkähler surface \((X^4, \omega_1, \omega_2, \omega_3)\) yields torsion-free \(G_2\)-manifold \(T^3 \times X\)

\[\phi := dx^{123} - dx^1 \wedge \omega_1 - dx^2 \wedge \omega_2 - dx^3 \wedge \omega_3 \]
Relation to other geometries

Example

We have embeddings of Lie groups

\[\text{SU}(2) \longrightarrow \text{SU}(3) \longrightarrow G_2 = \text{Aut}(\mathbb{O}). \]

1. Hyperkähler surface \((X^4, \omega_1, \omega_2, \omega_3)\) yields torsion-free \(G_2\)-manifold \(T^3 \times X\)

\[\phi := dx^{123} - dx^1 \wedge \omega_1 - dx^2 \wedge \omega_2 - dx^3 \wedge \omega_3 \]

2. If \((Z^6, \omega, \Omega)\) is a Calabi–Yau 3-fold, then \(S^1 \times Z\) is a torsion-free \(G_2\)-manifold

\[\phi := dt \wedge \omega + \text{Re}(\Omega) \]
Relation to other geometries

Example

We have embeddings of Lie groups

\[\text{SU}(2) \rightarrow \text{SU}(3) \rightarrow G_2 = \text{Aut}(\mathbb{O}). \]

1. Hyperkähler surface \((X^4, \omega_1, \omega_2, \omega_3)\) yields torsion-free \(G_2\)-manifold \(T^3 \times X\)

\[\phi := dx^{123} - dx^1 \wedge \omega_1 - dx^2 \wedge \omega_2 - dx^3 \wedge \omega_3 \]

2. If \((Z^6, \omega, \Omega)\) is a Calabi–Yau 3-fold, then \(S^1 \times Z\) is a torsion-free \(G_2\)-manifold

\[\phi := dt \wedge \omega + \Re(\Omega) \]

3. Examples with holonomy all of \(G_2\) are hard to construct.
Donaldson–Segal: Elliptic PDEs in higher dimensions

Definition

Let \((M^7, \phi)\) be a \(G_2\)-manifold and \(E \to M\) a Hermitian vector bundle. Then a connection \(A \in \mathcal{A}_E\) is a \(G_2\)-instanton if

\[*(F_A \wedge \phi) = -F_A \iff F_A \wedge (*\phi) = 0. \]
Definition

Let \((M^7, \phi)\) be a \(G_2\)-manifold and \(E \to M\) a Hermitian vector bundle. Then a connection \(A \in \mathcal{A}_E\) is a \(G_2\)-instanton if

\[*(F_A \wedge \phi) = -F_A \iff F_A \wedge (*\phi) = 0. \]

Example

1. Levi-Civita connection of torsion-free \(G_2\)-manifold
Donaldson–Segal: Elliptic PDEs in higher dimensions

Definition

Let (M^7, ϕ) be a G_2-manifold and $E \to M$ a Hermitian vector bundle. Then a connection $A \in \mathcal{A}_E$ is a G_2-instanton if

$$*(F_A \wedge \phi) = -F_A \iff F_A \wedge (*\phi) = 0.$$

Example

1. **Levi-Civita connection** of torsion-free G_2-manifold

2. **ASD-connections** $*F_A = -F_A$ on hyperkähler 4-manifold X with G_2-structure

 $$\phi := dx^{123} - dx^1 \wedge \omega_1 - dx^2 \wedge \omega_2 - dx^3 \wedge \omega_3 \quad (\omega_i \text{ self-dual}), \quad M = T^3 \times X$$

 $$*_M(F_A \wedge \phi) = *_M(F_A \wedge dx^{123}) = *_X F_A = -F_A.$$
Donaldson–Segal: Elliptic PDEs in higher dimensions

Definition
Let \((M^7, \phi)\) be a \(G_2\)-manifold and \(E \to M\) a Hermitian vector bundle. Then a connection \(A \in \mathcal{A}_E\) is a \(G_2\)-instanton if

\[*(F_A \wedge \phi) = -F_A \iff F_A \wedge (\ast \phi) = 0. \]

