Orientation Problems in 7-dimensional Gauge Theory

Markus Upmeier

University of Oxford

Talk based on:

1) M. Upmeier, A categorified excision principle for elliptic symbol families (soon)
3) D. Joyce and M. Upmeier, Canonical orientations for moduli spaces of G_2-instantons with gauge group SU(m), arXiv:1811.02405.

January 28, 2019
Outline

Orientation Problems for Twisted Diracians

Determinants, Symbols, and Excision

Canonical Orientations in Seven Dimensions
Outline

Orientation Problems for Twisted Diracians

Determinants, Symbols, and Excision

Canonical Orientations in Seven Dimensions
Twisted Dirac Operators

Setup

1. Compact 7-dimensional spin manifold \((X, g)\)
2. Real spinor bundle \(\mathcal{S} \to X\), connection \(\nabla\mathcal{S}\)
3. Clifford multiplication \(c: TX \times \mathcal{S} \to \mathcal{S}\)
4. Lie group \(G\)
5. \(G\)-principal bundle \(P \to X\)
6. \(\text{Ad} P := P \times_G \mathfrak{g} \to X\)

Definition

Let \(\nabla \text{Ad} P \in \Omega^1(P; g)\) be a connection on \(P\). The twisted Diracian is

\[\mathcal{D} \nabla \text{Ad} P : C^\infty(\mathcal{S} \otimes \mathcal{R} \text{Ad} P) \to C^\infty(\mathcal{S} \otimes \mathcal{R} \text{Ad} P), s \mapsto -\sum_{i=1}^7 c(e_i, \nabla \mathcal{S} \otimes \text{Ad} P e_i)\]
Twisted Dirac Operators

Setup

1. *Compact 7-dimensional spin manifold* \((X, g)\)
2. *Real spinor bundle* \(\mathcal{S} \xrightarrow{\nabla} X\), *connection* \(\nabla\mathcal{S}\)
3. *Clifford multiplication* \(c : TX \times \mathcal{S} \to \mathcal{S}\)
4. *Lie group* \(G\)
5. *\(G\)-principal bundle* \(P \xrightarrow{} X\)
6. \(\text{Ad } P := P \times_G \mathfrak{g} \xrightarrow{} X\)

Definition

Let \(\nabla^P \in \Omega^1(P; \mathfrak{g})\) be a connection on \(P\). The *twisted Diracian* is

\[
\mathcal{D}^{\nabla \text{Ad } P} : C^\infty(\mathcal{S} \otimes_{\mathbb{R}} \text{Ad } P) \to C^\infty(\mathcal{S} \otimes_{\mathbb{R}} \text{Ad } P),
\]

\[
s \mapsto \sum_{i=1}^{7} c(e_i, \nabla^P_{e_i} \mathcal{S} \otimes \text{Ad } P s)
\]
Example in 7D: Manifolds with G_2-Structure

Definition

A topological G_2-structure on (X^7, g) is a structure of normed algebras on $O := \mathbb{R} \oplus TX$ with two-sided unit $1 = (1, 0)$:

$$c: O \times O \xrightarrow{bilinear} O, \quad \|v \cdot w\| = \|v\| \cdot \|w\|.$$
Example in 7D: Manifolds with G_2-Structure

Definition
A topological G_2-structure on (X^7, g) is a structure of normed algebras on $O := \mathbb{R} \oplus TX$ with two-sided unit $1 = (1, 0)$:

$$c: O \times O \xrightarrow{\text{bilinear}} O, \quad \|v \cdot w\| = \|v\| \cdot \|w\|.$$

Adjoint of $c|_{TX}$ is $\phi \in \Omega^3(X)$; Let $\psi := *\phi \in \Omega^4(X)$.

1. Every manifold with G_2-structure is spin $\mathbb{S} := O$.
2. Clifford multiplication is c.
3. For a torsion-free G_2-structure $\nabla \mathbb{S} = \nabla^\mathbb{R} \oplus \nabla^{LC}$.

Example in 7D: Manifolds with G_2-Structure

Definition
A topological G_2-structure on (X^7, g) is a structure of normed algebras on $O := \mathbb{R} \oplus TX$ with two-sided unit $1 = (1, 0)$:

\[c : O \times O \xrightarrow{\text{bilinear}} O, \quad \|v \cdot w\| = \|v\| \cdot \|w\|. \]

Adjoint of $c|_{TX}$ is $\phi \in \Omega^3(X)$; Let $\psi := *\phi \in \Omega^4(X)$.

1. Every manifold with G_2-structure is spin $\mathcal{S} := O$.
2. Clifford multiplication is c.
3. For a torsion-free G_2-structure $\nabla\mathcal{S} = \nabla^\mathbb{R} \oplus \nabla^{LC}$.

General 7-dimensional spin manifold, with preferred spinor.
Example in 7D: Continued

Connection ∇^P induces $d_{\nabla^P} : \Omega^k(X, \text{Ad } P) \longrightarrow \Omega^{k+1}(X, \text{Ad } P)$.

Proposition

Assume $\nabla^{LC} \phi = 0$. Then the twisted Diracian $\nabla^P \text{Ad } P$ equals

$$L_{\nabla^P} = \begin{pmatrix} 0 & d^*_P \\ d_P & * (\psi \wedge d_P) \end{pmatrix}$$

$$\Omega^0(X, \text{Ad } P) \oplus \Omega^1(X, \text{Ad } P) \longrightarrow \Omega^0(X, \text{Ad } P) \oplus \Omega^1(X, \text{Ad } P).$$
Example in 7D: Continued

Connection ∇^P induces $d_{\nabla^P} : \Omega^k(X, \text{Ad } P) \longrightarrow \Omega^{k+1}(X, \text{Ad } P)$.

