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1. Preliminaries
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1.1. Conventions.

In this course we only consider the Cauchy problems of nonlinear
wave equations. We will consider functions u(t, x) defined on

R1+n := {(t, x) : t ∈ R and x ∈ Rn},

where t denotes the time and x := (x1, · · · , xn) the space variable.
We sometimes write t = x0 and use

∂0 =
∂

∂t
and ∂j :=

∂

∂x j
for j = 1, · · · , n.

For any multi-index α = (α0, · · · , αn) and any function u(t, x) we
write

|α| := α0 + α1 + · · ·+ αn and ∂αu := ∂α0
0 ∂α1

1 · · · ∂
αn
n u.
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Given any function u(t, x), we use

|∂xu|2 :=
n∑

j=1

|∂ju|2 and |∂u|2 := |∂0u|2 + |∂xu|2.

We will use Einstein summation convention: any term in which an
index appears twice stands for the sum of all such terms as the
index assumes all of a preassigned range of values.

A Greek letter is used for index taking values 0, · · · , n.

A Latin letter is used for index taking values 1, · · · , n.

For instance

bµ∂µu =
n∑

µ=0

bµ∂µu and bj∂ju =
n∑

j=1

bj∂ju.
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1.2. Gronwall’s inequality.

Lemma 1 (Gronwall’s inequality)

Let E , A and b be nonnegative functions defined on [0,T ] with A
being increasing. If

E (t) ≤ A(t) +

∫ t

0
b(τ)E (τ)dτ, 0 ≤ t ≤ T ,

then there holds

E (t) ≤ A(t) exp

(∫ t

0
b(τ)dτ

)
, 0 ≤ t ≤ T .

Proof. Let 0 < t0 ≤ T be a fixed but arbitrary number. Consider
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V (t) := A(t0) +

∫ t

0
b(τ)E (τ)dτ.

Since A is increasing, we have E (t) ≤ V (t) for 0 ≤ t ≤ t0. Thus

d

dt
V (t) = b(t)E (t) ≤ b(t)V (t)

which implies that V (t) ≤ V (0) exp
(∫ t

0 b(τ)dτ
)
. Therefore, by

using V (0) = A(t0), we have

E (t) ≤ V (t) ≤ A(t0) exp

(∫ t

0
b(τ)dτ

)
, 0 ≤ t ≤ t0.

By taking t = t0 we obtain the desired inequality for t = t0. Since
t0 is arbitrary, we complete the proof. �
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1.3. The Sobolev spaces Hs .

For any fixed s ∈ R, Hs := Hs(Rn) denotes the completion of
C∞0 (Rn) with respect to the norm

‖f ‖Hs :=

(∫
Rn

(1 + |ξ|2)s |f̂ (ξ)|2dξ

)1/2

,

where f̂ denotes the Fourier transform of f , i.e.

f̂ (ξ) :=

∫
Rn

e−i〈x ,ξ〉f (x)dx .

We list some properties of Hs as follows:

Hs is a Hilbert space and H0 = L2.
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If s ≥ 0 is an integer, then ‖f ‖Hs ≈
∑
|α|≤s ‖∂αf ‖L2 .

Hs2 ⊂ Hs1 for any −∞ < s1 ≤ s2 <∞.

H−s is the dual space of Hs for any s ∈ R.

Let ∆ :=
∑n

j=1 ∂
2
j be the Laplacian on Rn. Then for any

s, t ∈ R, (I −∆)t/2 : Hs → Hs−t is an isometry.

If s > k + n/2 for some integer k ≥ 0, then Hs ↪→ C k(Rn)
compactly and∑

|α|≤k

‖∂αf ‖L∞ ≤ Cs‖f ‖Hs , ∀f ∈ Hs ,

where Cs is a constant independent of f .

There are many other deeper results on Hs which will be
introduced later on.
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Given integer k ≥ 0, C k([0,T ],Hs) consists of functions
f (t, x) such that

k∑
j=0

max
0≤t≤T

‖∂jt f (t, ·)‖Hs <∞.

Given 1 ≤ p <∞, Lp([0,T ],Hs) consists of functions f (t, x)
such that ∫ T

0
‖f (t, ·)‖pHs dτ <∞.

L∞([0,T ],Hs) can be defined similarly.

Both C k([0,T ],Hs) and Lp([0,T ],Hs) are Banach spaces.
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1.4. Standard linear wave equations.

The classical wave operator on R1+n is

� := ∂2
t −∆,

where ∆ =
∑n

j=1 ∂
2
j is the Laplacian on Rn. Given functions f and

g , the Cauchy problem

�u = 0 on [0,∞)× Rn,

u(0, ·) = f , ∂tu(0, ·) = g
(1)

has been well-understood. We summarize some well-known results
as follows:
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Uniqueness: (1) has at most one solution u ∈ C 2([0,∞)×Rn).

This follows from the general energy estimates derived later.

Existence: If f ∈ C [n/2]+2(Rn) and g ∈ C [n/2]+1(Rn), then
(1) has a unique solution u ∈ C 2([0,∞)× Rn).

In fact, the solution can be given explicitly. For instance,
when n = 1 the solution is given by the D’Alembert formula

u(t, x) =
1

2
(f (x + t) + f (x − t)) +

1

2

∫ x+t

x−t
g(τ)dτ ;

when n = 2 we have

u(t, x) = ∂t

(
t

2π

∫
|y |<1

f (x + ty)√
1− |y |2

dy

)
+

t

2π

∫
|y |<1

g(x + ty)√
1− |y |2

dy ;
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and for n = 3 we have

u(t, x) =
1

4πt2

∫
|y−x |=t

[f (y)− 〈∇f (y), x − y〉+ tg(y)] dσ(y).

Finite speed of propagation: Given (t0, x0) ∈ (0,∞)× Rn,
u(t0, x0) is completely determined by the values of f and g in
the ball B(x0, t0) := {x ∈ Rn : |x − x0| ≤ t0}, i.e. B(x0, t0) is
the domain of dependence of (t0, x0).

We will obtain a more general result by the energy method.

Huygens’ principle: Given (t0, x0) ∈ (0,∞)× Rn. When
n ≥ 3 is odd, u(t0, x0) depends only on the values of f , and g
(and derivatives) on the sphere |x − x0| = t0.
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Decay estimates: When f , g ∈ C∞0 (Rn), u(t, x) satisfies the
decay estimate

|u(t, x)| .


(1 + t)−

n−1
2 , n is odd,

(1 + t)−
n−1

2 (1 + |t − |x ||)−
n−1

2 , n is even.

We will derive these estimates from the Klainerman-Sobolev
inequality without using the explicit formula of solutions.

These decay estimates are crucial in proving global and long
time existence results for nonlinear wave equations.
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2. Energy Estimates
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2.1. Energy estimates in [0,T ]× Rn

We first consider the linear wave operator

�gu := ∂2
t u − g jk(t, x)∂j∂ku, (2)

where (g jk(t, x)) is a C∞ symmetric matrix function defined on
[0,T ]× Rn and is elliptic in the sense that there exist positive
constants 0 < λ ≤ Λ <∞ such that

λ|ξ|2 ≤ g jk(t, x)ξjξk ≤ Λ|ξ|2, ∀ξ ∈ Rn (3)

for all (t, x) ∈ [0,T ]× Rn.
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Lemma 2

Let �g be defined by (2) with g jk satisfying (3). Then for any
u ∈ C 2([0,T ]× Rn) there holds

‖∂u(t, ·)‖L2 ≤ C0

(
‖∂u(0, ·)‖L2 +

∫ t

0
‖�gu(τ, ·)‖L2dτ

)

× exp

C1

∫ t

0

n∑
j ,k=1

‖∂g jk(τ, ·)‖L∞dτ


for 0 ≤ t ≤ T , where C0 and C1 are positive constants depending
only on the ellipticity constants λ and Λ.
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Proof. We consider the “energy”

E (t) :=

∫
Rn

(
|∂tu|2 + g jk∂ju∂ku

)
dx .

It follows from the ellipticity of (g jk) that

E (t) ≈ ‖∂u(t, ·)‖2
L2 . (4)

Direct calculation shows that

∂t

(
|∂tu|2 + g jk∂ju∂ku

)
= 2∂tu∂

2
t u + 2g jk∂j∂tu∂ku + ∂tg

jk∂ju∂ku

= 2∂tu�gu + 2∂j

(
g jk∂tu∂ku

)
− 2∂jg

jk∂tu∂ku + ∂tg
jk∂ju∂ku.
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Therefore, by using the divergence theorem we can obtain

d

dt
E (t) = 2

∫
Rn

∂tu�gudx

+

∫
Rn

(
−2∂jg

jk∂tu∂ku + ∂tg
jk∂ju∂ku

)
dx .

This implies, with Φ(t) :=
n∑

j ,k=1

‖∂g jk‖L∞ , that

d

dt
E (t) ≤ 2‖�gu(t, ·)‖L2‖∂tu(t, ·)‖L2 + 2Φ(t)

∫
Rn

|∂u(t, ·)|2dx .
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In view of (4), it follows that

d

dt
E (t) ≤ 2‖�gu(t, ·)‖L2E (t)1/2 + C Φ(t)E (t).

This gives

d

dt
E (t)1/2 ≤ ‖�gu(t, ·)‖L2 + C Φ(t)E (t)1/2.

Consequently

d

dt

{
E (t)1/2 exp

(
−C

∫ t

0
Φ(τ)dτ

)}
≤ ‖�gu(t, ·)‖L2 exp

(
−C

∫ t

0
Φ(τ)dτ

)
≤ ‖�gu(t, ·)‖L2 .
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Integrating with respect to t gives

E (t)1/2 exp

(
−C

∫ t

0
Φ(τ)dτ

)
≤ E (0)1/2 +

∫ t

0
‖�gu(τ, ·)‖L2dτ.

This together with (4) gives the desired inequality. �

The energy estimate in Lemma 2 can be extended for more general
linear operator

Lu := ∂2
t u − g jk∂j∂ku + b∂tu + bj∂ju + cu,

where g jk , bj , b and c are smooth functions on [0,T ]× Rn with
bounded derivatives, and (g jk) is elliptic in the sense of (3).
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Theorem 3

Let 0 < T <∞ and s ∈ R, Then for any

u ∈ C ([0,T ],Hs+1) ∩ C 1([0,T ],Hs) with Lu ∈ L1([0,T ],Hs)

there holds

∑
|α|≤1

‖∂αu(t, ·)‖Hs ≤ C

∑
|α|≤1

‖∂αu(0, ·)‖Hs +

∫ t

0
‖Lu(τ, ·)‖Hs dτ


for 0 ≤ t ≤ T , where C is a constant depending only on T , s, and
the L∞ bounds of g jk , bj , b, c and their derivatives.
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Proof. For simplicity we consider only s ∈ Z. By an approximation
argument, it suffices to assume that u ∈ C∞0 ([0,T ]× Rn). We
consider three cases.

Case 1: s = 0. We need to establish∑
|α|≤1

‖∂αu(t, ·)‖L2 .
∑
|α|≤1

‖∂αu(0, ·)‖L2 +

∫ t

0
‖Lu(τ, ·)‖L2dτ. (5)

To see this, we first use Lemma 2 to obtain

‖∂u(t, ·)‖L2 . ‖∂u(0, ·)‖L2 +

∫ t

0
‖�gu(τ, ·)‖L2dτ
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From the definition of L it is easy to see that

‖�gu(τ, ·)‖L2 . ‖Lu(τ, ·)‖L2 +
∑
|α|≤1

‖∂αu(τ, ·)‖L2 .

Therefore

‖∂u(t, ·)‖L2 . ‖∂u(0, ·)‖L2 +

∫ t

0
‖Lu(τ, ·)‖L2dτ

+

∫ t

0

∑
|α|≤1

‖∂αu(τ, ·)‖L2dτ. (6)

By the fundamental theorem of Calculus we can write

u(t, x) = u(0, x) +

∫ t

0
∂tu(τ, x)dt.
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Thus it follows from the Minkowski inequality that

‖u(t, ·)‖L2 ≤ ‖u(0, ·)‖L2 +

∫ t

0
‖∂tu(τ, ·)‖L2dτ.

Adding this inequality to (6) gives

∑
|α|≤1

‖∂αu(t, ·)‖L2 .
∑
|α|≤1

‖∂αu(0, ·)‖L2 +

∫ t

0
‖Lu(τ, ·)‖L2dτ

+

∫ t

0

∑
|α|≤1

‖∂αu(τ, ·)‖L2dτ.

An application of the Gronwall inequality then gives (5).
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Case 2: s ∈ N. Let β be any multi-index β satisfying |β| ≤ s. We

apply (5) to ∂βx u to obtain

∑
|α|≤1

‖∂βx ∂αu(t, ·)‖L2 .
∑
|α|≤1

‖∂βx ∂αu(0, ·)‖L2 +

∫ t

0
‖L∂βx u(τ, ·)‖L2dτ

.
∑
|α|≤1

‖∂βx ∂αu(0, ·)‖L2 +

∫ t

0
‖∂βx Lu(τ, ·)‖L2dτ

+

∫ t

0
‖[L, ∂βx ]u(τ, ·)‖L2dτ, (7)

where [L, ∂βx ] := L∂βx − ∂βx L denotes the commutator. Direct
calculation shows that
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[L, ∂βx ]u =
(
∂βx (g jk∂j∂ku)− g jk∂βx ∂j∂ku

)
+
(

b∂βx ∂tu − ∂βx (b∂tu)
)

+
(

bj∂βx ∂ju − ∂βx (bj∂ju)
)

+
(

c∂βx u − ∂βx (cu)
)

from which we can see [L, ∂βx ] is a differential operator of order
≤ |β|+ 1 ≤ s + 1 involving no t-derivatives of order > 1. Thus∣∣∣[L, ∂βx ]u

∣∣∣ . ∑
|γ|≤s

(|∂γx ∂u|+ |∂γx u|) .

Consequently∥∥∥[L, ∂βx ]u
∥∥∥
L2
.
∑
|γ|≤s

(‖∂γx ∂u‖L2 + ‖∂γx u‖L2) .
∑
|α|≤1

‖∂αu‖Hs .
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Combining this inequality with (7) gives

∑
|α|≤1

‖∂βx ∂αu(t, ·)‖L2 .
∑
|α|≤1

‖∂βx ∂αu(0, ·)‖L2 +

∫ t

0
‖∂βx Lu(τ, ·)‖L2dτ

+

∫ t

0

∑
|α|≤1

‖∂αu(τ, ·)‖Hs dτ,

Summing over all β with |β| ≤ s we obtain

∑
|α|≤1

‖∂αu(t, ·)‖Hs .
∑
|α|≤1

‖∂αu(0, ·)‖Hs +

∫ t

0
‖Lu(τ, ·)‖Hs dτ

+

∫ t

0

∑
|α|≤1

‖∂αu(τ, ·)‖Hs dτ.
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By the Gronwall inequality we obtain the estimate for s ∈ N.

Case 3: s ∈ −N. We consider

v(t, ·) := (I −∆x)su(t, ·).

Since −s ∈ N, we can apply the estimate established in Case 2 to
v to derive that∑
|α|≤1

‖∂αv(t, ·)‖H−s .
∑
|α|≤1

‖∂αv(0, ·)‖H−s +

∫ t

0
‖Lv(τ, ·)‖H−s dτ.

We can write

Lv(τ, ·) = (I −∆)sLu(τ, ·) + [L, (I −∆)s ]u(τ, ·)
= (I −∆)sLu(τ, ·) + (I −∆)s [(I −∆)−s , L]v(τ, ·).
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Therefore

‖Lv(τ, ·)‖H−s ≤ ‖Lu(τ, ·)‖Hs + ‖[(I −∆)−s , L]v(τ, ·)‖Hs .

Consequently∑
|α|≤1

‖∂αv(t, ·)‖H−s .
∑
|α|≤1

‖∂αv(0, ·)‖H−s +

∫ t

0
‖Lu(τ, ·)‖Hs dτ

+

∫ t

0
‖[(I −∆)−s , L]v(τ, ·)‖Hs dτ. (8)

It is easy to check [(I −∆)−s , L] is a differential operator of order
≤ −2s + 1 involving no t-derivatives of order > 1. We can write

[(I −∆)−s , L]v =
∑
|α|≤1

∑
|β|,|γ|≤−s

∂γx (Γαβγ∂
β
x ∂

αv),
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where Γαβγ are smooth bounded functions. Therefore∥∥[(I −∆)−s , L]v
∥∥
Hs .

∑
|α|≤1

∑
|β|≤−s

‖∂βx ∂αv‖L2 .
∑
|α|≤1

‖∂αv‖H−s .

Combining this inequality with (8), we obtain

∑
|α|≤1

‖∂αv(t, ·)‖H−s .
∑
|α|≤1

‖∂αv(0, ·)‖H−s +

∫ t

0

‖Lu(τ, ·)‖Hs dτ

+

∫ t

0

∑
|α|≤1

‖∂αv(τ, ·)‖H−s dτ

An application of the Gronwall inequality gives∑
|α|≤1

‖∂αv(t, ·)‖H−s .
∑
|α|≤1

‖∂αv(0, ·)‖H−s +

∫ t

0

‖Lu(τ, ·)‖Hs dτ.

Since ‖∂αv(t, ·)‖H−s = ‖∂αu(t, ·)‖Hs , the proof is complete. �
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2.2. Finite Speed of Propagation

We consider the wave equation

�u := ∂2
t u −∆u = F (t, x , u, ∂u, ∂2u) in [0,∞)× Rn, (9)

where F (t, x , u,p,A) is a smooth function with

F (t, x , 0, 0,A) = 0 for all t, x , and A.

For any fixed (t0, x0) ∈ (0,∞)× Rn, we introduce

Ct0,x0 := {(t, x) : 0 ≤ t ≤ t0 and |x − x0| ≤ t0 − t} (10)

which is called the backward light cone through (t0, x0).
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The following result says that any “disturbance” originating outside

B(x0, t0) := {x ∈ Rn : |x − x0| ≤ t0}

has no effect on the solution within Ct0,x0 .

Theorem 4 (finite speed of propagation)

Let u be a C 2 solution of (9) in Ct0,x0 . If u ≡ ∂tu ≡ 0 on
B(x0, t0), then u ≡ 0 in Ct0,x0 .

Proof. Consider for 0 ≤ t ≤ t0 the function

E (t) :=

∫
B(x0,t0−t)

(
u2 + |ut(t, x)|2 + |∇u(t, x)|2

)
dx

=

∫ t0−t

0

∫
∂B(x0,τ)

(
u2 + |ut |2 + |∇u|2

)
dσdτ.
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We have

d

dt
E (t) = 2

∫
B(x0,t0−t)

(uut + ututt +∇u · ∇ut) dx

−
∫
∂B(x0,t0−t)

(
u2 + |ut |2 + |∇u|2

)
dσ

= 2

∫
B(x0,t0−t)

ut (u +�u) dx + 2

∫
B(x0,t0−t)

div(ut∇u)dx

−
∫
∂B(x0,t0−t)

(
u2 + |ut |2 + |∇u|2

)
dσ.

Using �u = F (t, x , u, ∂u, ∂2u) and the divergence theorem we
have

d

dt
E (t) = 2

∫
B(x0,t0−t)

ut

(
u + F (t, x , u, ∂u, ∂2u)

)
dx

+ 2

∫
∂B(x0,t0−t)

ut∇u · νdσ −
∫
∂B(x0,t0−t)

(
u2 + |ut |2 + |∇u|2

)
dσ,
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where ν denotes the outward unit normal to ∂B(x0, t0 − t). We
have

2|ut∇u · ν| ≤ 2|ut ||∇u| ≤ |ut |2 + |∇u|2.

Consequently

d

dt
E (t) ≤ 2

∫
B(x0,t0−t)

ut

(
u + F (t, x , u, ∂u, ∂2u)

)
dx .