Example
1. Levi-Civita connection of torsion-free \(G_2\)-manifold
2. ASD-connections \(*F_A = -F_A\) on hyperkähler 4-manifold \(X\) with \(G_2\)-structure
 \[\phi := dx^{123} - dx^1 \wedge \omega_1 - dx^2 \wedge \omega_2 - dx^3 \wedge \omega_3 \text{ (\(\omega_i\) self-dual), } M = T^3 \times X \]
 \[*_M(F_A \wedge \phi) = *_M (F_A \wedge dx^{123}) = *_X F_A = -F_A. \]
3. Hermitian Yang–Mills connections \(\Lambda F_A = 0, F_A^{0,2} = 0\) on Calabi–Yau 3-fold (connects to algebraic geometry: Donaldson–Thomas program)
Overview

1. Background on gauge theory
2. Special holonomy and PDEs
3. Instanton moduli spaces
4. Results and techniques
Moduli spaces

Fix Hermitian vector bundle $E \to M$.

- $\mathcal{A}_E = \{\text{unitary connections on } E\} \cong \Omega^1(M; u_E)$, $\mathcal{G}_E = \text{Aut } E$
Moduli spaces

Fix Hermitian vector bundle $E \to M$.

- $\mathcal{A}_E = \{\text{unitary connections on } E\} \cong \Omega^1(M; \mathfrak{u}_E)$, $\mathcal{G}_E = \text{Aut } E$

Definition (Moduli of instantons)

- $\mathcal{M}^{\text{flat}}_E := \{A \in \mathcal{A}_E \mid F_A = 0\} / \mathcal{G}_E$ \hspace{1cm} (3D)
- $\mathcal{M}^{\text{ASD}}_E := \{A \in \mathcal{A}_E \mid F_A^+ = 0\} / \mathcal{G}_E$ \hspace{1cm} (4D oriented)
- $\mathcal{M}^{\text{CY}}_E := \{A \in \mathcal{A}_E \mid \Lambda F_A = 0, F_A^{0,2} = 0\} / \mathcal{G}_E$ \hspace{1cm} (CY3)
- $\mathcal{M}^{G^2}_E := \{A \in \mathcal{A}_E \mid F_A \wedge *\phi = 0\} / \mathcal{G}_E$ \hspace{1cm} (7D G^2-manifold)

Remark (difficulties: isotropy, non-transversality)

Reducible solutions \Rightarrow quotient stacks

For 4D and generic metrics on M, $\mathcal{M}^{\text{ASD}}_E$ is a smooth manifold of expected positive dimension (regular value).

Similar: $\mathcal{M}^{\text{SU}(3)}_E$ in 6D.

In general: derived stacks (for example, $\mathcal{M}^{\text{flat}}_E$, $\mathcal{M}^{G^2}_E$ of virtual dim. zero).
Moduli spaces

Fix Hermitian vector bundle $E \to M$.

- $\mathcal{A}_E = \{\text{unitary connections on } E\} \cong \Omega^1(M; \mathfrak{u}_E)$, $\mathcal{G}_E = \text{Aut } E$

Definition (Moduli of instantons)

\[\mathcal{M}_{E}^{\text{flat}} := \left\{ A \in \mathcal{A}_E \mid F_A = 0 \right\} / \mathcal{G}_E \quad (3\text{D}) \]

\[\mathcal{M}_{E}^{\text{ASD}} := \left\{ A \in \mathcal{A}_E \mid F^+_A = 0 \right\} / \mathcal{G}_E \quad (4\text{D oriented}) \]

\[\mathcal{M}_{E}^{\text{CY}} := \left\{ A \in \mathcal{A}_E \mid \Lambda F_A = 0, F^{0,2}_A = 0 \right\} / \mathcal{G}_E \quad (\text{CY3}) \]

\[\mathcal{M}_{E}^{G_2} := \left\{ A \in \mathcal{A}_E \mid F_A \wedge \ast \phi = 0 \right\} / \mathcal{G}_E \quad (7\text{D } G_2\text{-manifold}) \]

Remark (difficulties: isotropy, non-transversality)

- Reducible solutions \implies quotient stacks
Moduli spaces

Fix Hermitian vector bundle $E \to M$.