Proposition

Assume $\nabla^{LC} \phi = 0$. Then the twisted Diracian $\mathcal{D}^{\nabla \text{Ad } P}$ equals

$$L_{\nabla^P} = \begin{pmatrix} 0 & d^*_{\nabla^P} \\ d_{\nabla^P} & * (\psi \wedge d_{\nabla^P}) \end{pmatrix}$$

$$\Omega^0(X, \text{Ad } P) \oplus \Omega^1(X, \text{Ad } P) \longrightarrow \Omega^0(X, \text{Ad } P) \oplus \Omega^1(X, \text{Ad } P).$$

Corollary

The tangent space at ∇^P of the moduli space of G_2-instantons $F^{\nabla \text{Ad } P} \wedge \psi = 0$ is described by the Diracian $\mathcal{D}^{\nabla \text{Ad } P}$.

$$\Omega^0(X; \mathfrak{g}_P) \xrightarrow{d_{\nabla^P}} \Omega^1(X; \mathfrak{g}_P) \xrightarrow{d_{\nabla^P} \wedge \psi} \Omega^6(X; \mathfrak{g}_P) \xrightarrow{d_{\nabla^P}} \Omega^7(X; \mathfrak{g}_P)$$
Today’s Problem

Let $\mathcal{A}_P := \{\text{connections } \nabla^P \text{ on } P \to X\}$. By twisting \mathfrak{D} using each $\nabla^P \in \mathcal{A}_P$ get an \mathcal{A}_P-family of differential operators on X.

Questions

- Equivariant orientability of $\bigcup_{\nabla^P \in \mathcal{A}_P} \text{Det } \mathfrak{D}^{\nabla^P} \bigg\downarrow \mathcal{A}_P$?
 \[\longrightarrow\text{ Can be answered using index theory.}\]

- How do we pick orientations, canonically, fixing perhaps some topological data on X?
Today’s Problem

Let \(A_P := \{ \text{connections } \nabla^P \text{ on } P \to X \} \). By twisting \(\mathcal{D} \) using each \(\nabla^P \in A_P \) get an \(A_P \)-family of differential operators on \(X \).

Questions

- Equivariant orientability of \(\bigsqcup_{\nabla^P \in A_P} \text{Det } \mathcal{D}^{\nabla^P} \to A_P \)? Can be answered using index theory.
- How do we pick orientations, canonically, fixing perhaps some topological data on \(X \)?

Theorem (Joyce–U. 2018)

Let \((X, \phi^3, \psi^4 = *_{\phi^3} \phi^3)\) be a closed \(G_2 \)-manifold. A flag structure \(\mathcal{F} \) on \(X \) determines, for every principal \(SU(n) \)-bundle \(P \to X \), an orientation of the moduli space \(\mathcal{M}_{P}^{\text{irr}} \) of \(G_2 \)-instantons

\[
\{ A \in \mathcal{A}_{P}^{\text{irr}} \mid F_A \wedge \psi = 0 \} / \text{Aut}(P).
\]
Outline

Orientation Problems for Twisted Diracians

Determinants, Symbols, and Excision

Canonical Orientations in Seven Dimensions
Determinant Line Bundle and Orientations

Definition
Let \(\{D_y\}_{y \in Y} \) be a \(Y \)-family of real Fredholm operators. The Quillen determinant line bundle is

\[
\text{Det}\{D_y\} := \bigcup_{y \in Y} \Lambda^{\text{top}}(\text{Ker } D_y) \otimes \Lambda^{\text{top}}(\text{Coker } D_y)^* \downarrow Y.
\]

The orientation cover is

\[
\text{Or}\{D_y\} = (\text{Det}\{D_y\}_{\text{zero section}}) \downarrow_0 Y.
\]

Today's problem
Given \(G \hookrightarrow P \rightarrow X \), trivialize \(\text{Or}\{D_y\}_{\nabla P \in \mathcal{A} P} \) canonically in terms of data on \(X \).
Determinant Line Bundle and Orientations

Definition
Let \(\{D_y\}_{y \in Y} \) be a \(Y \)-family of real Fredholm operators. The Quillen determinant line bundle is

\[
\text{Det}\{D_y\} := \bigcup_{y \in Y} \Lambda^{\text{top}}(\ker D_y) \otimes \Lambda^{\text{top}}(\text{coker } D_y)^* \searrow Y.
\]

Definition
The orientation cover is

\[
\text{Or}\{D_y\}_{y \in Y} := (\text{Det}\{D_y\} \setminus \{\text{zero section}\}) / \mathbb{R}_{>0} \searrow Y.
\]

Represents \(\pi_1 \text{Fred}_\mathbb{R} = \mathbb{Z}_2 \)
Determinant Line Bundle and Orientations

Definition

Let \(\{D_y\}_{y \in Y} \) be a \(Y \)-family of real Fredholm operators. The Quillen determinant line bundle is

\[
\text{Det}\{D_y\} := \bigcup_{y \in Y} \Lambda^{\text{top}}(\ker D_y) \otimes \Lambda^{\text{top}}(\text{coker } D_y)^* \downarrow Y.
\]