Since F (t, x , 0, 0, ∂2u) = 0, we have

F (t, x , u, ∂u, ∂2u) = F (t, x , u, ∂u, ∂2u)− F (t, x , 0, 0, ∂2u)

=

∫ 1

0

∂

∂s
F (t, x , su, s∂u, ∂2u)ds

=

∫ 1

0

(
∂F

∂u
(t, x , su, s∂u, ∂2u)u + DpF (t, x , su, s∂u, ∂2u) · ∂u

)
ds.
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This gives

|F (t, x , u, ∂u, ∂2u)| ≤
∫ 1

0

∣∣∣∣∂F

∂u
(t, x , su, s∂u, ∂2u)

∣∣∣∣ ds|u|

+

∫ 1

0

∣∣DpF (t, x , su, s∂u, ∂2u)
∣∣ ds|∂u|.

Let C = max{C0,C1}, where

C0 := max
(t,x)∈Ct0,x0

∫ 1

0

∣∣∣∣∂F

∂u
(t, x , su(t, x), s∂u(t, x), ∂2u(t, x))

∣∣∣∣ ds,

C1 := max
(t,x)∈Ct0,x0

∫ 1

0

∣∣DpF (t, x , su(t, x), s∂u(t, x), ∂2u(t, x))
∣∣ ds.

Then
|F (t, x , u, ∂u, ∂2u)| ≤ C (|u|+ |∂u|) .
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Therefore

d

dt
E (t) ≤ 2(1 + C )

∫
B(x0,t0−t)

|ut | (|u|+ |∂u|) dx ≤ 2(1 + C )E (t).

Since u(0, ·) ≡ ut(0, ·) ≡ 0 on B(x0, t0) implies that E (0) = 0, we
have E (t) ≡ 0 for 0 ≤ t ≤ t0. Therefore u ≡ 0 in Ct0,x0 . �
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3. Local Existence Results
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We prove the local existence for Cauchy problem of quasi-linear
wave equations. The proof is based on existence result of linear
equations and the energy estimates.

3.1. Existence result for linear wave equations

Consider first the linear wave equation

Lu = F on [0,T ]× Rn,

u|t=0 = f , ∂tu|t=0 = g ,
(11)

where L is a linear differential operator defined by

Lu := ∂2
t u − g jk∂j∂ku + b∂tu + bj∂ju + cu

in which g jk , bj , b and c are smooth functions on [0,T ]× Rn and
(g jk) is elliptic in the sense of (3).
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The adjoint operator L∗ of L is defined by∫ T

0

∫
Rn

ϕLψdxdt =

∫ T

0

∫
Rn

ψL∗ϕdxdt, ∀ϕ,ψ ∈ C∞0 ((0,T )×Rn).

A straightforward calculation shows that

L∗ϕ = ∂2
t ϕ− ∂j∂k(g jkϕ)− ∂t(bϕ)− ∂j(bjϕ) + cϕ.

If u ∈ C 2([0,T ]× Rn) is a classical solution of (11), then by
integration by parts we have for ϕ ∈ C∞0 ((−∞,T )× Rn) that∫ T

0

∫
Rn

Fϕdxdt =

∫ T

0

∫
Rn

uL∗ϕdxdt −
∫
Rn

ϕ(0, x)g(x)dx

+

∫
Rn

[ϕt(0, x)− (bϕ)(0, x)] f (x)dx . (12)
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Conversely, we can show, if u ∈ C 2([0,T ]× Rn) satisfies (12) for
all ϕ ∈ C∞0 ((−∞,T )× Rn), then u is a classical solution of (11).

We will call a less regular u a weak solution of (11) if it satisfies
(12), where the involved integrals might be understood as duality
pairing in appropriate spaces.

Theorem 5

Let s ∈ R and T > 0. Then for any f ∈ Hs+1(Rn), g ∈ Hs(Rn)
and F ∈ L1([0,T ],Hs(Rn)), the linear wave equation (11) has a
unique weak solution

u ∈ C ([0,T ],Hs+1) ∩ C 1([0,T ],Hs)

in the sense that (12) holds for all ϕ ∈ C∞0 ((−∞,T )× Rn).
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Proof.

1. The uniqueness follows immediately from Theorem 3.

2. We first consider the case that

f = g = 0 and F ∈ C∞0 ([0,T ]× Rn).

Let s ∈ R be any fixed number. we may apply Theorem 3 to
L∗ with t replaced by T − t to derive that

‖ϕ(t, ·)‖H−s .
∫ T

0
‖L∗ϕ(τ, ·)‖H−s−1dτ

for any ϕ ∈ C∞0 ((−∞,T )× Rn)

43/262



Using F we can define on V := L∗C∞0 ((−∞,T )× Rn) a linear
functional `F (·) by

`F (L∗ϕ) =

∫ T

0

∫
Rn

Fϕdxdt, ϕ ∈ C∞0 ((−∞,T )× Rn).

Then we have

|`F (L∗ϕ)| ≤
∫ T

0
‖F (t, ·)‖Hs‖ϕ(t, ·)‖H−s dt

.
∫ T

0
‖L∗ϕ(t, ·)‖H−s−1dt,

i.e.,

|`F (ψ)| ≤
∫ T

0
‖ψ(t, ·)‖H−s−1dt, ∀ψ ∈ V.
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We can view V as a subspace of L1([0,T ],H−s−1). Then, by
Hahn-Banach theorem, `F can be extended to a bounded linear
functional on L1([0,T ],H−s−1). Thus, we can find
u ∈ L∞([0,T ],Hs+1), the dual space of L1([0,T ],H−s−1), such
that

`F (ψ) =

∫ T

0

∫
Rn

uψdxdt, ∀ψ ∈ L1([0,T ],H−s−1).

Therefore, for all ϕ ∈ C∞0 ((−∞,T )× Rn) there holds∫ T

0

∫
Rn

Fϕdxdt = `F (L∗ϕ) =

∫ T

0

∫
Rn

uL∗ϕdxdt

So u is a weak solution.
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By using Lu = F we have

∂t(∂tu)− b∂tu = g jk∂j∂ku − bj∂ju − cu + F ∈ L∞([0,T ],Hs−1).

This implies that ∂tu ∈ L∞([0,T ],Hs−1) and

∂2
t u ∈ L∞([0,T ],Hs−1) ⊂ L∞([0,T ],Hs−2).

Consequently u ∈ C 1([0,T ],Hs−1). Since s can be arbitrary, we
have

u ∈ C 1([0,T ],C∞(Rn)).

Using this and Lu = F we can improve the regularity of u to
u ∈ C∞([0,T ]× Rn).
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3. For the case f , g ∈ C∞0 (Rn) and F ∈ C∞0 ([0,T ]×Rn), we can
reduce it to the previous case by considering ũ = u− (f + tg).

4. We finally consider the general case by an approximation
argument. We may take sequences {fm}, {gm} ⊂ C∞0 (Rn)
and {Fm} ⊂ C∞0 ([0,T )× Rn) such that

‖fm− f ‖Hs+1 + ‖gm− g‖Hs +

∫ T

0
‖Fm(t, ·)−F (t, ·)‖Hs dt → 0

as m→∞. Let um be the solution of (11) with data fm, gm
and Fm. Then um ∈ C∞([0,T ]× Rn) and

um ∈ XT := C ([0,T ],Hs+1) ∩ C 1([0,T ],Hs)
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Since for any m and l there holds

L(um − ul) = Fm − Fl on [0,T ]× Rn,

(um − ul)(0, ·) = fm − fl , ∂t(um − ul)(0, ·) = gm − gl ,

we can use Theorem 3 to derive that∑
|α|≤1

‖Dα(um − ul)‖Hs . ‖fm − fl‖Hs+1 + ‖gm − gl‖Hs

+

∫ T

0
‖Fm(t, ·)− Fl(t, ·)‖Hs dt.

Thus {um} is a Cauchy sequence in XT and there is u ∈ XT such
that ‖um − u‖XT

→ 0 as m→∞. Since um satisfies (12) with f ,
g and F replaced by fm, gm and Fm, we can see that u satisfies
(12) by taking m→∞. �
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3.2. Local existence for quasi-linear wave equations

We next consider the quasi-linear wave equation

∂2
t u − g jk(u, ∂u)∂j∂ku = F (u, ∂u),

u(0, ·) = f , ∂tu(0, ·) = g ,
(13)

where

g jk and F are C∞ functions, and F (0, 0) = 0;

(g jk) is elliptic in the sense that

C0(u,p)|ξ|2 ≤ g jk(u,p)ξjξk ≤ C1(u,p)|ξ|2, ∀ξ ∈ Rn,

where C0(u, p) and C1(u, p) are positive continuous functions
with respect to (u, p).
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Theorem 6

If (f , g) ∈ Hs+1 × Hs for s ≥ n + 2, then there is a T > 0 such
that (13) has a unique solution u ∈ C 2([0,T ]× Rn); moreover

u ∈ L∞([0,T ],Hs+1) ∩ C 0,1([0,T ],Hs).

Proof. 1. We first prove uniqueness. Let u and ũ be two solutions.
Then v := u − ũ satisfies

∂2
t v − g jk(u, ∂u)∂j∂kv = R, v(0, ·) = 0, ∂tv(0, ·) = 0,

where

R := [F (u, ∂u)− F (ũ, ∂ũ)] +
[
g jk(u, ∂u)− g jk(ũ, ∂ũ)

]
∂j∂k ũ.
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It is clear that
|R| ≤ C (|v |+ |∂v |),

where C depends on the bound on |∂2ũ| and the bounds on the
derivatives of g jk and F . In view of Theorem 3, we have∑
|α|≤1

‖∂αv(t, ·)‖L2 .
∫ t

0
‖R(τ, ·)‖L2dτ .

∫ t

0

∑
|α|≤1

‖∂αv(τ, ·)‖L2dτ.

By Gronwall inequality,
∑
|α|≤1‖∂αv‖L2 = 0. Thus v = 0, i.e.

u = ũ.

2. Next we prove the existence. By an approximation argument as
in the proof of Theorem 5 we may assume that f , g ∈ C∞0 (Rn).
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We use the Picard iteration. Let u−1 = 0 and define um, m ≥ 0,
successively by

∂2
t um − g jk(um−1, ∂um−1)∂j∂kum = F (um−1, ∂um−1),

um(0, ·) = f , ∂tum(0, ·) = g .
(14)

By Theorem 5, all um are in C∞([0,∞)×Rn). In what follows, we
will show that {um} converges and the limit is a solution.

Step 1. Consider

Am(t) :=
∑
|α|≤s+1

‖∂αum(t, ·)‖L2 .

We prove that {Am(t)} is uniformly bounded in m and t ∈ [0,T ]
with small T > 0.
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By using (14) it is easy to show that

Am(0) ≤ A0, m = 0, 1, · · ·

for some constant A0 independent of m; in fact A0 can be taken as
the multiple of

‖f ‖Hs+1 + ‖g‖Hs .

We claim that there exist 0 < T ≤ 1 and A > 0 such that

sup
0≤t≤T

Am(t) ≤ A, m = 0, 1, · · · . (15)

We show it by induction on m. Since F (0, 0) = 0, (15) with m = 0
follows from Theorem 3. with A = CA0 for a large C .
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Assume next (15) is true for some m ≥ 0. By Sobolev embedding,

sup
(t,x)∈[0,T ]×Rn

∑
|α|≤s+1−[(n+2)/2]

|∂αum(t, x)| ≤ CAm(t) ≤ CA.

Since s ≥ n + 2, we have s + 1− [(n + 2)/2] ≥ [(s + 3)/2]. Thus

sup
(t,x)∈[0,T ]×Rn

∑
|α|≤(s+3)/2

|∂αum(t, x)| ≤ CA. (16)

By the definition of um+1 we have for any |α| ≤ s that

∂2
t ∂

αum+1 − g jk(um, ∂um)∂j∂k∂
αum+1

= ∂αF (um, ∂um)− [∂α, g jk(um, ∂um)]∂j∂kum+1. (17)
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Observation 1.
[∂α, g jk(um, ∂um)]∂j∂kum+1 is a linear combination of finitely
many terms, each term is a product of derivatives of um or um+1 in
which at most one factor where um or um+1 is differentiated more
than (|α|+ 3)/2 times.

To see this, we note that [∂α, g jk(um, ∂um)]∂j∂kum+1 is a linear
combination of terms

a(um, ∂um)∂α1um · · · ∂αk um∂
β1∂um · · · ∂βl∂um∂

γ∂2um+1,

where |α1|+ · · ·+ |αk |+ |β1|+ · · ·+ |βl |+ |γ| = |α| and
|γ| ≤ |α| − 1.

55/262



If |γ| ≥ (|α| − 1)/2, then

|α1|+ · · ·+ |αk |+ |β1|+ · · ·+ |βl | ≤ (|α|+ 1)/2.

So |αj | ≤ (|α|+ 1)/2 and |βj | ≤ (|α|+ 1)/2 for all αj and βj .

If |γ| < (|α| − 1)/2, then

|α1|+ · · ·+ |αk |+ |β1|+ · · ·+ |βl | ≤ |α|.

So there is at most one index among {α1, · · · , βl} whose
length is > |α|/2.
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Since |α| ≤ s, we have (|α|+ 3)/2 ≤ (s + 3)/2. Using Observation
1, it follows from (16) that∣∣∣[∂α, g jk(um, ∂um)]∂j∂kum

∣∣∣ ≤ CA

( ∑
|β|≤|α|+1

(|∂βum|+ |∂βum+1|) + 1
)

≤ CA

( ∑
|β|≤s+1

(|∂βum|+ |∂βum+1|) + 1
)
.

where CA is a constant depending on A but independent of m. So,
by the induction hypothesis, we have∥∥∥[∂α, g jk(um, ∂um)]∂j∂kum+1

∥∥∥
L2
≤ CA (Am+1(t) + Am(t) + 1)

≤ CA(Am+1(t) + 1), (18)
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Observation 2.
∂αF (um, ∂um) is a linear combination of finitely many terms, each
term is a product of derivatives of um in which at most one factor
where um is differentiated more than |α|/2 + 1 times.

Indeed, we note that ∂αF (um, ∂um) is a linear combination of
terms

a(um, ∂um)∂β1um · · · ∂βk um∂
γ1∂um · · · ∂γl∂um

where |β1|+ · · ·+ |βk |+ |γ1|+ · · ·+ |γl | = |α|. Thus |βj | ≤ |α|/2
and |γj | ≤ |α|/2 except one of the multi-indices.

Using Observation 2, we have from (16) that

|∂αF (um, ∂um)| ≤ CA

( ∑
|β|≤|α|+1

|∂βum|+ 1
)
≤ CA

( ∑
|β|≤s+1

|∂βum|+ 1
)
.
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Therefore, by the induction hypothesis, we have

‖∂αF (um, ∂um)‖L2 ≤ CA (Am(t) + 1) ≤ CA. (19)

In view of Lemma 2, (18) and (19), we have from (17) that

‖∂αum+1(t, ·)‖L2 + ‖∂α∂um+1(t, ·)‖L2

≤ C0

(
‖∂αum+1(0, ·)‖L2 + ‖∂α∂um+1(0, ·)‖L2

+ CA

∫ t

0
(Am+1(τ) + 1)dτ

)
× exp

(
C1

∫ t

0

∑
k

∥∥∥∂j (g jk(um, ∂um)
)

(τ, ·)
∥∥∥
L∞

dτ

)
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Using (16) we have∑
k

∥∥∥∂j (g jk(um, ∂um)
)

(τ, ·)
∥∥∥
L∞
. A.

Summing over all α with |α| ≤ s, we therefore obtain

Am+1(t) ≤ CeCAt
(

Am+1(0) + CAt + CA

∫ t

0
Am+1(τ)dτ

)
.

By Gronwall’s inequality and Am+1(0) ≤ A0 we obtain

Am+1(t) ≤ CeCAt (A0 + CAt) exp
(

tCCAeCA
)

So, if we set A := 2CA0 and take T > 0 small but independent of
m, we obtain Am+1(t) ≤ A for 0 ≤ t ≤ T . This completes the
proof of the claim (15).
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Step 2. We will show that {um} converges to a function u in
C ([0,T ],H1) ∩ C 1([0,T ], L2). To this end, consider

Em(t) :=
∑
|α|≤1

‖∂α(um − um−1)(t, ·)‖L2 .

We have(
∂2
t − g jk(um−1, ∂um−1)∂j∂k

)
(um − um−1) = Rm,

(um − um−1)(0, ·) = 0 = ∂t(um − um−1)(0, ·),

where

Rm :=
[
g jk(um−1, ∂um−1)− g jk(um−2, ∂um−2)

]
∂j∂kum−1

+ [F (um−1, ∂um−1)− F (um−2, ∂um−2)]

61/262



Observing that

|Rm| . (|um−1 − um−2|+ |∂um−1 − ∂um−2|) (1 + |∂2um−1|).

In view of Theorem 3 and (16), we can obtain

Em(t) ≤ C

∫ t

0
Em−1(τ)dτ, m = 0, 1, · · · .

Consequently

Em(t) ≤ (Ct)m

m!
sup

0≤t≤T
E0(t), m = 0, 1, · · · .

This shows that
∑

m Em(t) ≤ C0. Thus {um} is a Cauchy sequence
and converges to some u ∈ XT := C ([0,T ],H1)× C 1([0,T ], L2).
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Step 3. We prove that

u ∈ L∞([0,T ],Hs+1) ∩ C 0,1([0,T ],Hs). (20)

In fact, from (15) we have

‖um(t, ·)‖Hs+1 + ‖∂tum(t, ·)‖Hs ≤ A.

So, for each fixed t, we can find a subsequence of {um}, say {um}
itself, such that

um(t, ·) ⇀ ũ weakly in Hs+1,

∂tum(t, ·) ⇀ w̃ weakly in Hs .

Since um(t, ·)→ u(t, ·) in H1 and ∂tum(t, ·)→ ∂tu(t, ·) in L2, we
must have u(t, ·) = ũ and ∂tu(t, ·) = w̃ .
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By the weakly lower semi-continuity of norms we have

‖u(t, ·)‖Hs+1 ≤ lim inf
m
‖um(t, ·)‖Hs+1 ≤ A,

‖∂tu(t, ·)‖Hs ≤ lim inf
m
‖∂tum(t, ·)‖Hs ≤ A.

We thus obtain (20). By (15) and the same argument we can
further obtain ∑

|α|≤s+1

‖∂αu(t, ·)‖L2 ≤ A

This together with (15), the result in step 2, and the interpolation
inequality gives

sup
0≤t≤T

∑
|α|≤s

‖∂αum(t, ·)− ∂αu(t, ·)‖L2 → 0.
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By Sobolev embedding,

max
(t,x)∈[0,T ]×Rn

∑
|α|≤(s+1)/2

|∂αum(t, x)− ∂αu(t, x)| → 0

Therefore um → u in C 2([0,T ]× Rn) and u is a solution. �

Remark. Theorem 6 holds when (f , g) ∈ Hs+1 × Hs with
s > (n + 2)/2.

The interval of existence for quasi-linear wave equation could be
very small.

Example. For any ε > 0, there exists g ∈ C∞c (Rn) such that

�u = (∂tu)2, u|t=0 = 0, ∂tu|t=0 = g (21)

does not admit a C 2 solution past time ε.

65/262



To see this, we first note that u(t, x) = − log(1− t/ε) solves (46)
with g ≡ 1/ε, and u →∞ as t → ε.

Next we fix an R > ε and choose χ ∈ C∞0 (Rn) with χ(x) = 1 for
|x | ≤ R. Consider (46) with g(x) = χ(x)/ε, which has a solution
on some interval [0,T ]. We claim that the solution will blow up no
later than t = ε.

In fact, let

Ω = {(t, x) : 0 ≤ t < ε, |x |+ t ≤ R}.

By the finite speed of propagation, u inside Ω is completely
determined by the value of g on B(0,R) on which g ≡ 1. Thus
u(t, x) = − log(1− t/ε) in Ω which blows up at t = ε.
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The following theorem gives a criterion on extending solutions
which is important in establishing global existence results.

Theorem 7

If f , g ∈ C∞0 (Rn), then there is T > 0 so that the Cauchy problem
(13) has a unique solution u ∈ C∞([0,T ]× Rn). Let

T∗ := sup {T > 0 : (13) has a solution u ∈ C∞([0,T ]× Rn)} .