- $\mathcal{A}_E = \{\text{unitary connections on } E\} \cong \Omega^1(M; u_E)$, $\mathcal{G}_E = \text{Aut } E$

Definition (Moduli of instantons)

- $\mathcal{M}^\text{flat}_E := \{A \in \mathcal{A}_E \mid F_A = 0\} \sslash \mathcal{G}_E$ (3D)
- $\mathcal{M}^\text{ASD}_E := \{A \in \mathcal{A}_E \mid F^+_A = 0\} \sslash \mathcal{G}_E$ (4D oriented)
- $\mathcal{M}^\text{CY}_E := \{A \in \mathcal{A}_E \mid \Lambda F_A = 0, F_A^{0,2} = 0\} \sslash \mathcal{G}_E$ (CY3)
- $\mathcal{M}^G_2 := \{A \in \mathcal{A}_E \mid F_A \wedge \ast \phi = 0\} \sslash \mathcal{G}_E$ (7D G_2-manifold)

Remark (difficulties: isotropy, non-transversality)

- Reducible solutions \implies quotient stacks
- For 4D and generic metrics on M, $\mathcal{M}^\text{ASD,irr}_E$ is a smooth manifold of expected positive dimension (regular value). Similar: $\mathcal{M}^\text{SU}(3)_E$ in 6D
- In general: derived stacks (for example, $\mathcal{M}^\text{flat}_E$, $\mathcal{M}^{G_2}_E$ of virtual dim. zero)
Atiyah–Hitchin deformation complex

Fix torsion-free \(G_2 \)-manifold \((M^7, \phi)\) and a \(G_2 \)-instanton \(F_A \wedge * \phi = 0 \) on \(E \).
Atiyah–Hitchin deformation complex

Fix torsion-free G_2-manifold (M^7, ϕ) and a G_2-instanton $F_A \wedge \ast \phi = 0$ on E.

For deformation $A + a$ with $a \in \Omega^1(M; u_E)$:

$$0 = F_{A+a} \wedge \ast \phi = F_A \wedge \ast \phi + d_A a \wedge \ast \phi + a \wedge a \wedge \ast \phi$$

\Rightarrow linearized G_2-instanton equation $d_A a \wedge \ast \phi = 0$
Atiyah–Hitchin deformation complex

Fix torsion-free G_2-manifold (M^7, ϕ) and a G_2-instanton $F_A \wedge \ast \phi = 0$ on E.

- For deformation $A + a$ with $a \in \Omega^1(M; u_E)$:

 \[0 = F_{A+a} \wedge \ast \phi = F_A \wedge \ast \phi + d_A a \wedge \ast \phi + a \wedge a \wedge \ast \phi \]

 \implies linearized G_2-instanton equation $d_A a \wedge \ast \phi = 0$

- Infinitesimal gauge transformations $\gamma \in \Omega^0(M; u_E) = \text{Lie } G_E$ act

 \[d_A(a + d_A \gamma) \wedge \ast \phi = d_A a \wedge \ast \phi + \gamma \wedge F_A \wedge \ast \phi = 0 \]
Atiyah–Hitchin deformation complex

Fix torsion-free G_2-manifold (M^7, ϕ) and a G_2-instanton $F_A \wedge *\phi = 0$ on E.

- For deformation $A + a$ with $a \in \Omega^1(M; u_E)$:

$$0 = F_{A+a} \wedge *\phi = F_A \wedge *\phi + d_A a \wedge *\phi + a \wedge a \wedge *\phi$$

\implies linearized G_2-instanton equation $d_A a \wedge *\phi = 0$

- Infinitesimal gauge transformations $\gamma \in \Omega^0(M; u_E) = \text{Lie } G_E$ act

$$d_A(a + d_A \gamma) \wedge *\phi = d_A a \wedge *\phi + \gamma \wedge F_A \wedge *\phi = 0$$

- Trivially $d_A(d_A a \wedge *\phi) = F_A \wedge *\phi + d_A a \wedge d(*\phi) = 0$
Atiyah–Hitchin deformation complex

Fix torsion-free G_2-manifold (M^7, ϕ) and a G_2-instanton $F_A \wedge *\phi = 0$ on E.