Definition

The orientation cover is

\[
\text{Or}\{D_y\}_{y \in Y} := (\text{Det}\{D_y\} \setminus \{\text{zero section}\}) / \mathbb{R}_{>0} \downarrow Y.
\]

Represents \(\pi_1 \text{Fred}_R = \mathbb{Z}_2 \)

Today’s problem

Given \(G \hookrightarrow P \twoheadrightarrow X^7 \), trivialize \(\text{Or}\{\nabla^{\text{Ad } P}\}_{\nabla^P \in \mathcal{A}_P} \downarrow \mathcal{A}_P \), canonically in terms of data on \(X \).
Index Theory

Definition

1. For D Fredholm, $\text{ind } D := \dim_\mathbb{R} \text{Ker } D - \dim_\mathbb{R} \text{Coker } D \in \mathbb{Z}$
Index Theory

Definition

1. For D Fredholm, $\text{ind } D := \dim_{\mathbb{R}} \text{Ker } D - \dim_{\mathbb{R}} \text{Coker } D \in \mathbb{Z}$
2. For Y-family $\{D_y\}_{y \in Y}$, $\text{ind } D \in KO^0(Y)$. Up to isomorphism

$$w_1(\text{ind } D) = [\text{Or}\{D_y\}] \in H^1(Y; \mathbb{Z}_2)$$
Index Theory

Definition

1. For D Fredholm, $\text{ind } D := \dim_{\mathbb{R}} \text{Ker } D - \dim_{\mathbb{R}} \text{Coker } D \in \mathbb{Z}$

2. For Y-family $\{D_y\}_{y \in Y}$, $\text{ind } D \in KO^0(Y)$. Up to isomorphism

$$w_1(\text{ind } D) = [\text{Or}\{D_y\}] \in H^1(Y; \mathbb{Z}_2)$$

Properties

- Natural in Y
- If $\{D_t\}_{t \in [0,1]}$: $D_0 \sim D_1$ through Fred, then

$$\text{ind } D_0 = i_0^* \text{ind } D = i_1^* \text{ind } D = \text{ind } D_1$$

- $\text{ind}(D_1 \oplus D_2) = \text{ind } D_1 + \text{ind } D_2$
- $\text{ind } D^\dagger = - \text{ind } D$
Elliptic Symbol Families

Definition
Family of Elliptic (ψ)DOs $D_y : C^\infty(X, E_y) \to C^\infty(X, F_y)$ on X determined, up to convex choice, by elliptic symbol family

$$p_{\xi,y} = \sigma_{\xi,y}(D) : E_y \xrightarrow{\sim} F_y, \quad p_{\lambda \cdot \xi,y} = \lambda^m p_{\xi,y},$$

for all $0 \neq \xi \in T^*X, y \in Y, \lambda > 0$. Here $m \in \mathbb{R}$ is the order.
Elliptic Symbol Families

Definition
Family of Elliptic (ψ)DOs $D_y : C^\infty(X, E_y) \to C^\infty(X, F_y)$ on X determined, up to convex choice, by elliptic symbol family

$$p_{\xi,y} = \sigma_{\xi,y}(D) : E_y \cong \to F_y,$$

for all $0 \neq \xi \in T^*X, y \in Y, \lambda > 0$. Here $m \in \mathbb{R}$ is the order.

Example
$E \xrightarrow{\pi} X \times Y$ vector bundle, X^7 spin, $c : TX \otimes \mathcal{S} \to \mathcal{S}$ Clifford multiplication. Let $p_{\xi,y} := c_\xi \otimes \text{id}_{E_y}$ for $y \in Y$.
Elliptic Symbol Families

Definition
Family of Elliptic $(\psi)DOs$ $D_y : C^\infty(X, E_y) \to C^\infty(X, F_y)$ on X determined, up to convex choice, by elliptic symbol family

$$p_{\xi,y} = \sigma_{\xi,y}(D) : E_y \overset{\sim}{\to} F_y, \quad p_{\lambda \cdot \xi,y} = \lambda^m p_{\xi,y},$$

for all $0 \neq \xi \in T^*X, y \in Y, \lambda > 0$. Here $m \in \mathbb{R}$ is the order.

Example
$E \searrow X \times Y$ vector bundle, X^7 spin, $c : TX \otimes $ $\to $ \mathbb{C} Clifford multiplication. Let $p_{\xi,y} := c_\xi \otimes \text{id}_{E_y}$ for $y \in Y$.

Further properties

$\triangleright \ \text{ind } p = \text{ind } D$ well-defined, for any $\sigma(D) = p$

$\triangleright \ i : U \hookrightarrow X$ open embedding, p compactly supported on U

$\implies \ i_!(\text{ind } p) = \text{ind } i_! p$
Categorical Index Calculus

For Y-family of elliptic symbols $p = \{p_{\xi,y}\}_{y \in Y}$ on X have object

$$\text{Or } p := \lim_{\sigma(D) = p} \text{Or } D \searrow Y \text{ in } \text{Cov}_{\mathbb{Z}_2}(Y)$$
Categorical Index Calculus

For Y-family of elliptic symbols $p = \{p_{\xi,y}\}_{y \in Y}$ on X have object

$$\text{Or } p := \lim_{\sigma(D) = p} \text{Or } D \downarrow Y \text{ in } \text{Cov}^{\text{gr}}_{\mathbb{Z}_2}(Y)$$