If T∗ <∞, then∑
|α|≤(n+6)/2

|∂αu(t, x)| 6∈ L∞([0,T∗)× Rn). (22)

Proof. In the proof of Theorem 6, we have constructed a sequence
{um} ⊂ C∞([0,∞)× Rn) by (14) with u−1 = 0 which converges
in C 2([0,T ]× Rn) to a solution u.
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We also showed that for each s ≥ n + 2 there exist Ts > 0 and
As > 0 such that∑

|α|≤s+1

‖∂αum(t, ·)‖L2 ≤ As , 0 ≤ t ≤ Ts (23)

for all m = 0, 1, · · · . Here the subtle point is that Ts depends on s.

If we could show that (23) holds for all s on [0,T ] with T > 0
independent of s, the argument of Step 3 in the proof of Theorem
6 implies that {um} converges in C∞([0,T ]× Rn) to u.

We now fix s0 ≥ n + 3 and let T > 0 be such that

sup
0≤t≤T

∑
|α|≤s0+1

‖∂αum(t, ·)‖L2 ≤ C0 <∞, m = 0, 1, · · · .
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and show that for all s ≥ s0 there holds

sup
0≤t≤T

∑
|α|≤s+1

‖∂αum(t, ·)‖L2 ≤ Cs <∞, ∀m. (24)

We show (24) by induction on s. Assume that (24) is true for
some s ≥ s0, we show it is also true with s replaced by s + 1. By
the induction hypothesis and Sobolev embedding,

sup
(t,x)∈[0,T ]×Rn

∑
|α|≤s+1−[(n+2)/2]

|∂αum(t, x)| ≤ As <∞, ∀m.

Since s ≥ n + 3, we have [(s + 4)/2] ≤ s + 1− [(n + 2)/2]. So

sup
(t,x)∈[0,T ]×Rn

∑
|α|≤(s+4)/2

|∂αum| ≤ C , ∀m.
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This is exactly (16) with s replaced by s + 1. Same argument there
can be used to derive that

sup
0≤t≤T

∑
|α|≤s+2

‖∂αum(t, ·)‖L2 ≤ Cs+1 <∞, ∀m.

We complete the induction argument and obtain a C∞ solution.

Finally, we show that if T∗ <∞, then (22) holds. Otherwise, if

sup
[0,T∗)×Rn

∑
|α|≤(n+6)/2

|∂αu(t, x)| ≤ C <∞,

then applying the above argument to u we have with s0 = n + 3
that

sup
[0,T∗)×Rn

∑
|α|≤s0+1

‖∂αu(t, ·)‖L2 ≤ C0 <∞
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Repeating the above argument we obtain for all s ≥ s0 that

sup
[0,T∗)×Rn

∑
|α|≤s+1

‖∂αu(t, ·)‖L2 ≤ Cs <∞.

So u can be extend to u ∈ C∞([0,T∗]× Rn).

Since f , g ∈ C∞0 (Rn), by the finite speed of propagation we can
find a number R (possibly depending on T∗) such that u(t, x) = 0
for all |x | ≥ R and 0 ≤ t < T∗. Consequently

u(T∗, x) = ∂tu(T∗, x) = 0 when |x | ≥ R.

Thus, u(T∗, x) and ∂tu(T∗, x) are in C∞0 (Rn), and can be used as
initial data at t = T∗ to extend u beyond T∗ by the local existence
result. This contradicts the definition of T∗. �

71/262



4. Klainerman-Sobolev inequality
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We turn to global existence of Cauchy problems for nonlinear wave
equations

�u = F (u, ∂u).

This requires good decay estimates on |u(t, x)| for large t. Recall
the classical Sobolev inequality

|f (x)| ≤ C
∑

|α|≤(n+2)/2

‖∂αf ‖L2 , ∀x ∈ Rn

which is very useful. However, it is not enough for the purpose. To
derive good decay estimates for large t, one should replace ∂f by
Xf with suitable vector fields X that exploits the structure of
Minkowski space. This leads to Klainerman inequality of Sobolev
type.
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4.1. Invariant vector fields in Minkowski space

We use x = (x0, x1, · · · , xn) to denote the natural coordinates
in R1+n, where x0 = t denotes time variable.

We use Einstein summation convention. A Greek letter is used
for index taking values 0, 1, · · · , n.

A vector field X in R1+n is a first order differential operator of
the form

X =
n∑

i=0

Xµ ∂

∂xµ
= Xµ∂µ,

where Xµ are smooth functions. We will identify X with (Xµ).

The collection of all vector fields on R1+n is called the
tangent space of R1+n and is denoted by TR1+n.
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For any two vector fields X = Xµ∂µ and Y = Y µ∂µ, one can
define the Lie bracket

[X ,Y ] := XY − YX .

Then

[X ,Y ] = (Xµ∂µ) (Y ν∂ν)− (Y ν∂ν) (Xµ∂µ)

= XµY ν∂µ∂ν + Xµ (∂µY ν) ∂ν − Y νXµ∂ν∂µ − Y ν (∂νXµ) ∂µ

= (Xµ∂µY ν − Y µ∂µX ν) ∂ν = (X (Y µ)− Y (Xµ)) ∂µ.

So [X ,Y ] is also a vector field.

A linear mapping η : TR1+n → R is called a 1-form if

η(fX ) = f η(X ), ∀f ∈ C∞(R1+n),X ∈ TR1+n.
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For each µ = 0, 1, · · · , n, we can define the 1-form dxµ by

dxµ(X ) = Xµ, ∀X = Xµ∂µ ∈ TR1+n.

Then for any 1-form η we have

η(X ) = Xµη(∂µ) = ηµdxµ(X ), where ηµ := η(∂µ).

Thus any 1-form in R1+n can be written as η = ηµdxµ with
smooth functions ηµ. We will identify η with (ηµ).

A bilinear mapping T : TR1+n × TR1+n → R is called a
(covariant) 2-tensor field if for any f ∈ C∞(R1+n) and
X ,Y ∈ TR1+n there holds

T (fX ,Y ) = T (X , fY ) = fT (X ,Y ).
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It is called symmetric if T (X ,Y ) = T (Y ,X ) for all vector
fields X and Y .

Let (mµν) = diag(−1, 1, · · · , 1) be the (1 + n)× (1 + n)
diagonal matrix. We define m : TR1+n × TR1+n → R by

m(X ,Y ) := mµνXµY ν

for all X = Xµ∂µ and Y = Y µ∂µ in TR1+n. It is easy to
check m is a symmetric 2-tensor field on R1+n. We call m the
Minkowski metric on R1+n. Clearly

m(X ,X ) = −
(
X 0
)2

+
(
X 1
)2

+ · · ·+ (X n)2 .
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A vector field X in (R1+n,m) is called space-like, time-like, or
null if

m(X ,X ) > 0, m(X ,X ) < 0, or m(X ,X ) = 0

respectively.

In (R1+n,m) one can define the Laplace-Beltrami operator
which turns out to be the D’Alembertian

� = mµν∂µ∂ν , where (mµν) := (mµν)−1.

The energy estimates related to �u = 0 can be derived by
introducing the so called energy-momentum tensor. To see
how to write down this tensor, we consider a vector field
X = Xµ∂µ with constant Xµ.
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Then for any smooth function u we have

(Xu)�u = X ρ∂ρu mµν∂µ∂νu

= ∂µ (X ρmµν∂νu∂ρu)− X ρmµν∂µ∂ρu∂νu.

Using the symmetry of (mµν) we can obtain

X ρmµν∂µ∂ρu∂νu = ∂ρ

(
1

2
X ρmµν∂µu∂νu

)
.

Therefore (Xu)�u = ∂ν
(
Q[u]νµXµ

)
, where

Q[u]νµ = mνρ∂ρu∂µu − 1

2
δνµ (mρσ∂ρu∂σu)

in which δνµ denotes the Kronecker symbol, i.e. δνµ = 1 when
µ = ν and 0 otherwise.
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This motivates to introduce the symmetric 2-tensor

Q[u]µν := mµρQ[u]ρν = ∂µu∂νu − 1

2
mµν (mρσ∂ρu∂σu)

which is called the energy-momentum tensor associated to
�u = 0. Then for any vector fields X and Y we have

Q[u](X ,Y ) = (Xu)(Yu)− 1

2
m(X ,Y )m(∂u, ∂u)

The divergence of the energy-momentum tensor can be
calculated as

mµν∂µQ[u]νρ = mµν∂µ

(
∂νu∂ρu − 1

2
mνρ (mση∂σu∂ηu)

)
= mµν∂µ∂νu∂ρu = (�u)∂ρu.
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Let X be a vector field. Using Q[u] we can introduce the
1-form

Pµ := Q[u]µνX ν .

Then we have

mµν∂µPν = mµν∂µ (Q[u]νρX ρ)

= mµν∂µQ[u]νρX ρ + mµνQ[u]νρ∂µX ρ

= �u ∂ρu X ρ + mµνQ[u]νρm
ρη∂µXη

= (�u)Xu +
1

2
Q[u]µρ (∂µXρ + ∂ρXµ) .

where Q[u]µν = mµρmσνQ[u]ρσ.
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For a vector field X , we define

(X )πµν := ∂µXν + ∂νXµ

which is called the deformation tensor of X with respect to m.
Then we have

∂µ(mµνPν) = (�u)Xu +
1

2
Q[u]µν (X )πµν . (25)

Assume that u vanishes for large |x | at each t. For any
t0 < t1, we integrate ∂µ(mµνPν) over [t0, t1]× Rn and note
that ∂t is the future unit normal to each slice {t} × Rn, we
obtain∫∫
[t0,t1]×Rn

∂µ(mµνPν)dxdt =

∫
{t=t1}

Q[u](X , ∂t)dx −
∫
{t=t0}

Q[u](X , ∂t)dx .
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Therefore, we obtain the useful identity∫
{t=t1}

Q[u](X , ∂t)dx =

∫
{t=t0}

Q[u](X , ∂t)dx +

∫∫
[t0,t1]×Rn

�u · Xudxdt

+
1

2

∫∫
[t0,t1]×Rn

Q[u]µν (X )πµνdxdt. (26)

By taking X = ∂t in (26), noting (∂t)π = 0 and

Q[u](∂t , ∂t) =
1

2

(
|∂tu|2 + |∇u|2

)
,

we obtain for E (t) = 1
2

∫
{t}×Rn(|∂tu|2 + |∇u|2)dx the identity

E (t1) = E (t0) +

∫∫
[t0,t1]×Rn

�u ∂tudxdt.
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Starting from here, we can easily derive the energy estimate.

The identity (26) can be significantly simplified if (X )π = 0. A
vector field X = Xµ∂µ in (R1+n,m) is called a Killing vector
field if (X )π = 0, i.e.

∂µXν + ∂νXµ = 0 in R1+n.

We can determine all Killing vector fields in (R1+n,m). Write
πµν = (X )πµν , Then

∂ρπµν = ∂ρ∂µXν + ∂ρ∂νXµ,

∂µπνρ = ∂µ∂νXρ + ∂µ∂ρXν ,

∂νπρµ = ∂ν∂ρXµ + ∂ν∂µXρ.

Therefore

∂µπνρ + ∂νπρµ − ∂ρπµν = 2∂µ∂νXρ.
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If X is a Killing vector field, then ∂µ∂νXρ = 0 for all µ, ν, ρ.
Thus each Xρ is an affine function, i.e. there are constants
aρν and bρ such that

Xρ = aρνxν + bρ.

Using again 0 = ∂µXν + ∂νXµ, we obtain aµν = −aνµ. Thus

X = Xµ∂µ = mµνXν∂µ = mµν (aνρxρ + bν) ∂µ

=
n∑
ν=0

(∑
ρ<ν

+
∑
ρ>ν

)
aνρxρmµν∂µ + mµνbν∂µ

=
n∑
ν=0

∑
ρ<ν

aνρxρmµν∂µ +
n∑
ρ=0

∑
ν<ρ

aνρxρmµν∂µ + mµνbν∂µ

=
n∑
ν=0

∑
ρ<ν

(aνρxρmµν∂µ + aρνxνmµρ∂µ) + mµνbν∂µ
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In view of aρν = −aνρ, we therefore obtain

X =
n∑
ν=0

∑
ρ<ν

aνρ (xρmµν∂µ − xνmµρ∂µ) + mµνbν∂µ

This shows that X is a linear combination of ∂µ and Ωµν ,
where

Ωµν := (mρµxν −mρνxµ) ∂ρ.

Thus we obtain the following result on Killing vector fields.

Proposition 8

Any Killing vector field in (R1+n,m) can be written as a linear
combination of the vector fields ∂µ, 0 ≤ µ ≤ n and

Ωµν = (mρµxν −mρνxµ) ∂ρ, 0 ≤ µ < ν ≤ n.
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Since (mµν) = diag(−1, 1, · · · , 1), the vector fields {Ωµν}
consist of the following elements

Ω0i = x i∂t + t∂i , 1 ≤ i ≤ n,

Ωij = x j∂i − x i∂j , 1 ≤ i < j ≤ n.

When (X )πµν = f mµν for some function f , the identity (26)
can still be modified into a useful identity. To see this, we use
(25) to obtain

∂µ(mµνPν) = (�u)Xu +
1

2
f mµνQ[u]µν

= (�u)Xu +
1− n

4
f mµν∂µu∂νu.
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We can write

f mµν∂µu∂νu = mµν∂µ(fu∂νu)−mµνu∂µf ∂νu − fu�u

= mµν∂µ(fu∂νu)−mµν∂ν

(
1

2
u2∂µf

)
+

1

2
u2�f − fu�u

= mµν∂µ

(
fu∂νu − 1

2
u2∂ν f

)
+

1

2
u2�f − fu�u

Therefore, by introducing

P̃µ := Pµ +
n − 1

4
fu∂µu − n − 1

8
u2∂µf

we obtain

∂µ(mµνP̃ν) = �u

(
Xu +

n − 1

4
fu

)
− n − 1

8
u2�f .
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By integrating over [t0, t1]× Rn as before, we obtain

Theorem 9

If X is a vector field in (R1+n,m) with (X )π = f m, then for any
smooth function u vanishing for large |x | there holds∫

t=t1

Q̃(X , ∂t)dx =

∫
t=t0

Q̃(X , ∂t)dx − n − 1

8

∫∫
[t0,t1]×Rn

u2�fdxdt

+

∫∫
[t0,t1]×Rn

(
Xu +

n − 1

4
fu

)
�udxdt,

where t0 ≤ t1 and

Q̃(X , ∂t) := Q(X , ∂t) +
n − 1

4

(
fu∂tu −

1

2
u2∂t f

)
.
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A vector field X = Xµ∂µ in (R1+n,m) is called conformal
Killing if there is a function f such that (X )π = f m, i.e.
∂µXν + ∂νXµ = f mµν .

Any Killing vector field is conformal Killing. However, there
are vector fields which are conformal Killing but not Killing.

(i) Consider the vector field

L0 =
n∑
µ=0

xµ∂µ = xµ∂µ.

we have (L0)µ = xµ and so (L0)µ = mµνxν . Consequently

(L0)πµν = ∂µ(L0)ν + ∂ν(L0)µ = ∂µ(mνηxη) + ∂ν(mµηxη)

= mνηδ
η
µ + mµηδ

η
ν = 2mµν .

Therefore L0 is conformal Killing and (L0)π = 2m.
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(ii) For each fixed µ = 0, 1, · · · , n consider the vector field

Kµ := 2mµνxνxρ∂ρ −mηνxηxν∂µ.

We have (Kµ)ρ = 2mµνxνxρ −mηνxηxνδρµ. Therefore

(Kµ)ρ = mρη(Kµ)η = 2mρηmµνxνxη −mρµmνηxνxη.

By direct calculation we obtain

(Kµ)πρη = ∂ρ(Kµ)η + ∂η(Kµ)ρ = 4mµνxνmρη.

Thus each Kµ is conformal Killing and (Kµ)π = 4mµνxνm.
The vector field K0 is due to Morawetz (1961).

All these conformal Killing vector fields can be found by
looking at X = Xµ∂µ with Xµ being quadratic.
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We can determine all conformal Killing vector fields in
(R1+n,m) when n ≥ 2.

Proposition 10

Any conformal Killing vector field in (R1+n,m) can be written as a
linear combination of the vector fields

∂µ, 0 ≤ µ ≤ n,

Ωµν = (mρµxν −mρνxµ)∂ρ, 0 ≤ µ < ν ≤ n,

L0 =
n∑

µ=0

xµ∂µ,

Kµ = mµνxνxρ∂ρ −mρνxρxν∂µ, µ = 0, 1, · · · , n.
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Proof. Let X be conformal Killing, i.e. there is a function f such
that

(X )πµν := ∂µXν + ∂νXµ = f mµν . (27)

We first show that f is an affine function. Recall that

2∂µ∂νXρ = ∂µπνρ + ∂νπρµ − ∂ρπµν .

Therefore

2∂µ∂νXρ = mνρ∂µf + mρµ∂ν f −mµν∂ρf .

This gives

2�Xρ = 2mµν∂µ∂νXρ = (1− n)∂ρf . (28)
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In view of (27), we have

(n + 1)f = 2mµν∂µXν

This together with (28) gives

(n + 1)�f = 2mµν∂µ�Xν = (1− n)mµν∂µ∂ν f = (1− n)�f .

So �f = 0. By using again (28) and (27) we have

(1− n)∂µ∂ν f =
1− n

2
(∂µ∂ν f + ∂ν∂µf ) = ∂µ�Xν + ∂ν�Xµ

= � (∂µXν + ∂νXµ) = mµν�f = 0.

Since n ≥ 2, we have ∂µ∂ν f = 0. Thus f is an affine function, i.e.
there are constants aµ and b such that f = aµxµ + b.
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Consequently
(X )π = (aµxµ + b)m.

Recall that (L0)π = 2m and (Kµ)π = 4mµνxνm. Therefore, by
introducing the vector field

X̃ := X − 1

2
bL0 −

1

4
mµνaνKµ,

we obtain

(X̃ )π = (X )π − 1

2
b (L0)π − 1

4
mµνaν

(Kµ)π = 0.

Thus X̃ is Killing. We may apply Proposition 8 to conclude that X̃
is a linear combination of ∂µ and Ωµν . The proof is complete. �
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The formulation of Klainerman inequality involves only the
constant vector fields

∂µ, 0 ≤ µ ≤ n

and the homogeneous vector fields

L0 = xρ∂ρ,

Ωµν = (mρµxν −mρνxµ) ∂ρ, 0 ≤ µ < ν ≤ n.

There are m + 1 such vector fields, where m = (n+1)(n+2)
2 . We will

use Γ to denote any such vector field, i.e. Γ = (Γ0, · · · , Γm) and
for any multi-index α = (α0, · · · , αm) we adopt the convention
Γα = Γα0

0 · · · Γαm
m .
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Lemma 11 (Commutator relations)

Among the vector fields ∂µ, Ωµν and L0 we have the commutator
relations:

[∂µ, ∂ν ] = 0,

[∂µ, L0] = ∂µ,

[∂ρ,Ωµν ] =
(
mσµδνρ −mσνδµρ

)
∂σ,

[Ωµν ,Ωρσ] = mσµΩρν −mρµΩσν + mρνΩσµ −mσνΩρµ,

[Ωµν , L0] = 0.

Therefore, the commutator between ∂µ and any other vector field
is a linear combination of ∂ν , and the commutator of any two
homogeneous vector fields is a linear combination of homogeneous
vector fields.
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Proof. These identity can be checked by direct calculation. As an
example, we derive the formula for [Ωµν ,Ωρσ]. Recall that

Ωµν = (mηµxν −mηνxµ) ∂η.

Therefore

[Ωµν ,Ωρσ] = Ωµν (mηρxσ −mησxρ) ∂η − Ωρσ (mηµxν −mηνxµ) ∂η

= (mγµxν −mγνxµ)
(
mηρδσγ −mησδργ

)
∂η

− (mγρxσ −mγσxρ)
(
mηµδνγ −mηνδµγ

)
∂η

= mσµ (mηρxν −mηνxρ) ∂η −mρµ (mησxν −mηνxσ) ∂η

+ mρν (mησxµ −mηµxσ) ∂η −mσν (mηρxµ −mηµxρ) ∂η

= mσµΩρν −mρµΩσν + mρνΩσµ −mσνΩρµ.