- For deformation $A + a$ with $a \in \Omega^1(M; u_E)$:
 \[
 0 = F_{A+a} \wedge *\phi = F_A \wedge *\phi + d_A a \wedge *\phi + a \wedge a \wedge *\phi
 \]

 \implies linearized G_2-instanton equation $d_A a \wedge *\phi = 0$

- Infinitesimal gauge transformations $\gamma \in \Omega^0(M; u_E) = \text{Lie } G_E$ act
 \[
 d_A(a + d_A \gamma) \wedge *\phi = d_A a \wedge *\phi + \gamma \wedge F_A \wedge *\phi = 0
 \]

- Trivially $d_A(d_A a \wedge *\phi) = F_A \wedge *\phi + d_A a \wedge d(*\phi) = 0$

Exact G_2-instanton deformation complex

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \Omega^0(M; u_E) & \overset{d_A}{\longrightarrow} & \Omega^1(M; u_E) & \overset{d_A \wedge *\phi}{\longrightarrow} & \Omega^6(M; u_E) & \overset{d_A}{\longrightarrow} & \Omega^7(M; u_E) & \longrightarrow & 0
\end{array}
\]

gauge transf. connections curvature Bianchi
Determinants and orientations

Infinitesimal theory of $\mathcal{M}_{E}^{G_{2}}$ at A:

$$
0 \longrightarrow \Omega^{0}(M; u_{E}) \xrightarrow{d_{A}} \Omega^{1}(M; u_{E}) \xrightarrow{d_{A} \wedge \ast \phi} \Omega^{6}(M; u_{E}) \xrightarrow{d_{A}} \Omega^{7}(M; u_{E}) \longrightarrow 0
$$

- Roll-up is elliptic operator

$$
\Phi_{u(A)} = \begin{pmatrix}
0 & d_{A}^{*} \\
d_{A} & \ast(d_{A} \wedge \ast \phi)
\end{pmatrix} : \Omega^{0} \oplus \Omega^{1} \rightarrow \Omega^{0} \oplus \Omega^{1},
$$

Diracian on M, twisted by u_{E} and A
Determinants and orientations

Infinitesimal theory of \mathcal{M}^2_E at A:

$$0 \longrightarrow \Omega^0(M; u_E) \xrightarrow{d_A} \Omega^1(M; u_E) \xrightarrow{d_A \wedge \ast \phi} \Omega^6(M; u_E) \xrightarrow{d_A} \Omega^7(M; u_E) \longrightarrow 0$$

- Roll-up is elliptic operator
 $$\mathcal{D}_{u(A)} = \begin{pmatrix} 0 & d^*_A \\ d_A & \ast (d_A \wedge \ast \phi) \end{pmatrix} : \Omega^0 \oplus \Omega^1 \rightarrow \Omega^0 \oplus \Omega^1,$$

 - Diracian on M, twisted by u_E and A

- Zariski tangent space $T_A \mathcal{M}^2_E = \text{Ker} \mathcal{D}_{u(A)}$ of derived stack
Determinants and orientations

Infinitesimal theory of $\mathcal{M}_E^{G_2}$ at A:

$$0 \longrightarrow \Omega^0(M; u_E) \xrightarrow{d_A} \Omega^1(M; u_E) \xrightarrow{d_A \wedge * \phi} \Omega^6(M; u_E) \xrightarrow{d_A} \Omega^7(M; u_E) \longrightarrow 0$$

- Roll-up is elliptic operator
 $$\mathcal{D}_{u(A)} = \begin{pmatrix} 0 & d_A^* \\ d_A & *(d_A \wedge * \phi) \end{pmatrix} : \Omega^0 \oplus \Omega^1 \rightarrow \Omega^0 \oplus \Omega^1,$$