Properties become structure maps in $\text{Cov}^{\text{gr}}_{\mathbb{Z}_2}(Y)$

1. $\{p_t\}: p_0 \simeq p_1 \implies \text{Or } p_0 \to \text{Or } q_1$
2. $\text{Or}(p \oplus q) \to (\text{Or } p) \otimes (\text{Or } q)$, $\text{Or } p^\dagger \to (\text{Or } p)^*$
3. If $\phi: X_- \to X_+$ diffeomorphism with $\phi^* p_+ = p_-$, then

$$\text{Or}(\phi): \text{Or } p_- \longrightarrow \text{Or } p_+$$

4. For $i: U \hookrightarrow X$ open embedding, p compactly supported on U

$$i_!: \text{Or}(p) \longrightarrow \text{Or}(i_! p)$$
Categorical Index Calculus

For Y-family of elliptic symbols $p = \{p_{\xi,y}\}_{y \in Y}$ on X have object

$$\text{Or } p := \lim_{\sigma(D) = p} \text{Or } D \searrow Y \text{ in } \text{Cov}_{\mathbb{Z}_2}^{gr}(Y)$$

Properties become structure maps in $\text{Cov}_{\mathbb{Z}_2}^{gr}(Y)$

1. $\{p_t\}: p_0 \simeq p_1 \implies \text{Or } p_0 \to \text{Or } q_1$
2. $\text{Or}(p \oplus q) \to (\text{Or } p) \otimes (\text{Or } q)$, $\text{Or } p^\dagger \to (\text{Or } p)^*$
3. If $\phi: X_- \to X_+$ diffeomorphism with $\phi^* p_+ = p_-$, then

$$\text{Or}(\phi): \text{Or } p_- \longrightarrow \text{Or } p_+$$

4. For $i: U \hookrightarrow X$ open embedding, p compactly supported on U

$$i_! : \text{Or}(p) \longrightarrow \text{Or}(i_! p)$$

All these maps are compatible.
Excision

\[(\phi, \Pi, K)\]

\(p_-, q_- \rightarrow p_+, q_+ \)

\(L_- \quad U_- \quad X_- \)

\(L_+ \quad U_+ \quad X_+ \)

\(\Xi_- : p_- \cong q_- \)

\(\Xi_+ : p_+ \cong q_+ \)

This data induces an excision isomorphism in \(\text{Cov} \, \text{gr} \, \mathbb{Z}_2(\mathcal{Y}) \):

\(\text{Exc}(\phi, \Pi, K) : \text{Or}(p_-)^* \otimes \text{Or}(q_-) \rightarrow \text{Or}(p_+)^* \otimes \text{Or}(q_+)^* \)

compatible with all structure maps.
Excision

Pair of symbol families p_\pm, q_\pm on X_\pm, isomorphic outside compact subsets L_\pm of U_\pm
Excision

Pair of symbol families p_{\pm}, q_{\pm} on X_{\pm}, isomorphic outside compact subsets L_{\pm} of U_{\pm}

Identification Π, K of pairs over diffeomorphism $\phi: U_{-} \to U_{+}$
Excision

Pair of symbol families p_\pm, q_\pm on X_\pm, isomorphic outside compact subsets L_\pm of U_\pm

Identification Π, K of pairs over diffeomorphism $\phi: U_- \to U_+$

This data induces an excision isomorphism in $\text{Cov}^{\text{gr}}_{\mathbb{Z}_2}(Y)$

$$\text{Ex}(\phi, \Pi, K): \text{Or}(p_-)^* \otimes \text{Or}(q_-) \longrightarrow \text{Or}(p_+)^* \otimes \text{Or}(q_+)$$

compatible with all structure maps.
Outline

Orientation Problems for Twisted Diracians

Determinants, Symbols, and Excision

Canonical Orientations in Seven Dimensions
Effect of Global Diffeomorphisms on Orientations

Definition
For $P \xrightarrow{\sim} X$ principal G-bundle over spin manifold X, Clifford multiplication $c : TX \otimes \mathbb{R} \to \mathbb{R}$, define

$$\text{Or}_P := \text{Or}(c \otimes \text{Ad} P)^* \otimes \text{Or}(c \otimes \mathfrak{su}(n)) = \text{Or}(\hat{\varphi}_{\text{Ad} P})^* \otimes \text{Or}(\hat{\varphi}_{\mathfrak{su}(n)})$$
Effect of Global Diffeomorphisms on Orientations

Definition
For $P \rightarrow X$ principal G-bundle over spin manifold X, Clifford multiplication $c : TX \otimes \mathbb{R} \rightarrow \mathbb{R}$, define

$$\text{Or}_P := \text{Or}\left(c \otimes \text{Ad} P\right)^* \otimes \text{Or}(c \otimes \mathfrak{su}(n)) = \text{Or}(\mathcal{D}_{\text{Ad} P})^* \otimes \text{Or}(\mathcal{D}_{\mathfrak{su}(n)})$$

Theorem (APS)
Let $\Phi : P \rightarrow P$ be an $\text{SU}(n)$-isomorphism over a spin diffeomorphism $\phi : X \rightarrow X$. Then we have

$$\text{Or}(\Phi) = (-1)^{\delta(\Phi)} \cdot \text{id}_{\text{Or}_P}, \quad \delta(\Phi) := \int_{X_{\phi}} \hat{A}(TX_{\phi}) \left(\text{ch}(P^*_\phi \otimes P_\phi) - n^2 \right),$$

where $P_\phi = P \times_{\mathbb{Z}} \mathbb{R} \rightarrow X_{\phi} = X \times_{\mathbb{Z}} \mathbb{R}$ are the mapping tori.
Effect of Global Diffeomorphisms on Orientations