This shows the result. �
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Lemma 12

For any 0 ≤ µ, ν ≤ n there hold

[�, ∂µ] = 0, [�,Ωµν ] = 0, [�, L0] = 2�

Consequently, for any multiple-index α there exist constants cαβ
such that

�Γα =
∑
|β|≤|α|

cαβΓβ�. (29)

Proof. Direct calculation. �

Let Λ := {(t, x) : t = |x |} be the light cone. The following result
says that the homogeneous vector fields span the tangent space of
R1+n

+ at any point outside Λ.

99/262



Lemma 13

Let r = |x |. In R1+n
+ \ {0} there hold

(t − r)∂ =
∑

Γ

aΓ(t, x)Γ,

where the sum involves only the homogeneous vector fields, the
coefficients are smooth, homogeneous of degree zero, and satisfies,
for any multi-index α, the bounds

|∂αaΓ(t, x)| ≤ Cα(t + |x |)−|α|.

Proof. It suffices to show that

(t2 − r 2)∂j = tΩ0j + x iΩij − x jL0, j = 1, · · · , n,
(t2 − r 2)∂t = tL0 − x iΩ0i ,
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where we used Einstein summation convention, e.g. x iΩij means∑n
i=1 x iΩij . To see these identities, we use the definitions of L0,

Ω0i and Ωij to obtain

x iΩ0i = r 2∂t + tx i∂i = r 2∂t + t(L0 − t∂t) = (r 2 − t2)∂t + tL0,

x iΩij = x jx i∂i − r 2∂j = x j(L0 − t∂t)− r 2∂j

= x jL0 − t(Ω0j − t∂j)− t2∂j = x jL0 − tΩ0j + (t2 − r 2)∂j .

The proof is thus complete. �

Let ∂r := r−1
∑n

i=1 x i∂i . We have from the definition of L0 and
Ω0i that

L0 = t∂t + r∂r and x iΩ0i = r 2∂t + rt∂r .
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Therefore

rL0 −
t

r
x iΩ0i = (r 2 − t2)∂r .

This gives the following result.

Lemma 14

Let ∂r := r−1
∑n

i=1 x i∂i . Then in R1+n
+ \ {0} there holds

(t − r)∂r = a0(t, x)L0 +
n∑

i=1

ai (t, x)Ω0i ,

where ai are smooth, homogenous of degree zero, and satisfies for
any multi-index α the bounds of the form

|∂αai (t, x)| ≤ Cα(t + |x |)−|α|

whenever |x | > δt for some δ > 0.
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4.2. Klainerman-Sobolev inequality

It is now ready to state the Klainerman inequality of Sobolev type,
which will be used in the proof of global existence.

Theorem 15 (Klainerman)

Let u ∈ C∞([0,∞)× Rn) vanish when |x | is large. Then

(1 + t + |x |)n−1(1 + |t − |x ||)|u(t, x)|2 ≤ C
∑
|α|≤ n+2

2

‖Γαu(t, ·)‖2
L2

for t > 0 and x ∈ Rn, where C depends only on n.

In order to prove Theorem 15, we need some localized version of
Sobolev inequality.
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Lemma 16

Given δ > 0, there is Cδ such that for all f ∈ C∞(Rn) there holds

|f (0)|2 ≤ Cδ
∑

|α|≤(n+2)/2

∫
|y |<δ

|∂αf (y)|2dy .

We can take Cδ = C (1 + δ−n−2) with C depending only on n.

Proof. Take χ ∈ C∞0 (Rn) with supp(χ) ⊂ {|y | ≤ 1} and χ(0) = 1,
and apply the Sobolev inequality to the function

χδ(y)f (y), where χδ(y) := χ(y/δ),

to obtain

|f (0)|2 ≤ C
∑

|α|≤(n+2)/2

∫
Rn

|∂α(χδ(y)f (y))|2dy .
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It is easy to see |∂αχδ(y)| ≤ Cαδ
−|α| for any multi-index α. Since

supp(χδ) ⊂ {y : |y | ≤ δ}, we have

|f (0)|2 ≤ C (1 + δ−n−2)
∑

|α|≤(n+2)/2

∫
|y |≤δ

|∂αf (y)|2dy .

The proof is complete. �

Observe that, when restricted to Sn−1, each Ωij , 1 ≤ i < j ≤ n, is
a tangent vector to Sn−1 because it is orthogonal to the normal
vector there. Moreover, one can show that {Ωij : 1 ≤ i < j ≤ n}
spans the tangent space at any point of Sn−1. Therefore, by using
local coordinates on Sn−1, we can obtain the following result.
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Lemma 17

(a) If u ∈ C∞(Sn−1), then

|u(ω)|2 ≤ C
∑
|α|≤ n+1

2

∫
Sn−1

|(∂αη u)(η)|2dσ(η), ∀ω ∈ Sn−1,

where ∂αη = Ωα1
12 · · ·Ω

αµ
n−1,n with µ = n(n − 1)/2.

(b) Given δ > 0, for all v ∈ C∞(R× Sn−1)

|v(q, ω)|2 ≤ Cδ
∑

j+|α|≤ n+2
2

∫
|p|<δ

∫
η∈Sn−1

|∂jq∂αη v(q+p, η)|2dσ(η)dp

where supδ≥δ0
Cδ <∞ for all δ0 > 0.
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Proof of Theorem 15. If t + |x | ≤ 1, the Sobolev inequality in
Lemma 16 implies the inequality with Γ taking as ∂µ, 0 ≤ µ ≤ n.
In what follows, we assume t + |x | > 1.

Case 1. |x | ≤ t
2 or |x | ≥ 3t

2 . We first apply the Sobolev inequality
in Lemma 16 to the function y → u(t, x + (t + |x |)y) to obtain

|u(t, x)|2 ≤ C
∑

|α|≤(n+2)/2

∫
|y |<1/8

∣∣∂αy (u(t, x + (t + |x |)y))
∣∣2 dy

= C
∑

|α|≤(n+2)/2

(t + |x |)2|α|−n
∫
|y |< t+|x|

8

|(∂αx u)(t, x + y)|2dy

We will use Lemma 13 to control (∂αx u)(t, x + y) in terms of
(Γαu)(t, x + y) with Γ being homogeneous vector fields. This
requires (t, x + y) to be away from the light cone.
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We claim that

|t − |x + y || ≥ 3

40
(t + |x |) if |y | < 1

8
(t + |x |). (30)

Using this claim and Lemma 13 we have for |y | < (t + |x |)/8 that

|(∂αx u)(t, x + y)| . (t + |x |)−|α|
∑

1≤|β|≤|α|

∣∣∣(Γβu)(t, x + y)
∣∣∣ .

Therefore

(t + |x |)n|u(t, x)|2 .
∑

|α|≤(n+2)/2

∫
|y |<(t+|x |)/8

|(Γαu)(t, x + y)|2 dy

.
∑

|α|≤(n+2)/2

‖Γαu(t, ·)‖2
L2 .
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We show the claim (30). When |x | ≥ 3t/2, we have

5

2
t < t + |x | < 5

3
|x |.

So for |y | < (t + |x |)/8 there holds

|t−|x + y || ≥ |x |− |y |− t ≥
(

5

5
− 1

8
− 2

5

)
(t + |x |) =

3

40
(t + |x |).

On the other hand, when |x | < t/2 we have 3|x | < t + |x | < 3
2 t.

So for |y | < (t + |x |)/8 there holds

|t−|x + y || ≥ t−|x |− |y | ≥
(

2

3
− 1

3
− 1

8

)
(t + |x |) =

5

24
(t + |x |).
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Case 2. t/2 ≤ |x | ≤ 3t/2.

Since t + |x | > 1, we always have t > 2/5 and |x | > 1/3. We use
polar coordinate x = rω with r > 0 and ω ∈ Sn−1 and introduce

q = r − t

which is called the optical function. Then the light cone {t = |x |}
corresponds to q = 0. We define the function

v(t, q, ω) := u(t, (t + q)ω) (= u(t, x))

It is easy to show that

∂qv = ∂ru, q∂qv = (r − t)∂r , ∂αωv = ∂αωu. (31)
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Since t/2 ≤ |x | ≤ 3t/2⇐⇒ |q| < t/2, it suffices to show that

tn−1(1 + |q0|)|v(t, q0, ω)|2 .
∑

|α|≤(n+2)/2

‖Γαu(t, ·)‖2
L2 (32)

for all |q0| < t/2 and ω ∈ Sn−1.

We first consider |q0| ≤ 1. By the localized Sobolev inequality
given in Lemma 17 on R× Sn−1, we have

|v(t,q0, ω)|2 .
∫
|q|< t

4

∫
Sn−1

∑
j+|α|≤ n+2

2

|∂jq∂αη v(t, q0 + q, η)|2dσ(η)dq

.
∫
|q|< t

4

∫
Sn−1

∑
j+|α|≤ n+2

2

|(∂jrΓαu)(t, (t + q0 + q)η)|2dσ(η)dq,

where Γ denotes any vector fields Ωij , 1 ≤ i < j ≤ n.
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Let r := t + q0 + q. Then t/4 ≤ r ≤ 7t/4. Thus

|v(t, q0, ω)|2 . t1−n
∫ 7t

4

t
4

∫
Sn−1

∑
j+|α|≤ n+2

2

|(∂jrΓαu)(t, rη)|2rn−1dσ(η)dr

. t1−n
∫

t
4
≤|y |≤ 7t

4

∑
j+|α|≤ n+2

2

|∂jrΓαu(t, y)|2dy .

Since |y | > t
4 ≥

1
10 and ∂r = yk

|y |∂k , we have |∂jru| .
∑
|β|≤j |∂βu|.

So

tn−1|v(t, q0, ω)|2 .
∫
Rn

∑
|α|≤ n+2

2

|Γαu(t, y)|2dy .

We obtain (32) when |q0| ≤ 1.

112/262



Next consider the case 1 ≤ |q0| < t/2. We choose χ ∈ C∞0 (−1
2 ,

1
2 )

with χ(0) = 1, and define

Vq0(t, q, ω) := χ((q − q0)/q0)v(t, q, ω).

Then Vq0(t, q0, ω) = v(t, q0, ω) and

Vq0(t, q, ω) = 0 if |q − q0| >
1

2
|q0|.

In order to get the factor |q0| in (32), we apply Sobolve inequality
to the function (q, η) ∈ R× Sn−1 → Vq0(t, q0 + q0q, η) to obtain

|v(t, q0, ω)|2 = |Vq0(t, q0, ω)|2

.
∫
|q|≤ 1

2

∫
Sn−1

∑
j+|α|≤ n+2

2

∣∣∂jq∂αη (Vq0(t, q0 + q0q, η))
∣∣2 dσ(η)dq
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Consequently

|v(t, q0, ω)|2

≤ C

∫
|q|≤ 1

2

∫
Sn−1

∑
j+|α|≤ n+2

2

∣∣((q0∂q)j∂αη Vq0

)
(t, q0 + q0q, η)

∣∣2 dσ(η)dq

= C |q0|−1

∫
|q−q0|≤

|q0|
2

∫
Sn−1

∑
j+|α|≤ n+2

2

∣∣(q0∂q)j∂αη Vq0(t, q, η)
∣∣2 dσ(η)dq.

Since
∣∣(q0∂q)j [χ((q − q0)/q0)]

∣∣ . 1, we have for |q| ∼ |q0| that

∣∣(q0∂q)j∂αη Vq0(t, q, η)
∣∣ . j∑

k=1

∣∣∣(q0∂q)k∂αη v(t, q, η)
∣∣∣
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Therefore

|q0||v(t, q0, ω)|2

.
∫
|q0|

2
≤|q|≤ 3|q0|

2

∫
Sn−1

∑
j+|α|≤ n+2

2

∣∣(q0∂q)j∂αη v(t, q, η)
∣∣2 dσ(η)dq.

For |q| ∼ |q0|, we have

∣∣(q0∂q)j∂αη v
∣∣ . ∣∣qj∂jq∂

α
η v
∣∣ . j∑

k=1

∣∣∣(q∂q)k∂αη v
∣∣∣ .

Hence, by using |q0| < t/2,

|q0||v(t, q0, ω)|2 .
∫
|q|≤ 3t

4

∫
Sn−1

∑
j+|α|≤ n+2

2

∣∣(q∂q)j∂αη v(t, q, η)
∣∣2 dσ(η)dq.
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Recall (31). We have with Γ denoting Ωij , 1 ≤ i < j ≤ n, that

|q0||v(t, q0, ω)|2

.
∫
|q|≤ 3t

4

∫
Sn−1

∑
j+|α|≤ n+2

2

∣∣(q∂r )jΓαu(t, (t + q)η)
∣∣2 dσ(η)dq

.
∫
r≥ t

4

∫
Sn−1

∑
j+|α|≤ n+2

2

∣∣((r − t)∂r )jΓαu(t, rη)
∣∣2 dσ(η)dr

. t1−n
∫
r≥ t

4

∫
Sn−1

∑
j+|α|≤ n+2

2

∣∣((r − t)∂r )jΓαu(t, rη)
∣∣2 rn−1dσ(η)dr

. t1−n
∫
|y |≥ t

4

∑
j+|α|≤ n+2

2

∣∣((r − t)∂r )jΓαu(t, y)
∣∣2 dy . (33)
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Since |y | > t/4 and t > 2/5, Lemma 14 gives

|((r − t)∂r )ju(t, y)| .
∑
|α|≤j

|Γαu(t, y)|

where the sum only involves the homogeneous vector fields Γ = L0

and Ωµν , 0 ≤ µ < ν ≤ n. Combining this with (33) gives (32). �
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5. Global Existence in higher dimensions
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We consider in R1+n the global existence of the Cauchy problem

�u = F (∂u)

u|t=0 = εf , ∂tu|t=0 = εg ,
(34)

where n ≥ 4, ε ≥ 0 is a number, and F : R1+n → R is a given C∞

function which vanishes to the second order at the origin:

F (0) = 0, DF (0) = 0. (35)

The main result is as follows.

Theorem 18

Let n ≥ 4 and let f , g ∈ C∞c (Rn). If F is a C∞ function satisfying
(35), then there exists ε0 > 0 such that (34) has a unique solution
u ∈ C∞([0,∞)× Rn) for any 0 < ε ≤ ε0.
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Proof. Let

T∗ := {T > 0 : (34) has a solution u ∈ C∞([0,T ]× Rn)}.

Then T∗ > 0 by Theorem 7. We only need to show that T∗ =∞.
Assume that T∗ <∞, then Theorem 7 implies∑

|α|≤(n+6)/2

|∂αu(t, x)| 6∈ L∞([0,T∗)× Rn).

We will derive a contradiction by showing that there is ε0 > 0 such
that for all 0 < ε ≤ ε0 there holds

sup
(t,x)∈[0,T∗)×Rn

∑
|α|≤(n+6)/2

|∂αu(t, x)| <∞. (36)

120/262



Step 1. We derive (36) by showing that there exist A > 0 and
ε0 > 0 such that

A(t) :=
∑
|α|≤n+4

‖∂Γαu(t, ·)‖L2 ≤ Aε, 0 ≤ t < T∗ (37)

for 0 < ε ≤ ε0, where the sum involves all invariant vector fields
∂µ, L0 and Ωµν .

In fact, by Klainerman inequality in Theorem 15 we have for any
multi-index β that

|∂Γβu(t, x)| ≤ C (1 + t)−
n−1

2

∑
|α|≤(n+2)/2

‖Γα∂Γβu(t, ·)‖L2 .
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Since [Γ, ∂] is either 0 or ±∂, see Lemma 11, using (37) we obtain
for |β| ≤ (n + 6)/2 that

|∂Γβu(t, x)| ≤ C (1 + t)−
n−1

2

∑
|α|≤n+4

‖∂Γαu(t, ·)‖L2

= C (1 + t)−
n−1

2 A(t)

≤ CAε(1 + t)−
n−1

2 . (38)

To estimate |Γβu(t, x)|, we need further property of u. Since
f , g ∈ C∞0 (Rn), we can choose R > 0 such that f (x) = g(x) = 0
for |x | ≥ R. By the finite speed of propagation,

u(t, x) = 0, if 0 ≤ t < T∗ and |x | ≥ R + t.
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To show (36), it suffices to show that

sup
0≤t<T∗,|x |≤R+t

|Γαu(t, x)| <∞, ∀|α| ≤ (n + 6)/2.

For any (t, x) satisfying 0 ≤ t < T∗ and |x | < R + t, write
x = |x |ω with |ω| = 1. Then

Γαu(t, x) = Γαu(t, |x |ω)− Γαu(t, (R + t)ω)

=

∫ 1

0
∂jΓ

αu(t, (s|x |+ (1− s)(R + t))ω)ds (|x | − R − t)ωj .

In view of (38), we obtain for all |α| ≤ (n + 6)/2 that

|Γαu(t, x)| ≤ CAε(1 + t)−
n−1

2 (R + t − |x |) ≤ CAε(1 + t)−
n−3

2 .
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Step 2. We prove (37).

Since u ∈ C∞([0,T∗)× Rn) and u(t, x) = 0 for |x | ≥ R + t,
we have A(t) ∈ C ([0,T∗)).

Using initial data we can find a large number A such that

A(0) ≤ 1

4
Aε. (39)

By the continuity of A(t), there is 0 < T < T∗ such that
A(t) ≤ Aε for 0 ≤ t ≤ T .

Let

T0 = sup{T ∈ [0,T∗) : A(t) ≤ Aε,∀0 ≤ t ≤ T}.

Then T0 > 0. It suffices to show T0 = T∗.
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We show T0 = T∗ be a contradiction argument. If T0 < T∗, then
A(t) ≤ Aε for 0 ≤ t ≤ T0. We will prove that for small ε > 0 there
holds

A(t) ≤ 1

2
Aε for 0 ≤ t ≤ T0.

By the continuity of A(t), there is δ > 0 such that

A(t) ≤ Aε for 0 ≤ t ≤ T0 + δ

which contradicts the definition of T0.

Step 3. It remains only to prove that there is ε0 > 0 such that

A(t) ≤ Aε for 0 ≤ t ≤ T0 =⇒ A(t) ≤ 1

2
Aε for 0 ≤ t ≤ T0

for 0 < ε ≤ ε0.

125/262



By Klainerman inequality and A(t) ≤ Aε for 0 ≤ t ≤ T0, we have
for |β| ≤ (n + 6)/2 that

|∂Γβu(t, x)| ≤ CAε(1 + t)−
n−1

2 , ∀(t, x) ∈ [0,T0]× Rn. (40)

To estimate ‖∂Γαu(t, ·)‖L2 for |α| ≤ n + 4, we use the energy
estimate to obtain

‖∂Γαu(t, ·)‖L2 ≤ ‖∂Γαu(0, ·)‖L2 + C

∫ t

0
‖�Γαu(τ, ·)‖L2dτ. (41)

We write
�Γαu = [�, Γα]u + Γα(F (∂u))

and estimate ‖Γα(F (∂u))(τ, ·)‖L2 and ‖[�, Γα]u(τ, ·)‖L2 .
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Since F (0) = DF (0) = 0, we can write

F (∂u) =
n∑

j ,k=1

Fjk(∂u)∂ju∂ku,

where Fjk are smooth functions. Using this it is easy to see that
Γα(F (∂u)) is a linear combination of following terms

Fα1···αm(∂u) · Γα1∂u · Γα2∂u · · · · · Γαm∂u

where m ≥ 2, Fα1···αm are smooth functions and |α1|+ · · ·+ |αm|
= |α| with at most one αi satisfying |αi | > |α|/2 and at least one
αi satisfying |αi | ≤ |α|/2.