- Diracian on M, twisted by u_E and A

- Zariski tangent space $T_A \mathcal{M}_E^{G_2} = \text{Ker} \mathcal{D}_{u(A)}$ of derived stack

Definition

Let $\{D_y\}_{y \in \mathcal{Y}}$ be a \mathcal{Y}-family of \mathbb{K}-linear Fredholm operators. The **Quillen determinant line bundle** is

$$\text{det}_\mathbb{K}\{D_y\} := \bigcup_{y \in \mathcal{Y}} \Lambda_{\mathbb{K}}^{\text{top}}(\text{Ker } D_y) \otimes \Lambda_{\mathbb{K}}^{\text{top}}(\text{Coker } D_y)^* \xrightarrow{\tau} \mathcal{Y}.$$
Determinants and orientations

Infinitesimal theory of $\mathcal{M}_E^{G_2}$ at A:

\[
0 \longrightarrow \Omega^0(M; u_E) \xrightarrow{d_A} \Omega^1(M; u_E) \xrightarrow{d_A \wedge \star \phi} \Omega^6(M; u_E) \xrightarrow{d_A} \Omega^7(M; u_E) \longrightarrow 0
\]

- Roll-up is elliptic operator

\[
\mathcal{D}_{u(A)} = \begin{pmatrix} 0 & d_A^* \\ d_A & (d_A \wedge \star \phi) \end{pmatrix} : \Omega^0 \oplus \Omega^1 \to \Omega^0 \oplus \Omega^1,
\]

Diracian on M, twisted by u_E and A

- Zariski tangent space $T_A \mathcal{M}_E^{G_2} = \text{Ker} \mathcal{D}_{u(A)}$ of derived stack

Definition

Let $\{D_y\}_{y \in Y}$ be a Y-family of K-linear Fredholm operators. The Quillen determinant line bundle is

\[
\text{det}_K \{D_y\} := \bigcup_{y \in Y} \Lambda^{\text{top}}_K (\text{Ker} D_y) \otimes \Lambda^{\text{top}}_K (\text{Coker} D_y)^* \to Y.
\]

Conclusion: orientation bundle of $\mathcal{M}_E^{G_2}$ is $\text{Det}_R \mathcal{D}_{u(E)} := \text{det}_R \{\mathcal{D}_{u(A)}\}_{A \in \mathcal{M}_E^{G_2}}$.

Markus Upmeier (University of Oxford)
Overview

1. Background on gauge theory
2. Special holonomy and PDEs
3. Instanton moduli spaces
4. Results and techniques
Results

Theorem (Joyce–U. 2018)

Let $E \to M$ be an $\text{SU}(m)$-bundle over a closed G_2-manifold. A flag structure on M determines a canonical orientation for $\mathcal{M}_E^{G_2}$.

- Flags are differential-topological structures on M akin to spin structures.
Results

Theorem (Joyce–U. 2018)

Let $E \to M$ be an $SU(m)$-bundle over a closed G_2-manifold. A flag structure on M determines a canonical orientation for $\mathcal{M}_E^{G_2}$.

- Flags are differential-topological structures on M akin to spin structures.

Side results of our general theory:

Let $E \to M$ be a G-principal bundle over a Riemannian 3-manifold. An orientation of $H^0(M) \oplus H^1(M) \oplus H^2(M) \oplus H^3(M)$ determines a canonical orientation of the flat connection moduli space $F_A = 0$.
Results

Theorem (Joyce–U. 2018)

Let $E \rightarrow M$ be an $\SU(m)$-bundle over a closed G_2-manifold. A flag structure on M determines a canonical orientation for $\mathcal{M}_E^{G_2}$.

- Flags are differential-topological structures on M akin to spin structures.

Side results of our general theory:

Let $E \rightarrow M$ be a G-principal bundle over a Riemannian 3-manifold. An orientation of $H^0(M) \oplus H^1(M) \oplus H^2(M) \oplus H^3(M)$ determines a canonical orientation of the flat connection moduli space $F_A = 0$.