Definition
For $P \xrightarrow{\phi} X$ principal G-bundle over spin manifold X, Clifford multiplication $c : TX \otimes \mathbb{S} \rightarrow \mathbb{S}$, define

$$Or_P := Or(c \otimes \text{Ad } P)^* \otimes Or(c \otimes \mathfrak{su}(n)) = Or(\mathcal{D}_{\text{Ad } P})^* \otimes Or(\mathcal{D}_{\mathfrak{su}(n)})$$

Theorem (APS)
Let $\Phi : P \rightarrow P$ be an $\text{SU}(n)$-isomorphism over a spin diffeomorphism $\phi : X \rightarrow X$. Then we have

$$Or(\Phi) = (-1)^{\delta(\Phi)} \cdot \text{id}_{Or_P}, \quad \delta(\Phi) := \int_{X_\phi} \hat{A}(TX_\phi) \left(\text{ch}(P_\phi^* \otimes P_\phi) - n^2 \right),$$

where $P_\phi = P \times \mathbb{Z} \mathbb{R} \xrightarrow{\phi} X_\phi = X \times \mathbb{Z} \mathbb{R}$ are the mapping tori.

$$\delta(\Phi) \equiv \frac{1}{2} \int_{X_\phi} p_1(TX_\phi)c_2(P_\phi) \equiv \int_{X_\phi} c_2(P_\phi) \cup c_2(P_\phi) \mod 2$$
Flag Structures

Definition
Let X^7 be oriented, $Y^3 \subset X^7$ compact oriented submanifold

- A flag on $Y \subset X$ is a non-vanishing normal section $s: Y \rightarrow N_{Y/X}$.
Flag Structures

Definition
Let X^7 be oriented, $Y^3 \subset X^7$ compact oriented submanifold

- A flag on $Y \subset X$ is a non-vanishing normal section $s: Y \rightarrow N_{Y/X}$.
- For flags s_0, s_1 define degree of s_0 w.r.t. s_1 as

$$d(s_0, s_1) := [Y] \bullet \{ ts_1(y) + (1 - t)s_0(y) \mid t \in [0, 1], y \in Y \}.$$
Flag Structures

Definition
Let X^7 be oriented, $Y^3 \subset X^7$ compact oriented submanifold

- A flag on $Y \subset X$ is a non-vanishing normal section $s: Y \to N_{Y/X}$.
- For flags s_0, s_1 define degree of s_0 w.r.t. s_1 as
 \[d(s_0, s_1) := [Y] \cdot \{ts_1(y) + (1 - t)s_0(y) \mid t \in [0, 1], y \in Y\} \in 2\mathbb{Z} \cdot\]
- $s_0 \sim s_1 : \iff d(s_0, s_1) \in 2\mathbb{Z}$. Let $\text{Flag}(Y \subset X) := \{s\}/\sim$.

Flag structure for $Y \subset X$ is a choice of base-point $F: \text{Flag}(Y \subset X) \to \mathbb{Z}/2$.
Flag structure is a flag structure for all $Y^3 \subset X^7$, where $F(Y_1, s_1) = (-1)^D((Y_1, s_1), (Y_2, s_2)) \cdot F(Y_2, s_2)$ if $[Y_1] = [Y_2]$.
Define a torsor over $H^3(X; \mathbb{Z}/2)$.

16 / 26
Flag Structures

Definition
Let X^7 be oriented, $Y^3 \subset X^7$ compact oriented submanifold

- A flag on $Y \subset X$ is a non-vanishing normal section $s: Y \to N_{Y/X}$.
- For flags s_0, s_1 define degree of s_0 w.r.t. s_1 as
 $d(s_0, s_1) := [Y] \cdot \{ ts_1(y) + (1 - t)s_0(y) \mid t \in [0, 1], y \in Y \}$.
- $s_0 \sim s_1 : \iff d(s_0, s_1) \in 2\mathbb{Z}$. Let $\text{Flag}(Y \subset X) := \{ s \}/ \sim$.
- Flag structure for $Y \subset X$ is a choice of base-point
 $\mathcal{F} : \text{Flag}(Y \subset X) \xrightarrow{\sim} \mathbb{Z}_2$.

- Flag structure is a flag structure for all $Y^3 \subset X$, where
 $\mathcal{F}(Y_1, s_1) = (-1)^D((Y_1, s_1);(Y_2, s_2)) \cdot \mathcal{F}(Y_2, s_2)$ if $[Y_1] = [Y_2]$.
 Define a torsor over $H^3(X; \mathbb{Z}_2)$.
Flags for Trivial Normal Bundle

Example
Let \(Y := Y_0 = Y_1 \) with trivializable normal bundle. For \(s_0, s_1 : Y \to \mathbb{H} \) unit length write \(s_1 = q \cdot s_0 \) with \(q : Y \to S^3 \).

\[
d(s_0, s_1) =
\]
Example

Let $Y := Y_0 = Y_1$ with trivializable normal bundle. For $s_0, s_1: Y \to \mathbb{H}$ unit length write $s_1 = q \cdot s_0$ with $q: Y \to S^3$. Set $S(y, t) := (1 - t)s_0(y) + ts_1(y)$.

\[d(s_0, s_1) = \]

![Diagram showing the relationship between s_0 and s_1]
Flags for Trivial Normal Bundle

Example
Let $Y := Y_0 = Y_1$ with trivializable normal bundle. For $s_0, s_1: Y \to \mathbb{R}$ unit length write $s_1 = q \cdot s_0$ with $q: Y \to S^3$. Set $S(y, t) := (1 - t)s_0(y) + ts_1(y)$.

$$S(y, t) = [(1 - t) + qt] \cdot s_0(y) = 0 \iff t = \frac{1}{2} \text{ and } q(y) = -1.$$

$$\implies d(s_0, s_1) = \deg(q: Y \to S^3).$$
Flag Structures: Continued

Definition
Oriented manifolds X_{\pm}, orientation-preserving diffeomorphism $\phi: X_- \to X_+$.