In view of (40), by taking ε0 such that Aε0 ≤ 1, we obtain
‖Fα1···αm(∂u)‖L∞ ≤ C for 0 < ε ≤ ε0 with a constant C
independent of A and ε.
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Since |α|/2 ≤ (n + 4)/2, using (40) all terms Γαj∂u, except
the one with largest |αj |, can be estimated as

‖Γαj∂u(t, x)‖L∞([0,T0]×Rn) ≤ CAε(1 + t)−
n−1

2

Therefore

‖Γα(F (∂u))(t, ·)‖L2 ≤ CAε(1 + t)−
n−1

2

∑
|β|≤|α|

‖Γβ∂u(t, ·)‖L2

≤ CAε(1 + t)−
n−1

2 A(t). (42)

Recall that [�, Γ] is either 0 or 2�. Thus

|[�, Γα]u| .
∑
|β|≤|α|

|Γβ�u| .
∑
|β|≤|α|

|Γβ(F (∂u))|.
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Therefore

‖[�, Γα]u(t, ·)‖L2 ≤ C
∑
|β|≤|α|

‖Γβ(F (∂u))(t, ·)‖L2

≤ CAε(1 + t)−
n−1

2 A(t). (43)

Consequently, it follows from (41), (42) and (43) that

‖∂Γαu(t, ·)‖L2 ≤ ‖∂Γαu(0, ·)‖L2 + CAε

∫ t

0

A(τ)

(1 + τ)
n−1

2

dτ

Summing over all α with |α| ≤ n + 4 we obtain

A(t) ≤ A(0) + CAε

∫ t

0

A(τ)

(1 + τ)
n−1

2

dτ ≤ 1

4
Aε+ CAε

∫ t

0

A(τ)

(1 + τ)
n−1

2

dτ.
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By Gronwall inequality,

A(t) ≤ 1

4
Aε exp

(
CAε

∫ t

0

dτ

(1 + τ)(n−1)/2

)
, 0 ≤ t ≤ T0.

For n ≥ 4,
∫∞

0
dτ

(1+τ)(n−1)/2 = 2
n+2 <∞. (This is the reason we

need n ≥ 4 for global existence). We now choose ε0 > 0 so that

exp

(
2

n + 2
CAε0

)
≤ 2.

Thus A(t) ≤ Aε/2 for 0 ≤ t ≤ T0 and 0 < ε ≤ ε0. The proof is
complete. �
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Remark. The proof does not provide global existence result when
n ≤ 3 in general. However, the argument can guarantee existence
on some interval [0,Tε], where Tε can be estimated as

Tε ≥


ec/ε, n = 3,
c/ε2, n = 2,
c/ε, n = 1.

(44)

In fact, let A(t) be defined as before, the key point is to show that,
for any T < Tε,

A(t) ≤ Aε for 0 ≤ t ≤ T =⇒ A(t) ≤ 1

2
Aε for 0 ≤ t ≤ T
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The same argument as above gives

A(t) ≤ 1

4
Aε exp

(
CAε

∫ t

0

dτ

(1 + τ)(n−1)/2

)
, 0 ≤ t ≤ T .

Thus we can improve the estimate to A(t) ≤ 1
2 Aε for 0 ≤ t ≤ T if

Tε satisfies

exp

(
CAε

∫ Tε

0

dτ

(1 + τ)(n−1)/2

)
≤ 2

When n ≤ 3, the maximal Tε with this property satisfies (44).
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Remark. For n = 2 or n = 3, the above argument can guarantee
global existence when F satisfies stronger condition

F (0) = 0, DF (0) = 0, · · · , DkF (0) = 0, (45)

where k = 5− n. Indeed, this condition guarantees that F (∂u) is a
linear combination of the terms

Fj1···jk+1
(∂u)∂j1u · · · ∂jk+1

u.

Thus Γα(F (∂u)) is a linear combination of the terms

fi1···ir (∂u)Γαi1∂u · ... · Γαir ∂u,

where r ≥ k + 1, |α1|+ · · ·+ |αr | = |α| and fi1···ir are smooth
functions; there are at most one αi satisfying αi > |α|/2 and at
least k of αi satisfying |αi | ≤ |α|/2.
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We thus can obtain

‖Γα(F (∂u))(t, ·)‖L2 ≤ CAε(1 + t)−
(n−1)k

2 A(t),

‖[�, Γα]u(t, ·)‖L2 ≤ CAε(1 + t)−
(n−1)k

2 A(t).

Therefore

A(t) ≤ 1

4
Aε exp

(
CAε

∫ t

0

dτ

(1 + τ)((n−1)k)/2

)
.

Since k = 5− n,
∫∞

0
dτ

(1+τ)((n−1)k)/2 converges for n = 2 or n = 3.

The condition (45) is indeed too restrictive. In next lecture we
relax it to include quadratic terms when n = 3 using the so-call
null condition introduced by Klainerman.
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6. Null Conditions and Global Existence: n = 3
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We have proved global existence of the nonlinear Cauchy problem

�u = F (∂u)

u|t=0 = εf , ∂tu|t=0 = εg

in R1+n with n ≥ 4, for sufficiently small ε, where F : R1+n → R is
a given C∞ function which vanishes to second order at origin, i.e.

F (0) = 0, DF (0) = 0

This global existence result in general fails when n ≤ 3 if there is
no additional conditions on F .

Example. Fritz John (1981) proved that every smooth solution of

�u = (∂tu)2

with nonzero initial data in C∞0 (R3) must blow up in finite time.
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For details please refer to

F. John, Blow-up for quasi-linear wave equations in three-space
dimensions, Comm. Pure Appl. Math., Vol. 34 (1981), 29–51.

Example. (Due to Klainerman and Nirenberg, 1980) On the other
hand, for the equation

�u = (∂tu)2 −
3∑

j=1

(∂ju)2, t ≥ 0, x ∈ R3 (46)

we have global smooth solutions for small data:

u|t=0 = εf , ∂tu|t=0 = εg , (47)

where f , g ∈ C∞0 (R3) and ε > 0 is sufficiently small.
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To see this, let v(t, x) = 1− e−u(t,x). Then v satisfies

�v = 0, v |t=0 = 1− e−εf , ∂tv |t=0 = εge−εf (48)

which is a linear problem and thus has a global smooth solution. If
|v(t, x)| < 1 for all (t, x), then

u(t, x) = − log[1− v(t, x)] (49)

is a global solution of (46) and (47). To show |v | < 1, we can use
the representation formula of solutions of �v = 0 to derive

‖v(t, ·)‖L∞ ≤
A

1 + t
, ∀t ≥ 0,

where A is a constant depending only on L∞ norm of v |t=0 and
∂v |t=0. In view of (48), it is easy to guarantee A < 1 if ε > 0 is
sufficiently small. Hence |v | < 1.
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6.1. Null forms in R1+n

A covector ξ = (ξµ) in (R1+n,m) is called null if

mµνξµξν = 0.

A real bilinear form B in (R1+n,m) is called a null form if

B(ξ, ξ) = 0 for all null covector ξ.

Lemma 19

Any real null form in (R1+n,m) is a linear combination of the
following null forms

Q0(ξ, η) = mµνξµην , (50)

Qµν(ξ, η) = ξµην − ξνηµ, 0 ≤ µ < ν ≤ n. (51)
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Proof. Let B be a null form. We can write B(ξ, η) = Bs(ξ, η)+
Ba(ξ, η), where

Bs(ξ, η) =
1

2
(B(ξ, η) + B(η, ξ)) , Ba(ξ, η) =

1

2
(B(ξ, η)− B(η, ξ)) ,

Then Bs is symmetric, Ba is skew-symmetric, and both are null
forms. Therefore it suffices to show that

If B symmetric, then it is a multiple of Q0;

If B skew-symmetric, then it is a linear combination of Qµν .

When B is skew-symmetric, we can write B(ξ, η) = bµνξµην with
bµν = −bνµ. Therefore

B(ξ, η) =
∑

0≤µ<ν≤n
bµν(ξµην − ξνηµ).
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When B is a symmetric null-form, we can write B(ξ, η) = bµνξµην
with bµν = bνµ. Then

bµνξµξν = 0 for null covector ξ = (ξµ). (52)

For any fixed 1 ≤ i ≤ n, we take the null ξ with

ξ0 = ±1, ξi = 1 and ξj = 0 for j 6= 0, i .

This gives b00 ± 2b0i + bii = 0. Consequently

b0i = bi0 = 0 and b00 + bii = 0, i = 1, · · · , n. (53)

Next for any fixed 1 ≤ i < j ≤ n, we take null covector ξ with

ξ0 =
√

2, ξi = ξj = 1 and ξk = 0 for k 6= 0, i , j .
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Using (52) and (53) we obtain bij = 0. Therefore

(bµν) = b00diag(1,−1, · · · ,−1).

Consequently B(ξ, η) = −b00Q0(ξ, η) and the proof is complete. �

Recall that we have introduced in (R1+n,m) the invariant vector
fields ∂µ, Ωµν and L0 which have been denoted as Γ. For each of
them, we may replace ∂µ by ξµ to obtain a function of (x , ξ),
which is called the symbol of this vector field. Thus

the symbol of ∂µ is ξµ;

the symbol of Ωµν is Ωµν(x , ξ) := (mρµxν −mρνxµ)ξρ;

the symbol of L0 is L0(x , ξ) := xµξµ.

We then introduce the function
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Γ(x , ξ) :=

 ∑
0≤µ<ν≤n

Ωµν(x , ξ)2 + L0(x , ξ)2 +
n∑

µ=0

ξ2
µ

1/2

Let |ξ| denote the Euclidean norm of ξ. Then we always have

|B(ξ, η)| ≤ C0|ξ||η|, ∀ξ, η ∈ R1+n, (54)

where C0 := max{|B(ξ, η)| : |ξ| = |η| = 1}. The following result
gives a decay estimate in |x | when B is a null form.

Lemma 20

A bilinear form B in (R1+n,m) is null if and only if

|B(ξ1, ξ2)| ≤ C (1 + |x |)−1|Γ(x , ξ1)||Γ(x , ξ2)|, ∀x , ξi ∈ R1+n.
(55)
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Proof. (55) =⇒ B is null. Let ξ be a nonzero null covector. We
define x = (xµ) by xµ := λmµνξν with λ > 0. It is easy to see

L0(x , ξ) = λmµνξµξν = 0 and Ωµν(x , ξ) = 0.

Thus Γ(x , ξ) = |ξ|. Consequently (55) gives

|B(ξ, ξ)| ≤ C (1 + λ|ξ|)−1|ξ|2, ∀λ > 0.

Taking λ→∞ gives B(ξ, ξ) = 0, i.e. B is null.

B is null =⇒ (55). It suffices to show that

Γ(x , ξ1) = Γ(x , ξ2) = 1 =⇒ |B(ξ1, ξ2)| ≤ C (1 + |x |)−1 (56)

Since Γ(x , ξi ) = 1 implies |ξi | ≤ 1, we can obtain (56) from (54) if
|x | ≤ 1. In what follows, we will assume |x | > 1.
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Let ξx := (ξxµ) with ξxµ = mµνxν . We decompose

ξi = ηi + tiξ
x

with 〈ηi , ξx〉 = 0 and ti ∈ R. Then

B(ξ1, ξ2) = B(η1, η2) + t2B(η1, ξx) + t1B(ξx , η2) + t1t2B(ξx , ξx).

In view of |ξx | = |x |, we have from (54) that

|B(ξ1, ξ2)| ≤ C0

(
|η1||η2|+ |t2||x ||η1|+ |t1||x ||η2|

)
+ |t1||t2||B(ξx , ξx)|.

Since B is null, we have from Lemma 19 that

|B(ξx , ξx)| ≤ C0|Q0(ξx , ξx)| = C0|mµνξxµξ
x
ν | = C0|mµνxµxν |.
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Therefore

|B(ξ1, ξ2)| ≤ C0

(
|η1||η2|+ |t2||x ||η1|+ |t1||x ||η2|+ |t1||t2||mµνxµxν |

)
.

We can complete the proof by showing that

|ti |+ |ηi | . |x |−1 and |ti ||mµνxµxν | . 1.

Observing that Γ(x , ξi ) = 1 implies

|ξi | ≤ 1, |L0(x , ξi )| ≤ 1 and
∑

0≤µ<ν≤n
Ωµν(x , ξi )2 ≤ 1.

Using 〈ηi , ξx〉 = 0 and |ξi | ≤ 1 we can derive that t2
i |ξx |2 ≤ 1.

Thus |ti ||x | = |ti ||ξx | ≤ 1.
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Since

L0(x , ξi ) = xµηiµ + tix
µξxµ = xµηiµ + timµνxµxν ,

we have from |L0(x , ξi )| ≤ 1 that

|ti ||mµνxµxν | ≤ 1 + |x ||ηi |.

Thus |ti ||mµνxµxν | . 1 if we can show |ηi | . |x |−1. It remains
only to prove |ηi | . |x |−1. Noticing that

Ωµν(x , ξx) = (mρµxν −mρνxµ)ξxρ = (mρµxν −mρνxµ)mρσxσ = 0.

This implies

Ωµν(x , ξi ) = Ωµν(x , ηi ) + tiΩµν(x , ξx) = Ωµν(x , ηi ).
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Therefore ∑
0≤µ<ν≤n

Ωµν(x , ηi )2 =
∑

0≤µ<ν≤n
Ωµν(x , ξi )2 ≤ 1.

We will be able to obtain |ηi | ≤ |x |−1 if we can show that∑
0≤µ<ν≤n

Ωµν(x , ηi )2 = |x |2|ηi |2. (57)

To obtain (57), recall that ξx0 = −x0 and ξxi = x i for 1 ≤ i ≤ n.
Since (mµν) = diag(−1, 1, · · · , 1), we obtain∑

0≤µ<ν≤n
Ωµν(x , ηi )2 =

∑
0≤µ<ν≤n

(ξxµη
i
ν − ξxνηiµ)2
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By expanding the squares, we obtain∑
0≤µ<ν≤n

Ωµν(x , ηi )2

=
∑

0≤µ<ν≤n

(
(ξxµ)2(ηiν)2 + (ξxν )2(ηiµ)2 − 2ξxµη

i
νξ

x
νη

i
µ

)
=
∑

0≤µ≤n

∑
ν 6=µ

(ξxµ)2(ηiν)2 −
∑

0≤µ≤n

∑
ν 6=µ

ξxµη
i
νξ

x
νη

i
µ

= |ξx |2|ηi |2 −

 n∑
µ=0

ξxµη
i
µ

2

.

Since 〈ξx , ηi 〉 = 0, we obtain (57). �
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6.2. Null condition and main result

We consider the Cauchy problem of a system of N equations

�uI = F I (u, ∂u) in R1+3
+ , I = 1, · · · ,N,

u(0, ·) = εf , ∂tu(0, ·) = εg ,
(58)

where ε > 0, f = (f 1, · · · , f N) and g = (g 1, · · · , gN) are C∞0 (R3),
and F = (F 1, · · · ,FN) are C∞. Of course, the unknown solution
u = (u1, · · · , uN) is RN -valued. To obtain a global existence
result, the so called null condition on the quadratic part of each F I

should be assumed.

The quadratic part of a function F defined on RM around 0 is

QF (z) :=
∑
|α|=2

1

α!
∂αF (0)zα, ∀z ∈ RM .
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Definition 21 (Klainerman, 1982)

F := (F 1, · · · ,FN) in (58 ) is said to satisfy the null condition if

(i) F vanishes to second order at the origin

F (0) = 0, DF (0) = 0.

(ii) The quadratic part of each F I around 0 has the form

QF I (∂u) =
N∑

J,K=1

3∑
µ,ν=0

aµνIJK∂µuJ∂νuK ,

where aµνIJK are constants satisfying, for all I , J,K = 1, · · · ,N,

3∑
µ,ν=0

aµνIJK ξµξν = 0 for all null covector ξ ∈ R1+3.
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Klainerman (1986) and Christodoulou (1986) proved the following
global existence result independently.

Theorem 22 (Klainerman, Christodoulou)

Assume that F in (58) satisfies the null condition. Then there
exists ε0 = ε0(f , g) > 0 such that (58) has a global smooth
solution provided ε < ε0.

We first provide necessary ingredients toward proving Theorem 22.

The proof is carried out by the continuity method which is
essentially based on suitable energy estimates and hence requires
to handle ΓαF (u, ∂u) for invariant vector fields ∂µ, L0 and Ωµν .
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According to the null condition on F and Lemma 19, we have

Lemma 23

If F in (58) satisfies the null condition, then each component
F I (u, ∂u) has the form

F I (u, ∂u) = QF I (∂u) + R I (u, ∂u),

where R I is C∞ and vanishes to third order at 0 and

QF I (∂u) =
∑
J,K

aIJKQ0(∂uJ , ∂uK )+
∑
J,K

∑
0≤µ<ν≤3

bµνIJKQµν(∂uJ , ∂uK )

with constants aIJK and bµνIJK .

The term ΓαR I is easy to handle. The term ΓαQF I (∂u) needs
some care; we need only consider ΓαQ(∂uJ , ∂uK ) for null forms Q.
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Lemma 24

Let Q be one of the null forms in (19) and (23)

|Q(∂v , ∂w)(t, x)| ≤ C

1 + t + |x |
∑
|α|=1

|Γαv(t, x)||
∑
|α|=1

|Γαw(t, x)|

Proof. In view of Lemma 20, we have

|Q(∂v , ∂w)| ≤ C

1 + t + |x |
|Γ(t, x , ∂v)Γ(t, x , ∂w)|.

Since Γ(t, x , ∂v) =
∑
|α|=1 |Γαv(t, x)|, we obtain the result. �
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Therefore, in order to estimate ΓαQ(∂v , ∂w) for a null form Q, it
is useful to consider first the “commutator”

[Γ,Q](∂v , ∂w) = ΓQ(∂v , ∂w)− Q(∂Γv , ∂w)− Q(∂v , ∂Γw)

We have the following result.

Lemma 25

Let Q be any null form, let Q0 and Qµν be the null forms given by
(50) and (51). Then

[∂µ,Q] = 0, [L0,Q] = −2Q,

[Ωµν ,Q0] = 0,

[Ωµν ,Qρσ] = (mηµδνσ −mηνδµσ)Qηρ − (mηµδνρ −mηνδµρ )Qησ
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Proof. All these identity can be derived by direct calculation. We
derive [Ωµν ,Qρσ] here. Let v and w be any two functions. Then

[Ωµν ,Qρσ](∂v , ∂w) = Ωµν (∂ρv∂σw − ∂σw∂ρv)

−
(
∂ρ(Ωµνv)∂σw − ∂σ(Ωµνv)∂ρw

)
−
(
∂ρv∂σ(Ωµνw)− ∂σv∂ρ(Ωµνw)

)
= −[∂ρ,Ωµν ]v · ∂σw + [∂σ,Ωµν ]v · ∂ρw

− ∂ρv · [∂σ,Ωµν ]w + ∂σv · [∂ρ,Ωµν ]w .

Recall that
[∂ρ,Ωµν ] = (mηµδνρ −mηνδµρ )∂η.
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By substitution we obtain

[Ωµν ,Qρσ](∂v , ∂w) = (mηµδνσ −mηνδµσ)Qηρ(∂v , ∂w)

− (mηµδνρ −mηνδµρ )Qησ(∂v , ∂w).

The proof is complete. �

Proposition 26

For any null form Q, and any integer M ≥ 0, we have

(1+|t|+ |x |)
∑
|α|≤M

|ΓαQ(∂v , ∂w)|

≤ CM

( ∑
1≤|α|≤M+1

|Γαv(t, x)|
)( ∑

1≤|α|≤M
2

+1

|Γαw(t, x)|
)

+ CM

( ∑
1≤|α|≤M

2
+1

|Γαv(t, x)|
)( ∑

1≤|α|≤M+1

|Γαw(t, x)|
)
.
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Proof. By induction on M. For M = 0 it follows from Lemma 24.
For a multi-index α with |α| = M ≥ 1, we can write Γα = ΓβΓ
with |β| = M − 1. In view of Lemma 25, we have

ΓαQ(∂v , ∂w) = Γβ ([Γ,Q](∂v , ∂w) + Q(∂Γv , ∂w) + Q(∂v , ∂Γw)) .

Therefore ∑
|α|≤M

|ΓαQ(∂v , ∂w)| ≤
∑

|β|≤M−1

|ΓβQ(∂v , ∂w)|

+
∑

|β|≤M−1

|ΓβQ(∂Γv , ∂w)|

+
∑

|β|≤M−1

|ΓβQ(∂v , ∂Γw)|.

By the induction hypothesis, we complete the proof. �
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In order to apply Proposition 26, we need to know how to estimate∑
|α|≤M+1

‖Γαu(t, ·)‖L2 .

This will be achieved by considering a suitable conformal energy.