Theorem (Donaldson 1987, Kronheimer, Joyce–U. 2018)

Let $E \rightarrow M$ be an G-principal bundle over a spin 4-manifold. An orientation of $H^0(M) \oplus H^1(M) \oplus H^+(M)$ determines a canonical orientation for $\mathcal{M}_E^{\text{ASD}}$.
Let $E \rightarrow M$, $E' \rightarrow M'$ be Hermitian vector bundles over closed spin manifolds.

1. Let ϕ be a spin diffeomorphism of open subsets

\[M \supset U \xrightarrow{\phi} U' \subset M'. \]

2. Let s and s' be unitary frames of $E|_{M\setminus K}$ and $E'|_{M'\setminus K'}$ defined outside compact subsets $K \subset U$ and $K' \subset U'$.

3. Let $\Phi: E|_U \to \phi^* E'|_{U'}$ be an isomorphism with $\Phi(s) = \phi^* s'$.

Then we get an excision isomorphism

\[\text{Det}_R D_{U(E)} \xrightarrow{\text{Det}(\Phi,s,s')} \text{Det}_R D_{U(E')} \]
framing $E \subset U$

framed isomorphism ϕ

$\text{Det}_R \mathcal{D}_{u(E)} \xrightarrow{\text{Det}(\Phi, s, s')} \text{Det}_R \mathcal{D}_{u(E')} $
Flag structures

Definition

A flag structure on M^7 associates signs $F(Y, s)$ to submanifolds $Y^3 \subset M$ with non-vanishing normal sections s such that

$$F(Y_0, s_0) = (-1)^{D(s_0, s_1)} F(Y_1, s_1) \quad \forall [Y_0] = [Y_1].$$

Here $D(s_0, s_1)$ is defined as follows. Let $\partial Z = [Y_1] - [Y_0]$. Then $D(s_0, s_1) = Z \cdot (s_0 - s_1)$ is the intersection number of Z with perturbations of Y_0 and Y_1 in direction of s_0 and s_1. A flag structure F is notion of parity for (Y, s). It reduces choices by picking out a normal section, up to parity.

Proposition

The set of flag structures is a (non-empty) torsor over $H_3(M; \mathbb{Z}_2)$.

Markus Upmeier (University of Oxford)
Flag structures

Definition

A flag structure on M^7 associates signs $\mathcal{F}(Y, s)$ to submanifolds $Y^3 \subset M$ with non-vanishing normal sections s such that

$$F(Y_0, s_0) = (-1)^{D(s_0, s_1)} F(Y_1, s_1) \quad \forall [Y_0] = [Y_1].$$

Here $D(s_0, s_1)$ is defined as follows. Let $\partial Z = [Y_1] - [Y_0]$. Then $D(s_0, s_1) = Z \bullet ([s_0] - [s_1])$ is the intersection number of Z with perturbations of Y_0 and Y_1 in direction of s_0 and s_1.

Markus Upmeier (University of Oxford)
Orientations for PDE moduli spaces
A flag structure on M^7 associates signs $\mathcal{F}(Y, s)$ to submanifolds $Y^3 \subset M$ with non-vanishing normal sections s such that

$$F(Y_0, s_0) = (-1)^{D(s_0, s_1)} F(Y_1, s_1) \quad \forall [Y_0] = [Y_1].$$

Here $D(s_0, s_1)$ is defined as follows. Let $\partial Z = [Y_1] - [Y_0]$. Then $D(s_0, s_1) = Z \bullet ([s_0] - [s_1])$ is the intersection number of Z with perturbations of Y_0 and Y_1 in direction of s_0 and s_1.

A flag structure \mathcal{F} is notion of parity for (Y, s). It reduces choices by picking out a normal section, up to parity.

Proposition

*The set of flag structures is a (non-empty) torsor over $H^3(M; \mathbb{Z}_2)$.***
Definition

The pullback of a flag structure \mathcal{F} on M along a diffeomorphism $\phi: M' \to M$ is $(\phi^* \mathcal{F})(Y', s') := (\phi(Y'), d\phi(s'))$.