Pullback of flag structure \mathcal{F}_+ is

$$(\phi^* \mathcal{F}_+) \left(Y_\rightarrow N_{Y_\subset X_-} \right) = \mathcal{F}_+ \left(d\phi \circ s_- \circ \phi^{-1} |_{Y_-} \right).$$
Definition
Oriented manifolds X_{\pm}, orientation-preserving diffeomorphism $\phi : X_- \to X_+.

Pullback of flag structure \mathcal{F}_+ is

$$(\phi^* \mathcal{F}_+) \left(Y_- \xrightarrow{s_-} N_{Y_- \subset X_-} \right) = \mathcal{F}_+ \left(d\phi \circ s_- \circ \phi^{-1} \big|_{Y_-} \right).$$

Proposition
If $\phi : X \to X$ or. diffeomorphism, $Y^3 \subset X$, $\phi|_Y = id_Y$, then

$$\mathcal{F}/\phi^* \mathcal{F}[Y] = (-1)^{[Y \times S^1] \bullet [Y \times S^1]}$$

in the mapping torus $X^8_\phi = (X \times [0, 1])/(x, 1) \sim (\phi(x), 0)$.

Statement of Main Theorem: Slide 1/2

A flag structure \mathcal{F} (on $Y^3 \subset X^7$) determines an orientation

$$o^\mathcal{F}(P) \in \text{Or}_P := \text{Or}(\mathcal{D}_{\text{Ad} P}) \otimes \text{Or}(\mathcal{D}_{\text{su}(n)})^*$$

for every $\text{SU}(n)$-bundle $P \rightarrow X$ (with $[Y]$ Poincaré dual to $c_2(P)$).

This association is uniquely determined by the following properties:
Statement of Main Theorem: Slide 1/2

A flag structure \mathcal{F} (on $Y^3 \subset X^7$) determines an orientation

$$o^\mathcal{F}(P) \in \text{Or}_P := \text{Or}(D_{\text{Ad}P}) \otimes \text{Or}(D_{\text{su}(n)})^*$$

for every $\text{SU}(n)$-bundle $P \rightarrow X$ (with $[Y]$ Poincaré dual to $c_2(P)$).

This association is uniquely determined by the following properties:

1. (Normalization.) For $P = \text{SU}(n)$ trivial: \exists canonical base-point $o^{\text{triv}}(P) \in \text{Or}_P$. For every flag structure \mathcal{F}:

$$o^\mathcal{F}(P) = o^{\text{triv}}(P).$$
A flag structure \mathcal{F} (on $Y^3 \subset X^7$) determines an orientation

$$o^\mathcal{F}(P) \in \text{Or}_P := \text{Or}(\mathcal{D}_{\text{Ad} P}) \otimes \text{Or}(\mathcal{D}_{\text{su}(n)})^*$$

for every SU(n)-bundle $P \to X$ (with $[Y]$ Poincaré dual to $c_2(P)$).

This association is uniquely determined by the following properties:

1. (Normalization.) For $P = \text{SU}(n)$ trivial: \exists canonical base-point $o^{\text{triv}}(P) \in \text{Or}_P$. For every flag structure \mathcal{F}:

 $$o^\mathcal{F}(P) = o^{\text{triv}}(P).$$

2. (Stabilization.) Via the isomorphism $\text{stab}: \text{Or}_{P \times_{\text{SU}(n)} \text{SU}(m)} \cong \text{Or}_P \otimes \mathbb{Z}_2 \text{Or}_{\text{SU}(m)} \cong \text{Or}_P$ we have

 $$o^\mathcal{F}(P \times_{\text{SU}(n)} \text{SU}(m)) = o^\mathcal{F}(P).$$
3. (Natural.)

- Let $P_\pm \to X_\pm$ be SU(n)-bundles, \mathcal{F}_\pm flag structures on X_\pm.
3. (Natural.)
 ▶ Let \(P_{\pm} \rightarrow X_{\pm} \) be SU\((n)\)-bundles, \(\mathcal{F}_{\pm} \) flag structures on \(X_{\pm} \).
 ▶ Let \(\rho_{\pm} \) be sections of \(P_{\pm} \) outside open subsets \(U_{\pm} \subset X_{\pm} \).
3. (Natural.)

- Let $P_{\pm} \subset X_{\pm}$ be SU(n)-bundles, \mathcal{F}_{\pm} flag structures on X_{\pm}.
- Let ρ_{\pm} be sections of P_{\pm} outside open subsets $U_{\pm} \subset X_{\pm}$.
- Let $\Phi: P_{-}\big|_{U_{-}} \to P_{+}\big|_{U_{+}}$ be an SU(n)-isomorphism over a spin diffeomorphism $\phi: U_{-} \to U_{+}$ preserving ρ_{\pm}.
3. (Natural.)