We have shown in Theorem 9 that if X is a conformal Killing
vector field in (R1+n,m) with (X )π = f m, then for any smooth
function u vanishing for large |x | there holds∫

t=t1

Q̃(X , ∂t)dx =

∫
t=t0

Q̃(X , ∂t)dx − n − 1

8

∫∫
[t0,t1]×Rn

u2�fdxdt

+

∫∫
[t0,t1]×Rn

(
Xu +

n − 1

4
fu

)
�udxdt, (59)
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where

Q̃(X , ∂t) = Q(X , ∂t) +
n − 1

4

(
fu∂tu −

1

2
u2∂t f

)
,

Q(X , ∂t) = (Xu)∂tu −
1

2
m(X , ∂t)m(∂u, ∂u).

We have also determined all conformal Killing vector fields in
(R1+n,m). In particular, ∂t is Killing and the Morawetz vector field

K0 = (t2 + |x |2)∂t + 2tx i∂i

is conformal Killing with (K0)π = 4tm. Take X = K0 + ∂t . Then

(X )π = f m with f = 4t.
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Therefore

Q(X , ∂t) =
[
(1 + t2 + |x |2)∂tu + 2tx i∂iu

]
∂tu

+
1

2
(1 + t2 + |x |2)m(∂u, ∂u)

=
1

2
(1 + t2 + |x |2)|∂u|2 + 2tx i∂iu∂tu.

Consequently

Q̃(X , ∂t) =
1

2
(1 + t2 + |x |2)|∂u|2 + 2tx i∂iu∂tu + 2tu∂tu − u2

=
1

2

(
|∂u|2 + |L0u|2 +

∑
0≤µ<ν≤3

|Ωµνu|2
)

+ 2tu∂tu − u2,

where the second equality follows from some calculation.
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We introduce the conformal energy

E0(t) :=

∫
{t}×R3

Q̃(X , ∂t)dx ,

According to the formula for Q̃(X , ∂t) we have

E0(t) =
1

2

∫
R3

(
|∂u|2 + |L0u|2 +

∑
0≤µ<ν≤3

|Ωµνu|2
)

dx

+

∫
R3

(
2tu∂tu − u2

)
dx . (60)

We will show that E (t) is nonnegative and is comparable with∑
|α|≤1 ‖Γαu(t, ·)‖2

L2 , where the sum involves all vector fields ∂µ,
Ωµν and L0.
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Lemma 27

E (t) ≥ 0 and for t ≥ 0 there holds

E (t)1/2 ≤ E (0)1/2 +

∫ t

0
‖(1 + τ + |x |)�u(τ, ·)‖L2dτ

Proof. Observing that

2tu∂tu = 2u(L0u − x i∂iu) = 2uL0u − x i∂i (u2)

= 2uL0u + 3u2 − ∂i (x iu2).

Therefore, by the divergence theorem, we have∫
R3

2tu∂tudx =

∫
R3

(
2uL0u + 3u2

)
dx . (61)
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Consequently

E0(t) =
1

2

∫
R3

(
|∂u|2 + |L0u|2 +

∑
0≤µ<ν≤3

|Ωµνu|2 + 4uL0u + 4u2
)

dx

=
1

2

∫
R3

(
|∂u|2 + |L0u + 2u|2 +

∑
0≤µ<ν≤3

|Ωµνu|2
)

dx , (62)

which implies E (t) ≥ 0.

To derive the estimate on E (t), we use (59) to obtain

E0(t) = E (0) +

∫ t

0

∫
R3

(Xu + 2τu)�udxdτ,

Thus
d

dt
E0(t) =

∫
R3

(Xu + 2tu)�udx .
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Therefore

d

dt
E0(t) = ‖(1 + t + |x |)−1(Xu + 2tu)‖L2‖(1 + t + |x |)�u(t, ·)‖L2 .

In view of the definition of X , we have

Xu + 2tu = (1 + t2 + |x |2)∂tu + 2tx i∂iu + 2tu

= ∂tu + t(L0u + 2u) + x iΩ0i .

By Cauchy-Schwartz inequality it follows that

|Xu + 2tu|2 ≤ (1 + t2 + |x |2)
(
|∂tu|2 + |L0u + 2u|2 +

3∑
i=1

|Ω0i |2
)

Hence
‖(1 + t + |x |)−1(Xu + 2tu)‖2

L2 ≤ 2E0(t).
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Consequently

d

dt
E0(t) ≤

√
2E0(t)‖(1 + t + |x |)�u(t, ·)‖L2 .

This implies that

d

dt
E (t)1/2 ≤ ‖(1 + t + |x |)�u(t, ·)‖L2

which gives the estimate by integration. �

Lemma 28

There is a constant C ≥ 1 such that

C−1
∑
|α|≤1

‖Γαu(t, ·)‖2
L2 ≤ E0(t) ≤ C

∑
|α|≤1

‖Γαu(t, ·)‖2
L2 ,

where the sum involves all vector fields ∂µ, L0 and Ωµν .
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Proof. In view of (62), the inequality on the right is obvious. Now
we prove the inequality on left.
We will make use of (60) for E (t). To deal with

∫
2tu∂tudx , we

use Ω0i to rewrite ∂t . We have

x iΩ0i = r 2∂t + tx i∂i .

Thus, by introducing Ωr := r−1x iΩ0i , we have

∂t = r−1Ωr − r−2tx i∂i .

Therefore∫
2tu∂tudx =

∫
2r−1tuΩrudx − t2

∫
r−2x i∂i (u2)dx .
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Integration by parts gives∫
2tu∂tudx =

∫ (
2r−1tuΩru + r−2t2u2

)
dx .

On the other hand, we obtained in (61) that∫
2tu∂tudx =

∫ (
2uL0u + 3u2

)
dx .

Therefore∫
(2tu∂tu − u2)dx

=
3

4

∫ (
2uL0u + 3u2

)
dx +

1

4

∫ (
2r−1tuΩru + r−2t2u2

)
dx −

∫
u2dx

=

∫ (
3

2
uL0u +

5

4
u2 +

1

2
r−1tuΩru +

1

4
r−2t2u2

)
dx .
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In view of (60) we obtain E0(t) = 1
2 (I1 + I2 + I3) , where

I1 =

∫ (
|∂u|2 +

∑
0≤µ<ν≤3

|Ωµνu|2 − |Ωru|2
)

dx ,

I2 =

∫ (
|Ωru|2 + r−1tuΩru +

1

2
r−2t2u2

)
dx ,

I3 =

∫ (
|L0u|2 + 3uL0u +

5

2
u2

)
dx .

By the definition of Ωr and Cauchy-Schwartz inequality we have

|Ωru|2 = r−2

∣∣∣∣∣
3∑

i=1

Ω0iu

∣∣∣∣∣
2

≤
3∑

i=1

|Ω0iu|2

This implies I1 ≥ 0.
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We also have I2 ≥ 0 because

|Ωru|2+r−1tuΩru+
1

2
r−2t2u2 =

1

2

(
|Ωru|2 +

∣∣Ωru + r−1tu
∣∣2) ≥ 0.

Therefore I3 ≤ 2E0(t). It remains only to show that∫ (
u2 + |L0u|2

)
dx . I3.

To see this, we write

|L0u|2 + 3uL0u +
5

2
u2

= |aL0u + bu|2 + (1− a2)|L0u|2 +

(
5

2
− b2

)
u2 + (3− 2ab)uL0u.
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It is always possible to choose a > 0 and b > 0 such that

3− 2ab = 0, 1− a2 > 0,
5

2
− b2 > 0.

Thus

|L0u|2 + 3uL0u +
5

2
u2 & |L0u|2 + u2.

This shows that I3 &
∫

(u2 + |L0u|2)dx . We therefore complete the
proof. �
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We are now ready to derive, for any integer M ≥ 0, the estimate on∑
|α|≤M+1

‖Γαu(t, ·)‖L2 .

Proposition 29 (Energy estimates)

For any integer M ≥ 0, there is a constant C such that∑
|α|≤M+1

‖Γαu(t, ·)‖L2 ≤ C
∑

|α|≤M+1

‖Γαu(0, ·)‖L2

+ C
∑
|α|≤M

∫ t

0
‖(1 + τ + | · |)Γα�u(τ, ·)‖L2dτ

for all t > 0 and all u ∈ C∞([0,∞)× R3) vanishing for large |x |.
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Proof. The estimate for M = 0 follows from Lemma 27 and
Lemma 28 immediately.

For the general case, let β be a multi-index and apply the estimate
for M = 0 to Γβu to obtain∑

|α|≤1

‖ΓαΓβu(t, ·)‖L2 .
∑
|α|≤1

‖ΓαΓβu(0, ·)‖L2

+

∫ t

0
‖(1 + τ + | · |)�Γβu(τ, ·)‖L2dτ.

Since [�, Γ] is either 0 or 2�, we have

‖(1 + τ + | · |)�Γβu(τ, ·)‖L2 .
∑
|γ|≤|β|

‖(1 + τ + | · |)Γγ�u(τ, ·)‖L2
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Therefore∑
|α|≤1

‖ΓαΓβu(t, ·)‖L2 .
∑
|α|≤1

‖ΓαΓβu(0, ·)‖L2

+
∑
|γ|≤|β|

∫ t

0
‖(1 + τ + | · |)Γγ�u(τ, ·)‖L2dτ.

Summing over all β with |β| ≤ M gives the desired estimate. �

6.3. Proof of Theorem 22: global existence

Let

T∗ := sup{T > 0 : (58) has a solution u ∈ C∞([0,T ]× Rn}.
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By local existence theorem, T∗ > 0, and, if T∗ <∞, then∑
|α|≤4

|∂αu| 6∈ L∞([0,T∗)× Rn).

On the other hand, we will show that there exist a large A > 0 and
a small ε0 > 0 so that∑

|α|≤4

|Γαu(t, x)| ≤ Aε

1 + t + |x |
, ∀(t, x) ∈ [0,T∗)× Rn (63)

for 0 < ε ≤ ε0. This is a contradiction and hence T∗ =∞.

We will use the continuity method to obtain (63).
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Since f , g ∈ C∞0 (Rn) and F (0, 0) = 0, we can find a large A > 0
such that ∑

|α|≤4

|Γαu(0, x)| ≤ 1

8
Aε, ∀x ∈ Rn.

We can find R > 0 such that f (x) = g(x) = 0 for |x | ≥ R. By
finite speed of propagation,

u(t, x) = 0 for |x | ≥ R + t.

Thus by continuity, there exists T > 0 such that∑
|α|≤4

|Γαu(t, x)| ≤ Aε

1 + t + |x |
, ∀(t, x) ∈ [0,T ]× Rn. (64)
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It remains only to show that there exists ε0 > 0 such that if (64)
holds for some 0 < T < T∗ and 0 < ε ≤ ε0, then there must hold∑
|α|≤4

|Γαu(t, x)| ≤ Aε

2(1 + t + |x |)
, ∀(t, x) ∈ [0,T ]× Rn. (65)

We will show this by two steps.

Step 1. Show that there exists constants C0 and C1 such that

A(t) ≤ C0(1 + t)C1AεA(0), 0 ≤ t ≤ T , (66)

where
A(t) :=

∑
|α|≤7

‖Γαu(t, ·)‖L2 .
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To see this, we use Proposition 29 to obtain

A(t) ≤ CA(0) + C

∫ t

0

∑
|α|≤6

‖(1 + τ + | · |)Γα�u(τ, ·)‖L2dτ. (67)

We need to estimate

‖(1 + τ + | · |)Γα�u(τ, ·)‖L2 = ‖(1 + τ + | · |)ΓαF (u, ∂u)(τ, ·)‖L2 .

Since F satisfies the null condition, we have

F (u, ∂u) = QF (∂u) + R(u, ∂u), (68)

where QF (∂u) is the quadratic part, and R(u, ∂u) vanishes up to
third order.
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Therefore R(u, ∂u) is a linear combination of the terms

Rβ1β2β3(u, ∂u)∂β1u∂β2u∂β3u,

where each βj is either 0 or 1. So ΓαR(u, ∂u) is a linear
combination of the terms

a(u, ∂u)Γα1∂β1u · · · Γαm∂βmu, (69)

where a(·, ·) are smooth functions, each βj is either 0 or 1,
|α1|+ · · ·+ |αm| = |α| with m ≥ 3, and at most one αj satisfies
|αj | > 3. In view of (64),

|a(u, ∂u)(t, x)| ≤ C , ∀(t, x) ∈ [0,T ]× Rn.
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For all the terms Γαj∂βj u except the one with highest |αj |, we can
use (64) to estimate them. We thus obtain∑
|α|≤6

‖(1 + τ + | · |)Γαj R(u, ∂u)(τ, ·)‖L∞

≤ C (Aε)2

1 + τ

∑
|α|≤7

‖Γαu(τ, ·)‖L2 =
C (Aε)2

1 + τ
A(τ), 0 ≤ τ ≤ T .

For ΓαQF (∂u), we can use Proposition 26 and (64) to obtain∑
|α|≤6

‖(1 + τ + | · |)ΓαQF (∂u)(τ, ·)‖L2

≤ C
∑
|α|≤4

‖Γαu(τ, ·)‖L∞
∑
|α|≤7

‖Γαu(τ, ·)‖L2 ≤
CAε

1 + τ
A(τ).
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Therefore∑
|α|≤6

‖(1 + τ + | · |)Γα�u(τ, ·)‖L2 ≤
CAε

1 + τ
A(τ), 0 ≤ τ ≤ T .

This together with (67) gives

A(t) ≤ CA(0) + CAε

∫ t

0

A(τ)

1 + τ
dτ, 0 ≤ t ≤ T .

By Gronwall inequality,

A(t) ≤ CA(0) exp

(
CAε

∫ t

0

dτ

1 + τ

)
= C (1+t)CAεA(0), 0 ≤ t ≤ T .

This shows (66).
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Step 2. We will show (65). We need the following estimate of
Hórmander whose proof will be given later.

Theorem 30 (Hörmander)

There exists C such that if F ∈ C 2([0,∞)×R3) and �u = F with
vanishing initial data at t = 0, then

(1 + t + |x |)|u(t, x)| ≤ C
∑
|α|≤2

∫ t

0

∫
R3

|ΓαF (s, y)| dyds

1 + s + |y |

In order to use Theorem 30 to estimate |Γαu(t, x)| with |α| ≤ 4,
we need Γαu(0, ·) = 0 and ∂tΓ

αu(0, ·) = 0. So we define wα by

�wα = 0, wα|t=0 = (Γαu)|t=0, ∂twα|t=0 = (∂tΓ
αu)|t=0.
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We then apply Theorem 30 to Γαu − wα to obtain

(1 + t + |x |)
∑
|α|≤4

|Γαu(t, x)− wα(t, x)|

≤ C
∑
|α|≤4

∑
|β|≤2

∫ t

0

∫
R3

|Γβ�Γαu(s, y)| dyds

1 + s

Since [�, Γ] is either 0 or 2�, we have

(1 + t + |x |)
∑
|α|≤4

|Γαu(t, x)− wα(t, x)|

≤ C
∑
|α|≤6

∫ t

0

∫
R3

|Γα�u(s, y)| dyds

1 + s
= C

∑
|α|≤6

∫ t

0

∫
R3

|ΓαF (u, ∂u)(s, y)| dyds

1 + s
.
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We use again (68). For the quadratic term QF (∂u), we may use
Proposition 26 to obtain

(1 + s)
∑
|α|≤6

|ΓαQF (∂u)(s, y)| ≤ C
∑
|α|≤7

|Γαu(s, y)|2.

This together with (66) gives∫
Rn

∑
|α|≤6

|ΓαQF (∂u)(s, y)|dy ≤ C

1 + s

∑
|α|≤7

‖Γαu(s, ·)‖2
L2

≤ CA(0)2(1 + s)−1+2C1Aε.

For ΓαR(u, ∂u), we use again (69). We use (64) to estimate all
factors except the two factors with highest |αj |.
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Then ∫
R3

|ΓαR(u, ∂u)|dy ≤ CAε

1 + s

∑
|α|≤7

‖Γαu(s, ·)‖2
L2

≤ CAεA(0)2(1 + s)−1+2C1Aε.

Therefore

(1 + t + |x |)
∑
|α|≤4

|Γαu − wα|(t, x) ≤ CA(0)2

∫ t

0
(1 + s)−2+2C1Aεds.

It is easy to see that A(0) = O(ε). We take ε0 > 0 such that
4C1Aε < 1. Then for 0 < ε ≤ ε0 there holds

(1 + t + |x |)
∑
|α|≤4

|Γαu(t, x)− wα(t, x)| ≤ Cε2

185/262



By shrinking ε > 0 if necessary, we can obtain∑
|α|≤4

|Γαu(t, x)− wα(t, x)| ≤ Aε

4(1 + t + |x |)

This will complete the proof of (65) if we could show that∑
|α|≤4

|wα(t, x)| ≤ Aε

4(1 + t + |x |)
. (70)

To see (70), we observe that |Γαu(0, ·)| ≤ Cαε with Cα depending
on α and f , g . Since wα is the solution of a linear wave equation,
by the representation formula, we can conclude∑

|α|≤4

|wα(t, x)| ≤ Cαε

1 + t + |x |
∀(t, x) ∈ [0,∞)× R3.

By adjusting A to be a larger one, we obtain (70). �
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6.4. Proof of Theorem 31: an estimate of Hörmander

Theorem 31 (Hörmander)

There exists C such that if F ∈ C 2([0,∞)×R3) and �u = F with
vanishing initial data at t = 0, then

(1 + t + |x |)|u(t, x)| ≤ C
∑
|α|≤2

∫ t

0

∫
R3

|ΓαF (s, y)| dyds

1 + s + |y |
(71)

We first indicate how to reduce the proof of Theorem 31 to some
special cases. Take ϕ ∈ C∞(R4) such that

ϕ(s, y) =

{
0 when s2 + |y |2 > 2/3
1 when s2 + |y |2 < 1/3

and write F = F1 + F2, where F1 = ϕF and F2 = (1− ϕ)F .
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Then

supp(F1) ⊂ B(0, 2/3) and supp(F2) ⊂ R4 \ B(0, 1/3).

Define u1 and u2 by �uj = Fj with vanishing Cauchy data, then
u = u1 + u2. If the inequality in Theorem 31 holds true for u1 and
u2, then it is also true for u, considering that |Γαϕ| ≤ Cα.

Therefore, we may assume either

F is zero in a neighborhood of the origin, or

F is supported around the origin.

We need the representation formula for u satisfying �u = F with
vanishing Cauchy data at t = 0.
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Recall that the solution of the Cauchy problem �u = 0 with
u(0, ·) = 0 and ∂tu(0, ·) = g is given by

u(t, x) =
1

4πt

∫
|y−x |=t

g(y)dσ(y). (72)

Lemma 32

The solution of �u = F with vanishing Cauchy data at t = 0 is
given by

u(t, x) =
1

4π

∫
|y |<t

F (t − |y |, x − y)
dy

|y |
. (73)

Proof. The Duhamel’s principle says that u(t, x) =
∫ t

0 v(t, x ; s)ds,
where, for each fixed s, v(t, x ; s) satisfies

∂2
t v −∆v = 0, v(s, x ; s) = 0, ∂tv(s, x ; s) = F (s, x).
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In view of the representation formula (72) we have

v(t, x ; s) =
1

4π(t − s)

∫
|y−x |=t−s

F (s, y)dσ(y).

Therefore

u(t, x) =
1

4π

∫ t

0

∫
|y−x |=t−s

F (s, y)

t − s
dσ(y)ds

=
1

4π

∫ t

0

∫
|z|=τ

F (t − τ, x − z)

τ
dσ(z)dτ

=
1

4π

∫
|z|<t

F (t − |z |, x − z)
dz

|z |
.

This completes the proof. �
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Corollary 33

(a) Maximum Principle: Assume that u1 and u2 satisfy
�uj = Fj with vanishing Cauchy data at t = 0. If |F1| ≤ F2,
then |u1| ≤ u2.

(b) If F is spherically symmetric in the spatial variables, i.e
F (t, x) = F̃ (t, |x |), then the solution u of �u = F with
vanishing Cauchy data at t = 0 is also spherically symmetric,
i.e. u(t, x) = ũ(t, |x |), where

ũ(t, r) =
1

2r

∫ t

0

∫ r+t−s

|r−(t−s)|
F̃ (s, ρ)ρdρds.