Proposition

Let $\phi: M \to M$ be an orientation-preserving isometry with $\phi|_Y = \text{id}_Y$ for an oriented 3-submanifold $Y \subset M$. Then $(\mathcal{F}/\phi^* \mathcal{F})[Y] = \mathcal{F}(Y, s)$ equals the self-intersection of $[Y \times S^1] \cdot [Y \times S^1]$ in the mapping torus $M_{\phi} := M \times \mathbb{R}$.

Theorem (Atiyah–Patodi–Singer)

Let $\Phi: E \to E$ be a bundle automorphism over a spin diffeomorphism $\phi: M \to M$ of an odd-dimensional manifold. Then $\det R(\Phi) = (-1)^{\delta(\Phi)} \cdot \text{id}$, $\delta(\Phi) := \int_M \hat{\text{A}}(TM_{\phi}) \text{ch}(E^* \Phi \otimes E \Phi)$, for the mapping torus bundle $E_{\Phi} \downarrow M_{\phi}$.

Markus Upmeier (University of Oxford)
Orientations for PDE moduli spaces
20 / 21
Definition

The pullback of a flag structure \mathcal{F} on M along a diffeomorphism $\phi: M' \to M$ is $(\phi^* \mathcal{F})(Y', s') := (\phi(Y'), d\phi(s'))$.

Proposition

Let $\phi: M \to M$ be an orientation-preserving isometry with $\phi|_Y = \text{id}_Y$ for an oriented 3-submanifold $Y \subset M$. Then $(\mathcal{F}/\phi^* \mathcal{F})[Y] = \mathcal{F}(Y, s) : \mathcal{F}(Y, \phi^* s)$ equals the self-intersection of $[Y \times S^1] \bullet [Y \times S^1]$ in the mapping torus $M_\phi := M \times \mathbb{Z} \mathbb{R}$.
Definition

The pullback of a flag structure \mathcal{F} on M along a diffeomorphism $\phi: M' \rightarrow M$ is $(\phi^* \mathcal{F})(Y', s') := (\phi(Y'), d\phi(s'))$.

Proposition

Let $\phi: M \rightarrow M$ be an orientation-preserving isometry with $\phi|_Y = \text{id}_Y$ for an oriented 3-submanifold $Y \subset M$. Then $(\mathcal{F}/\phi^* \mathcal{F})[Y] = \mathcal{F}(Y, s): \mathcal{F}(Y, \phi^* s)$ equals the self-intersection of $[Y \times S^1] \bullet [Y \times S^1]$ in the mapping torus $M_\phi := M \times_{\mathbb{Z}} \mathbb{R}$.

Theorem (Atiyah–Patodi–Singer)

Let $\Phi: E \rightarrow E$ be a bundle automorphism over a spin diffeomorphism $\phi: M \rightarrow M$ of an odd-dimensional manifold. Then

$$\det_{\mathbb{R}}(\Phi) = (-1)^{\delta(\Phi)} \cdot \text{id}, \quad \delta(\Phi) := \int_{M_\phi} \hat{A}(TM_\phi) \text{ch}(E_\phi^* \otimes E_\phi),$$

for the mapping torus bundle $E_\phi \downarrow M_\phi$.
Future research

- Donaldson–Segal propose Casson invariants of G_2-manifolds by counting all G_2-instantons with appropriate signs, which we have found.

- Gradings over \mathbb{Z}_8 rather than \mathbb{Z}_2 for a Floer homology type theory

- Applications to algebraic geometry: every Calabi–Yau 3-fold Z determines a G_2-manifold $M = S^1 \times Z$. By a new dimension shifting technique, use this to construct ‘orientation data’ for Calabi–Yau 3-folds, square roots $\sqrt{\text{Det}_\mathbb{C} \bar{\partial}_u(E)}$, an important problem in algebraic geometry (Kontsevich).

- Non-simply connected gauge groups, e.g. $U(m)$