- Let $P_{\pm} \rightarrow X_{\pm}$ be SU(n)-bundles, \mathcal{F}_{\pm} flag structures on X_{\pm}.

- Let ρ_{\pm} be sections of P_{\pm} outside open subsets $U_{\pm} \subset X_{\pm}$.

- Let $\Phi: P_-|_{U_-} \to P_+|_{U_+}$ be an SU(n)-isomorphism over a spin diffeomorphism $\phi: U_- \to U_+$ preserving ρ_{\pm}.

Under excision $\text{Ex}(\phi, \Phi): \text{Or}_{P_-} \to \text{Or}_{P_+}$ we then have

$$\text{Ex}(\phi, \Phi)(o^{\mathcal{F}-}(P_-)) = (\mathcal{F}_- / \phi^* \mathcal{F}_+)(c_2(P_-)) \cdot o^{\mathcal{F}+}(P_+).$$
Illustration of Excision Axiom

\[P_- \xrightarrow{\text{framing } \rho_-} X_- \xrightarrow{\text{framed isomorphism } \phi: U_- \to U_+} P_+ \xrightarrow{\text{framing } \rho_+} X_+ \]
Proof of Uniqueness for SU(2)-Bundles $P \to X^7$

1. Pick a transverse section s of $E := P \times_{\text{SU}(2)} \mathbb{C}^2$ with zero set $Y^3 = s^{-1}(0)$.
Proof of Uniqueness for SU(2)-Bundles $P \xrightarrow{\phi} X^7$

1. Pick a transverse section s of $E := P \times_{\text{SU}(2)} C^2$ with zero set $Y^3 = s^{-1}(0)$.

2. Then $ds : N_Y \cong E|_Y$, which defines an SU(2)-structure and hence a spin structure on N_Y and Y.
Proof of Uniqueness for SU(2)-Bundles $P \rightarrow X^7$

1. Pick a transverse section s of $E := P \times_{SU(2)} \mathbb{C}^2$ with zero set $Y^3 = s^{-1}(0)$.

2. Then $ds : N_Y \cong E|_Y$, which defines an SU(2)-structure and hence a spin structure on N_Y and Y.

3. Embed $i : Y \hookrightarrow S^7$ and use i^{-1} to define spin structure on Y'.
Proof of Uniqueness for SU(2)-Bundles $P \rightarrow X^7$

1. Pick a transverse section s of $E := P \times_{SU(2)} \mathbb{C}^2$ with zero set $Y^3 = s^{-1}(0)$.
2. Then $ds : N_Y \cong E|_Y$, which defines an SU(2)-structure and hence a spin structure on N_Y and Y.
3. Embed $i : Y \looparrowright S^7$ and use i^{-1} to define spin structure on Y'.
4. Pick a spin isomorphism $\Phi : N_{Y'} \subset S^7 \rightarrow N_Y \subset X$, gives spin diffeomorphism $S^7 \supset U' \xrightarrow{\Phi} U \subset X$.

Proof of Uniqueness for SU(2)-Bundles $P \rightarrow X^7$

1. Pick a transverse section s of $E := P \times_{SU(2)} \mathbb{C}^2$ with zero set $Y^3 = s^{-1}(0)$.

2. Then $ds : N_Y \cong E|_Y$, which defines an SU(2)-structure and hence a spin structure on N_Y and Y.

3. Embed $i : Y \hookrightarrow S^7$ and use i^{-1} to define spin structure on Y'.

4. Pick a spin isomorphism $\Phi : N_{Y'} \subset S^7 \rightarrow N_Y \subset X$, gives spin diffeomorphism $S^7 \supset U' \xrightarrow{\phi} U \subset X$.

5. Set $P' := \phi^* P|_U \cup_{\phi^* s} SU(2) \rightarrow S^7$.
Proof of Uniqueness for SU(2)-Bundles $P \triangleleft X^7$

1. Pick a transverse section s of $E := P \times_{SU(2)} \mathbb{C}^2$ with zero set $Y^3 = s^{-1}(0)$.
2. Then $ds : N_Y \cong E|_Y$, which defines an SU(2)-structure and hence a spin structure on N_Y and Y.
3. Embed $i : Y \hookrightarrow S^7$ and use i^{-1} to define spin structure on Y'.
4. Pick a spin isomorphism $\Phi : N_{Y'} \subset S^7 \rightarrow N_Y \subset X$, gives spin diffeomorphism $S^7 \supset U' \xrightarrow{\phi} U \subset X$.
5. Set $P' := \phi^* P|_U \cup_{\phi^*} SU(2) \triangleleft S^7$.
Proof of Uniqueness for SU(2)- Bundles $P \searrow X^7$

1. Pick a transverse section s of $E := P \times_{SU(2)} \mathbb{C}^2$ with zero set $Y^3 = s^{-1}(0)$.

2. Then $ds : N_Y \cong E|_Y$, which defines an SU(2)-structure and hence a spin structure on N_Y and Y.

3. Embed $i : Y \hookrightarrow S^7$ and use i^{-1} to define spin structure on Y'.

4. Pick a spin isomorphism $\Phi : N_{Y'} \subset S^7 \to N_Y \subset X$, gives spin diffeomorphism $S^7 \supset U' \xrightarrow{\phi} U \subset X$.