Proof. (a) follows immediately from (73) in Lemma 32.
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(b) The spherical symmetry of u follows from the formula (73).
Let r = |x | and e3 = (0, 0, 1). Then

u(t, x) = u(t, re3) =
1

4π

∫
|y |<t

F̃ (t − |y |, |re3 − y |) dy

|y |

Taking the polar coordinates y = τ(sin θ cosφ, sin θ sinφ, cos θ)
and using |re3 − y | =

√
r 2 − 2rτ cos θ + τ2, we obtain

u(t, x) =
1

4π

∫ t

0

∫ 2π

0

∫ π

0
F̃ (t − τ,

√
r 2 − 2rτ cos θ + τ2)τ sin θdθdφdτ.

Let ρ =
√

r 2 − 2rτ cos θ + τ2. Since ρdρ = rτ sin θdθ, we have

u(t, x) =
1

2r

∫ t

0

∫ r+τ

|r−τ |
F̃ (t − τ, ρ)ρdρdτ.

This completes the proof by setting s = t − τ . �
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Lemma 34

There exists C such that if �u = F with F ∈ C 2([0,∞)×R3) and
vanishing Cauchy data at t = 0 then

|x ||u(t, x)| ≤ C

∫ t

0

∫
R3

∑
|α|≤2

|ΓαF (s, y)|dyds

|y |

where the sum involves Γ = Ωij , 1 ≤ i < j ≤ 3 only.

Proof. Define the radial majorant of F by

F ∗(t, r) := sup
ω∈S2

|F (t, rω)|,

and let u∗(t, x) solve �u∗(t, x) = F ∗(t, |x |) with vanishing Cauchy
data at t = 0.
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It follows from Corollary 33(a) that

|u(t, x)| ≤ u∗(t, x).

In view of Corollary 33(b) we then obtain with r := |x | that

|x ||u(t, x)| ≤ |x |u∗(t, x) =
1

2

∫ t

0

∫ r+(t−s)

|r−(t−s)|
F ∗(s, ρ)ρdρds. (74)

Using the Sobolev inequality on S2, see Lemma 17(a), we have

F ∗(s, ρ) = sup
ω∈S2

|F (s, ρω)| ≤ C
∑
|α|≤2

∫
S2

|(ΓαF )(s, ρν)|dσ(ν),

where the sum involves only Γ = Ωij with 1 ≤ i < j ≤ 3.
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Combining this with (74) yields

|x ||u(t, x)| ≤ C
∑
|α|≤2

∫ t

0

∫ r+(t−s)

|r−(t−s)|

∫
S2

(ΓαF )(s, ρω)|ρdσ(ω)dρds

≤ C
∑
|α|≤2

∫ t

0

∫ ∞
0

∫
S2

(ΓαF )(s, ρω)|ρdσ(ω)dρds

= C
∑
|α|≤2

∫ t

0

∫
R3

|(ΓαF )(s, y)|dyds

|y |
.

The proof is complete. �

Now we are ready to give the proof of Theorem 31. We first
consider the case that F is supported around the origin.
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Proposition 35

Let u satisfy �u = F with F ∈ C 2([0,∞)× R3) and vanishing
Cauchy data at t = 0. If F is supported around the origin, say,
supp(F ) ⊂ {(s, y) : s + |y | < 1/3}, then

(1 + t + |x |)|u(t, x)| ≤ C

∫ t

0

∫
R3

∑
|α|≤2

|ΓαF (s, y)| dyds

1 + s + |y |

where the sum only involves the vector fields Γ = ∂j , 0 ≤ j ≤ 3.

Proof. We claim that u(t, x) = 0 if |t − |x || > 1/3. Indeed, recall
that

u(t, x) =
1

4π

∫
|y |<t

F (t − |y |, x − y)
dy

|y |
.
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It is easy to see that for |y | < t there hold

(t − |y |) + |x − y | ≥ |t − |x ||

Therefore when |t − |x || > 1/3 we have

F (t − |y |, x − y) = 0 for all |y | < t.

Consequently u(t, x) = 0 if |t − |x || > 1/3.

Case 1. |x | ≤ t/2. Since t + |x | > 1, we have t > 2/3. So

|t − |x || = t − |x | > 1

2
t >

1

3
.

Consequently u(t, x) = 0 and the inequality holds trivially.
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Case 2. |x | > t/2. We may use Lemma 34 to obtain

|x ||u(t, x)| ≤ C

∫ t

0

∫
R3

|F (s, y)|dyds

|y |

+ C
∑

1≤|α|≤2

∫ t

0

∫
R3

|(ΓαF )(s, y)|dyds

|y |
,

where the sum involves only Γ = Ωij , 1 ≤ i < j ≤ 3. Since

|ΩijF (s, y)| . |y ||∂yF (s, y)|

and F (s, y) = 0 for s + |y | > 1/3, we have

|ΓαF (s, y)| ≤ C |y |
∑

1≤|β|≤2

|(∂βy F )(s, y)|.
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Therefore, using |x | ≥ (t + |x |)/3, we have

(t + |x |)|u(t, x)| ≤ C

∫ t

0

∫
R3

|F (s, y)|dyds

|y |

+ C
∑

1≤|α|≤2

∫ t

0

∫
R3

|(∂αy F )(s, y)|dyds. (75)

In order to proceed further, we need

Lemma 36

If ϕ(r) is C 1 and vanishes for large r , then∫ ∞
0
|ϕ(r)|rdr ≤ 1

2

∫ ∞
0
|ϕ′(r)|r 2dr .
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Using Lemma 36, we have∫
R3

|F (s, y)

|y |
dy =

∫
S2

∫ ∞
0
|F (s, rω)|rdrdσ(ω)

≤ 1

2

∫
S2

∫ ∞
0

∣∣∣∣ ∂∂r
(F (s, rω))

∣∣∣∣ r 2drdσ(ω)

≤ 1

2

∫
S2

∫ ∞
0
|(∂yF )(s, rω)| r 2drdσ(ω)

=
1

2

∫
R3

|(∂yF )(s, y)| dy .

This, together with (75) and F (s, y) = 0 for s + |y | > 1/10, gives
the desired inequality. �
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Proof of Lemma 36. Since |ϕ(ρ)| is Lipschitz, d
dρ |ϕ| exists a.e. and∣∣∣∣ d

dρ
|ϕ(ρ)|

∣∣∣∣ ≤ |ϕ′(ρ)| a.e.

Since ϕ(ρ) vanishes for large ρ, we have

0 =

∫ ∞
0

d

dρ

(
|ϕ(ρ)|ρ2

)
dρ =

∫ ∞
0

(
2|ϕ(ρ)|ρ+

(
d

dρ
|ϕ(ρ)|

)
ρ2

)
dρ.

Therefore

2

∫ ∞
0
|ϕ(ρ)|ρdρ ≤

∫ ∞
0

∣∣∣∣ d

dρ
|ϕ(ρ)|

∣∣∣∣ ρ2dρ ≤
∫ ∞

0
|ϕ′(ρ)|ρ2dρ.

The proof is complete. �
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To complete the proof of Theorem 31, we remains only to consider
the case that F vanishes in a neighborhood of the origin. We need
a calculus lemma.

Lemma 37

For any f ∈ C 1([a, b]) there holds

|f (t)| ≤ 1

b − a

∫ b

a
|f (s)|ds +

∫ b

a
|f ′(s)|ds, ∀t ∈ [a, b].

Proof.By the fundamental theorem of calculus we have

f (t) = f (s) +

∫ t

s
f ′(τ)dτ, ∀t, s ∈ [a, b]
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which implies

|f (t)| ≤ |f (s)|+
∫ b

a
|f ′(τ)|dτ.

Integration over [a, b] with respect to s yields the inequality. �

Proposition 38

Let u satisfy �u = F with F ∈ C 2([0,∞)× R3) and vanishing
Cauchy data at t = 0. If F vanishes in a neighborhood of the
origin, say, supp(F ) ⊂ {(s, y) : s + |y | > 1/6}, then

(1 + t + |x |)|u(t, x)| ≤ C

∫ t

0

∫
R3

∑
|α|≤2

|ΓαF (s, y)| dyds

1 + s + |y |

where the sum only involves the homogeneous vector fields Γ = L0

and Ωij , 0 ≤ i < j ≤ 3.
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Proof. Since supp(F ) ⊂ {(s, y) : s + |y | > 1/6}, it is equivalent to
showing that

(t + |x |)|u(t, x)| ≤ C

∫ t

0

∫
R3

∑
|α|≤2

|ΓαF (s, y)| dyds

s + |y |
. (76)

We mention that it suffices to prove (76) for t = 1. In fact, if it is
done for t = 1, we consider the function uλ(t, x) := u(λt, λx) for
each λ > 0. Then

�uλ = Fλ, with Fλ(t, x) := λ2F (λt, λx).

We apply (76) to uλ with t = 1 to obtain

(1 + |x |)|uλ(1, x)| ≤ C

∫ 1

0

∫
R3

∑
|α|≤2

|ΓαFλ(s, y)| dyds

s + |y |
.
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Since Γ are homogeneous vector fields, we have

(ΓαFλ)(s, y) = λ2(ΓαF )(λs, λy).

Since uλ(1, x) = u(λ, λx), this and the above inequality imply

(1 + |x |)|u(λ, λx)| ≤ C
∑
|α|≤2

∫ 1

0

∫
R3

λ2|(ΓαF )(λs, λy)| dyds

s + |y |

= Cλ−1
∑
|α|≤2

∫ λ

0

∫
R3

|(ΓαF )(τ, z)| dzdτ

τ + |z |

Therefore

(λ+ |λx |)|u(λ, λx)| ≤ C
∑
|α|≤2

∫ λ

0

∫
R3

|(ΓαF )(τ, z)| dzdτ

τ + |z |
.
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Since λ > 0 is arbitrary and λx can be any point in R3, we obtain
(76) for any t > 0.

In the following we will prove (76) for t = 1.

We need a reduction. By taking ϕ ∈ C∞([0,∞) with ϕ(r) = 1 for
0 ≤ r ≤ 1/3 and ϕ(r) = 0 for r ≥ 1/2, we can write F = F1 + F2,
where

F1(s, y) := ϕ(|y |/s)F (s, y), F2(s, y) := (1− ϕ(|y |/s))F (s, y).

Since ϕ(|y |/s) is homogeneous of degree 0, for any homogeneous
vector field Γ we have |Γαϕ| . 1 for all |α| ≤ 2. Consequently∑

|α|≤2

(|ΓαF1|+ |ΓαF2|) .
∑
|α|≤2

|ΓαF |.
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Thus, if (76) with t = 1 holds true for F1 and F2, it also holds true
for F . Since

supp(F1) ⊂ {(s, y) : |y | ≤ s/2}, supp(F2) ⊂ {(s, y) : |y | ≥ s/3},

therefore, we need only consider two situations;

• F (s, y) = 0 when |y | > s/2; or

• F (s, y) = 0 when |y | < s/3.

(i) We first assume that F (s, y) = 0 when |y | > s/2. Using (73) it
is easy to see that u(1, x) = 0 if |x | > 1. Thus, we may assume
|x | ≤ 1. It then follows from (73) with t = 1 that

4π|u(1, x)| ≤
∫
|y |<1

|F (1− |y |, x − y)| dy

|y |
= I1 + I2,
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where

I1 =

∫
1
2<|y |<1

|F (1− |y |, x − y)| dy

|y |
, I2 =

∫
|y |≤ 1

2

|F (1− |y |, x − y)| dy

|y |

To deal with I1, By Lemma 37 we obtain

|F (1− |y |, x − y)| .
∫ 1

0
(|F (s, x − y)|+ |∂sF (s, x − y)|) ds.

Therefore

I1 .
∫ 1

0

∫
1
2
<|y |<1

(|F (s, x − y)|+ |∂sF (s, x − y)|) dyds

.
∫ 1

0

∫
R3

(|F (s, y)|+ |∂sF (s, y)|) dyds
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Since supp(F ) ⊂ {(s, y) : |y | < s/2}, from Lemma 13 it follows

|∂sF | . 1

s + |y |
∑
|α|=1

|ΓαF |,

where the sum involves only the homogeneous vector fields. So

I1 .
∫ 1

0

∫
R3

∑
|α|≤1

|ΓαF (s, y)| dyds

s + |y |
.

Next we consider I2. We use Lemma 37 on [1/2, 1] to derive that

|F (1− |y |, x − y)| .
∫ 1

1
2

(|F (s, x − y)|+ |∂sF (s, x − y)|) ds.
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Thus

I2 .
∫ 1

1
2

∫
|y |≤ 1

2

(|F |+ |∂sF |)(s, x − y)
dyds

|y |

We may use Lemma 36 as before to derive that

I2 .
∫ 1

1
2

∫
R3

(|∂yF |+ |∂y∂sF |)(s, y)dyds.

Since supp(F ) ⊂ {(s, y) : |y | < s/2} and 1/2 < s < 1, we have
from Lemma 13 that

|∂sF |+ |∂y∂sF | . 1

s + |y |
∑

1≤|α|≤2

|ΓαF |.
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Therefore

I2 .
∫ 1

1
2

∫
R3

∑
1≤|α|≤2

|ΓαF (s, y)| dyds

s + |y |

Combining the estimates on I1 and I2 we obtain the desired
inequality.

(ii) Next we consider the case that F (s, y) = 0 when |y | < s/3.

If |x | ≥ 1/4, then we have from Lemma 34 that

(1 + |x |)|u(1, x)| . |x ||u(1, x)| .
∫ 1

0

∫
R3

|ΓαF (s, y)| dyds

s + |y |

as desired.
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So we may assume |x | < 1/4. We will use (73). Observing that

(1− |y |, x − y) ∈ supp(F ) =⇒ |x − y | > 1

3
(1− |y |)

=⇒ 4

3
|y | > 1

3
− |x | > 1

12
=⇒ |y | > 1

16
.

Therefore, it follows from (73) that

|u(1, x)| .
∫

1
16
<|y |<1

|F (1− |y |, x − y)|dy .

Consider the transformation

ϕ(τ, y) := τ(1− |y |, x − y),

where 1/16 < |y | < 1 and 1 < τ < 16/15.

212/262



By Lemma 37 we have

F (1− |y |,x − y) ≤ F (ϕ(τ, y))|

.
∫ 16

15

1

(
|F (ϕ(τ, y))|+

∣∣∣∣ ∂∂τ (F (ϕ(τ, y)))

∣∣∣∣) dτ

Observing that

∂

∂τ
(F (ϕ(τ, y)) =

1

τ
(L0F )(ϕ(τ, y)).

Therefore

|u(1, x)| .
∫ 16

15

0

∫
1

16
<|y |<1

(|F |+ |L0F |) (ϕ(τ, y))dydτ.
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Under the transformation (s, z) := ϕ(τ, y), the domain

{(τ, y) : 1 < τ < 16/15, 1/16 < |y | < 1}

becomes a domain contained in

{(s, z) : 0 < s < 1, |z | < 2}.

The Jacobian of the transformation is τ3(1− x · y/|y |) which is
bounded below by 3/4. Therefore

|u(1, x)| .
∫ 1

0

∫
|z|≤2

(|F |+ |L0F |)(s, z)dzds

.
∫ 1

0

∫
R3

(|F |+ |L0F |)(s, z)
dzds

s + |y |
.

The proof is thus complete. �
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7. Littlewood-Paley theory
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Localization is a fundamental notion in analysis. Given a function,
localization means restricting it to a small region in physical space,
or frequency space.

Physical space localization is the most familiar. To localize a
function f (x) on a open set, say, Br (x0), in physical space,
one can choose a C∞0 function χ supported on Br (x0) which
equals to 1 on Br/2(x0). Then χ(x)f (x) gives the localization.

Frequency space localization is an equally important notion.
Let f̂ (ξ) denote the Fourier transform of a function f (x).
Given a domain D in frequency space, one can choose a
smooth function χ(ξ) supported on D and define a function
(πD f )(x) with

π̂D f (ξ) := χ(ξ)f̂ (ξ).

Then πD f is a frequency space localization of f over D.
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Littlewood-paley decomposition of functions is based on frequency
space localization.

7.1 Definition and basic properties

There is certain amount of flexibility in setting up the Littlewood
-Paley decomposition on Rn. One standard way is as follows:

Let φ(ξ) be a real radial bump function with

φ(ξ) =

{
1, |ξ| ≤ 1,
0, |ξ| ≥ 2.

Let ψ(ξ) be the function

ψ(ξ) := φ(ξ)− φ(2ξ).
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Then ψ is a bump function supported on {1/2 ≤ |ξ| ≤ 2} and∑
k∈Z

ψ(ξ/2k) = 1, ∀ξ 6= 0. (77)

Define the Littlewood-Paley (LP) projections Pk and P≤k by

P̂k f (ξ) = ψ(ξ/2k)f̂ (ξ), P̂≤k f (ξ) = φ(ξ/2k)f̂ (ξ)

In physical space
Pk f = mk ∗ f , (78)

where mk(x) := 2nkm(2kx) and m(x) is the inverse Fourier
transform of ψ(ξ). Sometimes we write fk := Pk f .

Using the Littlewood-Paley projections, we can decompose any L2

function into the sum of frequency localized functions.
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Lemma 39

For any f ∈ L2(Rn) there holds f =
∑
k∈Z

Pk f .

Proof. By definition, we have for any N,M > 0 that∑
−M≤k≤N

P̂k f (ξ) =
∑

−M≤k≤N

(
φ(ξ/2k)− φ(ξ/2k−1)

)
f̂ (ξ)

=
(
φ(ξ/2N)− φ(ξ/2−M−1)

)
f̂ (ξ).

Therefore ∥∥∥f−
∑

−M≤k≤N
Pk f

∥∥∥
L2

=
∥∥∥f̂ −

∑
−M≤k≤N

P̂k f
∥∥∥
L2

≤ ‖φ(2M+1·)f̂ ‖L2 + ‖(1− φ(2−N ·))f̂ ‖L2 .
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Since φ(2M+1ξ) is supported on {|ξ| ≤ 2−M} and φ(2−Nξ) = 1 on
{|ξ| ≤ 2N}. Therefore

∥∥∥f −
∑

−M≤k≤N
Pk f

∥∥∥
L2
.

(∫
|ξ|≤2−M

|f̂ (ξ)|2dξ

)1/2

+

(∫
|ξ|≥2N

|f̂ (ξ)|2dξ

)1/2

→ 0 as M,N →∞.

This complete the proof. �

In the following we give some important properties of the LP
projections. For any subset J ⊂ Z, we define PJ :=

∑
k∈J Pk .
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Theorem 40

(i) (Almost orthogonality) The operators Pk are selfadjoint and
Pk1 Pk2 = 0 whenever |k1 − k2| ≥ 2. In particular

‖f ‖2
L2 ≈

∑
k

‖Pk f ‖2
L2 (LP1)

(ii) (Lp-boundedness) For any 1 ≤ p ≤ ∞ and any interval J ⊂ Z,

‖PJ f ‖Lp ≤ ‖f ‖Lp (LP2)

(iii) (Finite band property) There hold

‖∂Pk f ‖Lp . 2k‖f ‖Lp , 2k‖Pk f ‖Lp . ‖∂f ‖Lp . (LP3)

For any partial derivative ∂Pk f there holds ∂Pk f = 2k P̃k f where P̃k

is a frequency cut-off operator associated to a different cut-off
function ψ̃, which remains supported on { 1

2 ≤ |ξ| ≤ 2} but may fail

to satisfy (77). The operators P̃k satisfy (LP2).
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Theorem (Theorem 40 continued)

(iv) (Bernstein inequality) For any 1 ≤ p ≤ q ≤ ∞ there holds

‖Pk f ‖Lq . 2kn(1/p−1/q)‖f ‖Lp , ‖P≤0f ‖Lq . ‖f ‖Lp (LP4)

(v) (Commutator estimates) For f , g ∈ C∞0 (Rn) define the commutator
[Pk , f ]g = Pk(fg)− fPkg. Then

‖[Pk , f ]g‖Lp . 2−k‖∇f ‖L∞‖g‖Lp . (LP5)

(vi) (Littlewood-Paley inequality). Let

Sf (x) :=

(∑
k∈Z
|Pk f (x)|2

) 1
2

.