5. Set $P' := \phi^* P |_U \cup \phi^* s \ SU(2) \searrow S^7$.

By excision axiom (\mathcal{F}_7 unique flag structure on S^7):

\[
\begin{array}{ccc}
\text{Or}_{P' \searrow S^7} & \xrightarrow{\text{Ex}} & \text{Or}_{P \searrow X} \\
\cup & & \cup \\
\text{o}^{\mathcal{F}_7}(P') & \xrightarrow{} & (-1)^{(\mathcal{F}_7/\phi^* \mathcal{F})[Y]} \cdot \text{o}^{\mathcal{F}}(P)
\end{array}
\]
Since $\pi_6(SU(4)) = \{1\}$, $P' \times_{SU(2)} SU(4)$ is trivializable on S^7.

Since $\pi_6(SU(4)) = \{1\}$, $P' \times_{SU(2)} SU(4)$ is trivializable on S^7. By stabilization and normalization axioms:

$$
\text{Or}_{P' \times_{SU(2)} SU(4)} \searrow S^7 \xrightarrow{\text{stab}} \text{Or}_{P' \searrow S^7}
$$

$$
\circ_{\text{triv}} = o^{F_7}(P' \times_{SU(2)} SU(4)) \xleftarrow{\text{stab}} o^{F_7}(P')
$$
Proof of Uniqueness for SU(2)-Bundles: Continued

Since \(\pi_6 (SU(4)) = \{1\} \), \(P' \times_{SU(2)} SU(4) \) is trivializable on \(S^7 \).

By stabilization and normalization axioms:

\[
\begin{align*}
\text{Or}_{P' \times_{SU(2)} SU(4)} \setminus S^7 & \quad \xrightarrow{\text{stab}} \quad \text{Or}_{P' \setminus S^7} \\
\cup & \\
\circ_{\text{triv}} = \circ^F_7 (P' \times_{SU(2)} SU(4)) & \quad \xrightarrow{} \quad \circ^F_7 (P')
\end{align*}
\]

So uniquely determined by axioms:

\[
\circ^F (E) = \text{Ex} \circ \text{stab}((-1)^{(F_7/\phi^*F)[\gamma]} \cdot \circ_{\text{triv}}) \quad (\ast)
\]
Proof of Existence

- Show that (*) is independent of the choices s, ϕ
 $(i$ and the tubular neighborhoods are unique up to isotopy).

\[
o^F(E) := (-1)(F_7/\phi^*F)[Y] \cdot \text{Ex} \circ \text{stab}(o^{\text{triv}})
\]
Proof of Existence

- Show that (\ast) is independent of the choices s, ϕ (i and the tubular neighborhoods are unique up to isotopy).

\[o^F(E) := (-1)^{F_7/\phi^*F}[Y] \cdot \text{Ex} \circ \text{stab}(o^{\text{triv}}) \]

- Dependence on ϕ reduced to a model calculation for the automorphism of $E_{\text{std}}(N_Y) \to \mathbb{S}(N_Y \oplus \mathbb{R})$ induced by a spin automorphism $\psi: N_Y \to N_Y$. We have calculated $\text{Or}(\psi) = (F/\psi^*F)[Y]$.

Proof of Existence

- Show that \((*)\) is independent of the choices \(s, \phi\) \((i\) and the tubular neighborhoods are unique up to isotopy).

\[
o^\mathcal{F}(E) := (-1)^{\mathcal{F}_7/\phi^*\mathcal{F}}[Y] \cdot \text{Ex} \circ \text{stab}(o^{\text{triv}})
\]

- Dependence on \(\phi\) reduced to a model calculation for the automorphism of \(E_{\text{std}}(N_Y) \rightarrow \mathbb{S}(N_Y \oplus \mathbb{R})\) induced by a spin automorphism \(\psi: N_Y \rightarrow N_Y\). We have calculated \(\text{Or}(\psi) = (\mathcal{F}/\psi^*\mathcal{F})[Y]\).

- Let \(s_0, s_1\) be transverse sections of \(E \rightarrow X\). The two corresponding excision isomorphisms can be deformed into each other \(\implies\) equal by discreteness.
Summary

- Orientation covers $\text{Or}(p) \in \text{Cov}_{\mathbb{Z}_2}(Y)$ behave exactly like $\text{ind}(p) \in KO_0(Y)$, one categorical level up. Here p is an elliptic symbol family on X parameterized by Y.

- A flag structure solves the 'orientation problem' for 7-dimensional twisted Diracians D when $G = SU(n)$.

- Canonical orientations defined by comparing the 'orientation problem' on X to that on S^7 via excision.
Summary

- Orientation covers \(\text{Or}(p) \in \text{Cov}_{\mathbb{Z}_2}(Y) \) behave exactly like \(\text{ind}(p) \in KO^0(Y) \), one categorical level up. Here \(p \) is an elliptic symbol family on \(X \) parameterized by \(Y \).

- A flag structure solves the ‘orientation problem’ for 7-dimensional twisted Diracians \(\mathcal{D}^{\text{Ad}P} \) when \(G = \text{SU}(n) \).
Summary

- Orientation covers $\text{Or}(p) \in \text{Cov}_{\mathbb{Z}_2}(Y)$ behave exactly like $\text{ind}(p) \in KO^0(Y)$, one categorical level up. Here p is an elliptic symbol family on X parameterized by Y.

- A flag structure solves the ‘orientation problem’ for 7-dimensional twisted Diracians $\mathcal{D}^{\text{Ad}P}$ when $G = \text{SU}(n)$.

- Canonical orientations defined by comparing the ‘orientation problem’ on X to that on S^7 via excision.