For every 1 < p <∞ there holds

‖f ‖Lp . ‖Sf ‖Lp . ‖f ‖Lp , ∀f ∈ C∞0 (Rn). (LP6)
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Proof. (i) For any f , g ∈ L2(Rn), we have

〈Pk f , g〉 = 〈P̂k f , ĝ〉 = 〈ψ(2−k ·)f̂ , ĝ〉 = 〈f̂ , ψ(2−k ·)ĝ〉

= 〈f̂ , P̂kg〉 = 〈f ,Pkg〉.

Therefore Pk is self-adjoint. Since ψ(ξ/2k1)ψ(ξ/2k2) = 0 whenever
|k1 − k2| ≥ 2, we have

P̂k1Pk2f (ξ) = ψ(ξ/2k1)ψ(ξ/2k2)f̂ (ξ) = 0.

So Pk1Pk2f = 0 whenever |k1 − k2| ≥ 2. Next prove (LP1). We
first have

‖f ‖2
L2 =

∥∥∥∑
k∈Z

Pk f
∥∥∥2

L2
=
∑

k,k ′∈Z
〈Pk f ,Pk ′f 〉 =

∑
|k−k ′|≤1

〈Pk f ,Pk ′f 〉

≤
∑

|k−k ′|≤1

‖Pk f ‖L2‖Pk ′f ‖L2 ≤ 3
∑
k

‖Pk f ‖2
L2 .
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On the other hand, since ψ(ξ/2k) = 0 for 2k−1 ≤ |ξ| ≤ 2k+1, we
have∑

k∈Z
‖Pk f ‖2

L2 =
∑
k∈Z
‖P̂k f ‖2

L2 =
∑
k∈Z

∫
Rn

|ψ(ξ/2k)f̂ (ξ)|2dξ

.
∑
k∈Z

∫
2k−1≤|ξ|≤2k+1

|f̂ (ξ)|2dξ .
∫
Rn

|f̂ (ξ)|2dξ

= ‖f̂ ‖2
L2 = ‖f ‖2

L2 .

(ii) It suffices to prove (LP2) for J = (−∞, k] ⊂ Z, i.e.

‖P≤k f ‖Lp . ‖f ‖Lp . (79)

Let m̄(x) be the inverse Fourier transform of φ(ξ) and let m̄k(x)
:= 2nkm̄(2kx). Then

P≤k f = m̄k ∗ f .
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Since ‖m̄k‖L1 = ‖m̄‖L1 . 1, we have

‖P≤k f ‖Lp . ‖m̄k‖L1‖f ‖Lp . ‖f ‖Lp

where we used the Young’s inequality: for 1 ≤ p, q, r ≤ ∞ with
1 + 1

q = 1
r + 1

p , there holds

‖k ∗ f ‖Lq ≤ ‖k‖Lr ‖f ‖Lp (Young)

(iii) To prove (LP3), recall that Pk f = mk ∗ f , we have

∂j(Pk f ) = 2k(∂jm)k ∗ f ,

where (∂jm)k(x) = 2nk∂jm(2kx). Since ‖(∂jm)k‖L1 = ‖∂jm‖L1

. 1, by Young’s inequality,

‖∂j(Pk f )‖Lp . 2k‖f ‖Lp .
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Next we write

f̂ (ξ) =
n∑

j=1

ξj
i |ξ|2

∂̂xj f (ξ), ξ 6= 0.

Let χj(ξ) =
ξj

i |ξ|2ψ(ξ), we have

2k P̂k f (ξ) =
n∑

j=1

2k
ξj

i |ξ|2
ψ(ξ/2k)∂̂xj f (ξ) =

n∑
j=1

χj(ξ/2k)∂̂xj f (ξ).

Let hj be inverse Fourier transform of χj and (hj)k := 2nkhj(2kx),
then

2kPk f =
n∑

j=1

(hj)k ∗ ∂j f .
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Therefore

2k‖Pk f ‖Lp ≤
n∑

j=1

‖hj‖L1‖∂j f ‖Lp .
n∑

j=1

‖∂j f ‖Lp . ‖∂f ‖Lp .

(iv) To see (LP4), we use Pk f = mk ∗ f and Young’s inequality
with 1 + q−1 = r−1 + p−1 to obtain

‖Pk f ‖Lq = ‖mk ∗ f ‖Lq . ‖mk‖Lr ‖f ‖Lp .

The first inequality in (LP4) then follows, in view of

‖mk‖Lr = 2nk
(∫

Rn

|m(2kx)|rdx

) 1
r

= 2nk(1− 1
r

)‖m‖Lr . 2nk( 1
p
− 1

q
)
.

The second inequality in (LP4) follows directly from the first.
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We remark that Bernstein inequality is a remedy for the failure of
W

n
p
,p(Rn) ↪→ L∞(Rn). It implies the Sobolev inequality for each

LP component Pk f . The failure the Sobolev inequality for f is due
to the divergence of the summation f =

∑
k fk .

(v) We now prove (LP5). Since Pk f = mk ∗ f , we have

Pk(fg)(x)− f (x)Pkg(x) =

∫
Rn

mk(x − y)(f (y)− f (x))g(y)dy

Note that |f (y)− f (x)| ≤ |x − y |‖∂f ‖L∞ , we have

|Pk(fg)(x)− f (x)Pkg(x)| . 2−k‖∂f ‖L∞
∫
Rn

|m̄k(x − y)g(y)|dy

where m̄(x) = |x |m(x) and m̄k(x) = 2nkm̄(2kx). (LP5) then
follows by taking Lp-norm and using Young’s inequality.
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(vi) To prove (LP6), we need some Calderon-Zygmund theory.

Definition 41

A Calderon-Zygmund operator T is a linear operator on Rn of the
form

Tf (x) =

∫
Rn

K (x − y)f (y)dy

for some (possibly matrix valued) kernel K which obeys the bounds

|K (x , y)| . |x − y |−n, |∂K (x , y)| . |x − y |−n−1, x 6= y (80)

and T : L2(Rn)→ L2(Rn) is bounded.

Proposition 42

Calderon-Zygmund operators are bounded from Lp into Lp for any
1 < p <∞. They are not bounded, in general, for p = 1 and
p =∞.
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We first prove ‖Sf ‖Lp . ‖f ‖Lp . To this end, we introduce the
linear operator

Sf (x) = (Pk f (x))k∈Z.

It is easy to see that S has vector valued kernel

K (x , y) :=
(

2nkm(2k(x − y))
)
k∈Z

,

where m is the inverse Fourier transform of ψ. Observing that m is
a Schwartz function, (80) can be verified easily. Moreover, (LP1)
implies that S : L2 → L2 is bounded. So S is a Calderon-Zygmund
operator and Proposition 42 implies that

‖Sf ‖Lp = ‖|Sf |`2‖Lp . ‖f ‖Lp .
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Next we prove ‖f ‖Lp . ‖Sf ‖Lp by duality argument. For any
Schwartz function g , by using PkPk ′ = 0 for |k − k ′| ≥ 2, the
Cauchy-Schwartz inequality, and the Hölder inequality, we have∫

f (x)g(x)dx =

∫ ∑
k,k ′∈Z

Pk f (x)Pk ′g(x)dx

=

∫ ∑
|k−k ′|≤1

Pk f (x)Pk ′g(x)dx

.
∫ (∑

k

|Pk f (x)|2
) 1

2
(∑

k ′

Pk ′g(x)|2
) 1

2

dx

. ‖Sf ‖Lp‖Sg‖Lp′ . ‖Sf ‖Lp‖g‖Lp′ ,

where 1/p + 1/p′ = 1. This implies ‖f ‖Lp . ‖Sf ‖Lp . �
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Spaces of functions

The Littlewood- Paley theory can be used to give alternative
descriptions of Sobolev spaces and introduce new, more refined,
spaces of functions. In view of LP1,

‖f ‖L2 ≈
∑
k∈Z
‖Pk f ‖2

L2 .

We can give a LP description of the homogeneous Sobolev norms
‖ · ‖Ḣs(Rn).

‖f ‖2
Ḣs ≈

∑
k∈Z

22ks‖Pk f ‖2
L2 ,

and for the Hs norms

‖f ‖2
Hs ≈

∑
k∈Z

(1 + 2k)2s‖Pk f ‖2
L2 .
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Definition 43

The Besov space Bs
2,1 is the closure of C∞0 (Rn) relative to the

norm
‖f ‖Bs

2,1
=
∑
k∈Z

(1 + 2k)s‖Pk f ‖L2 .

and the corresponding homogeneous Besov norm is defined by

‖f ‖Ḃs
2,1

=
∑
k∈Z

2sk‖Pk f ‖L2 .

Observe that Hs ⊂ Bs
2,1. We have the following embedding

inequality by LP4
‖f ‖L∞ . ‖f ‖

Ḃ
n
2

2,1

.
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7.2 Product estimates

The LP calculus is particularly useful for nonlinear estimates.
Let f , g be two functions on Rn. Consider

Pk(fg) = Pk

 ∑
k ′,k ′′∈Z

Pk ′f · Pk ′′g

 . (81)

Now since Pk ′f has Fourier support D ′ = {2k ′−1 ≤ |ξ| ≤ 2k
′+1}

and Pk ′′f has Fourier support D ′′ = {2k ′′−1 ≤ |ξ| ≤ 2k
′′+1}. It

follows that Pk ′f · Pk ′′g has Fourier support in D ′ + D ′′. We only
get a nonzero contribution in the sum of (81) if D ′ + D ′′ intersects
{2k−1 ≤ |ξ| ≤ 2k+1}. Therefore, writing fk = Pk f , f<k = P<k f ,
and fJ := PJ f for any interval J ⊂ Z, we can derive that
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Proposition 44 (Trichotomy)

Given functions f , g we have the following decomposition

Pk(f · g) = HHk(f , g) + LLk(f , g) + LHk(f , g) + HLk(f , g)

with

HHk(f , g) =
∑

k ′,k ′′>k+5,|k ′−k ′′|≤3

Pk(fk ′ · gk ′′)

LLk(f , g) = Pk(f[k−5,k+5] · g[k−5,k+5])

LHk(f , g) = Pk(f≤k−5 · g[k−3,k+3])

HLk(f , g) = Pk(f[k−3,k+3] · g≤k−5),

where LLk consists of a finite number of terms, which can be
typically ignored.
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For applications, we can further simplify terms as follows,

HHk(f , g) = Pk(
∑
m>k

fm · gm), LHk(f , g) = Pk(f<kgk),

HLk(f , g) = Pk(fk · g<k). (82)

We now make use of Proposition 44 to prove a product estimate

Proposition 45

The following estimate holds true for all s > 0

‖fg‖Hs . ‖f ‖L∞‖g‖Hs + ‖g‖L∞‖f ‖Hs . (83)

Thus for all s > n/2,

‖fg‖Hs . ‖f ‖Hs‖g‖Hs . (84)
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Proof. Since ‖f · g‖2
Hs ≈

∑
k∈Z(1 + 2k)2s‖Pk(f · g)‖2

L2 , it suffices
to consider the higher frequency part

I =
∑
k≥0

22ks‖Pk(f · g)‖2
L2

By using (82), we proceed by using LP2 and Hölder’s inequality

I1 =
∑
k≥0

‖2ksHLk(f , g)‖2
L2 . ‖f ‖2

Hs‖g‖2
L∞

I2 =
∑
k≥0

‖2ksLHk(f , g)‖2
L2 . ‖f ‖2

L∞‖g‖2
Hs

I3 =
∑
k≥0

‖2ksHHk(f , g)‖2
L2 . ‖

∑
m>k

2(k−m)s2ms‖Pmf ‖L2‖2
l2k
‖g‖2

L∞

. ‖f ‖2
Hs‖g‖2

L∞

where we employed Young’s inequality to derive the last inequality.
By combining I1, I2 and I3, we complete the proof.
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8 Strichartz estimates
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We will prove some Strichartz estimates for linear wave equation
and derive a global existence result for a semilinear wave equation.
Given a function u(t, x) defined on R×Rn, for any q, r ≥ 1 we use
the notation

‖u‖Lqt Lrx :=

(∫
R

(∫
Rn

|u(t, x)|rdx

) q
r

dt

) 1
q

.

8.1 Homogeneous Strichartz estimates

We start with the homogeneous linear wave equation

�u = 0 on R1+n with n ≥ 2,

u(0, ·) = f , ∂tu(0, ·) = g .
(85)
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Theorem 46

Let u be the solution of (85). There holds

‖u‖Lqt Lrx ≤ C (‖f ‖Ḣs + ‖g‖Ḣs−1) (86)

where s = n
2 −

1
q −

n
r for any pair (q, r) that is wave admissible , i.e.

2 ≤ q ≤ ∞, 2 ≤ r <∞, and
2

q
≤ n − 1

2

(
1− 2

r

)
.

We will prove Theorem 46 except the so-called endpoint cases

1 =
2

q
=

n − 1

2

(
1− 2

r

)
.

One may refer to (Keel-Tao, Amer J. Math., 1998) for a proof.
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The proof of Theorem 46 is based the Littlewood-Paley theory and
consists of several steps.

Step 1 Applying the Littlewood Paley projection Pk to (85), and
using the commutativity between Pk and �, we obtain

�Pku = 0 on R× Rn

Pku|t=0 = Pk f , ∂tPku|t=0 = Pkg .
(87)

We claim that it suffices to show

‖Pku‖Lqt Lrx . 2sk‖Pk f ‖L2
x

+ 2(s−1)k‖Pkg‖L2
x
, ∀k ∈ Z, (88)

where s = n
2 −

n
r −

1
q .
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In fact, since r ≥ 2, q ≥ 2, and u =
∑

k∈Z Pku, by using Theorem
40 (vi) and the Minkowski inequality we have

‖u‖Lqt Lrx .

∥∥∥∥∥∥
(∑

k∈Z
|Pku|2

)1/2
∥∥∥∥∥∥
Lqt L

r
x

.

(∑
k∈Z
‖Pku‖2

Lqt L
r
x

)1/2

.

(∑
k∈Z

(
22sk‖Pk f ‖2

L2
x

+ 22(s−1)k‖Pkg‖2
L2
x

))1/2

. ‖f ‖Ḣs + ‖g‖Ḣs−1 .

Step 2. We next show that (88) can be derive from the estimate

‖P0u‖Lqt Lrx . ‖P0f ‖L2
x

+ ‖P0g‖L2
x

(89)

for any solution u of (85).
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In fact, by letting

uk(t, x) := u(2−kt, 2−kx),

fk(x) := f (2−kx),

gk(x) := 2−kg(2−kx).

Then there holds

�uk = 0 on R× Rn,

uk(0, ·) = fk , ∂tuk(0, ·) = gk .

Therefore (89) can be applied for uk to obtain

‖P0uk‖Lqt Lrx . ‖P0fk‖L2
x

+ ‖P0gk‖L2
x
. (90)
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By straightforward calculation we have

‖P0uk‖Lqt Lrx = 2( n
r

+ 1
q

)k‖Pku‖Lqt Lrx ,

‖P0fk‖L2
x

= 2
nk
2 ‖Pk f ‖L2

x
,

‖P0gk‖L2
x

= 2( n
2
−1)k‖Pkg‖L2

x
.

These identities together with (90) give (88).

Step 3. It remains only to prove (89) for any solution u of (85).
Let û(t, ξ) be the Fourier transform of x → u(t, x). Then

∂2
t û + |ξ|2û = 0, û(0, ·) = f̂ , ∂t û(0, ·) = ĝ .

This show that

û(t, ξ) =
1

2

(
f̂ (ξ) +

ĝ(ξ)

i |ξ|

)
e it|ξ| +

1

2

(
f̂ (ξ)− ĝ(ξ)

i |ξ|

)
e−it|ξ|,
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i.e. û(t, ξ) is a linear combination of e±it|ξ|f̂ (ξ) and e±it|ξ| ĝ(ξ)
|ξ| .

Define e it
√
−∆ by

̂e it
√
−∆f (ξ) = e it|ξ|f̂ (ξ).

Then, it suffices to show

‖P0e it
√
−∆f ‖Lqt Lrx . ‖f ‖L2(Rn) (91)

To derive (91) we need to employ a T T ∗ argument. Recall that,
for 1 ≤ p <∞,

‖f ‖Lp = sup{|〈f , ϕ〉| : ϕ ∈ S, ‖ϕ‖Lp′ ≤ 1},

where p′ denotes the conjugate exponent of p, i.e. 1/p + 1/p′ = 1.
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Similarly, for 1 ≤ q, r <∞, one has for the mixed norms,

‖F‖Lqt Lrx = sup{|〈F ,Φ〉| : Φ ∈ S, ‖Φ‖
Lq
′

t Lr′x ≤1
}. (92)

Lemma 47 (TT ∗ argument)

The following statements are equivalent:

(i) T : L2
x → Lq

t Lr
x is bounded,

(ii) T ∗ : Lq′

t Lr ′
x → L2

x is bounded,

(iii) T T ∗ : Lq′

t Lr ′
x → Lq

t Lr
x is bounded.

Proof. For any f ∈ L2
x and F ∈ Lq

t Lr
x we have

|〈T f ,F 〉| = |〈f , T ∗F 〉| ≤ ‖f ‖L2
x
‖T ∗F‖L2

x
,
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It follows from (92) that (ii) implies (i), and the converse follows
from

|〈f , T ∗F 〉| = |〈T f ,F 〉| ≤ |T f ‖Lqt Lrx‖F‖Lq′t Lr′x
.

Obviously (i) and (ii) together imply (iii). Since

‖T ∗F‖2
L2 = 〈T ∗F , T ∗F 〉 = 〈F , T T ∗F 〉 ≤ ‖F‖

Lq
′

t Lr′x
‖T T ∗F‖Lqt Lrx ,

we conclude (iii) implies (ii). �

Return to the proof of (91). We define T : L2 → Lq
t Lr

x by

T f := P0e it
√
−∆f =

∫
Rn

e i(t|ξ|+x ·ξ)ψ(ξ)f̂ (ξ)dξ, (93)

where ψ(ξ) is the symbol of the Littlewood Paley projections.
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Let T ∗ : Lq′

t Lr ′
x → L2

x be the formal adjoint of T . By Lemma 47, to
show ‖T f ‖Lqt Lrx . ‖f ‖L2 , it suffices to show

‖T T ∗‖
Lq
′

t Lr′x →Lqt L
r
x
. 1.

We need to calculate T ∗F . By definition,

〈f , T ∗F 〉L2
x

=

∫
R

∫
Rn

T f · F̄ dxdt =

∫
R

∫
Rn

e it|ξ|ψ(ξ)f̂ (ξ)F̂ (t, ξ)dξdt

=

∫
Rn

f (x)

(∫
R

∫
Rn

e−ix ·ξe it|ξ|ψ(ξ)F̂ (t, ξ)dξdt

)
dx .

This shows that

T ∗F (x) =

∫
R

∫
Rn

e i(x ·ξ−t|ξ|)ψ̄(ξ)F̂ (t, ξ)dξdt.
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Therefore

T̂ T ∗F (t, ξ) = e it|ξ|ψ(ξ)T̂ ∗F (ξ) =

∫
R

e i(t−s)|ψ(ξ)|2F̂ (s, ξ)ds

Let

Kt(x) = K (t, x) :=

∫
Rn

e i(x ·ξ+t|ξ|)|ψ(ξ)|2dξ.

Then

T T ∗F (t, x) =

∫
R

K (t − s, ·) ∗ F (s, ·)(x)ds.

where K (t − s, ·) ∗ F (s, ·)(x) :=
∫
Rn K (t − s, y)F (s, x − y)dy . We

claim

‖K (t − s, ·) ∗ F (s, ·)‖L2
x
≤ C‖F (s, ·)‖L2

x
(94)

‖K (t − s, ·) ∗ F (s, ·)‖L∞x ≤
C‖F (s, ·)‖L1

x

(1 + |t − s|)
n−1

2

(Disp)
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Assuming the claim, by interpolation we have for r ≥ 2 that

‖K (t − s, ·) ∗ F (s, ·)‖Lrx .
‖F (s, ·)‖Lr′x

(1 + |t − s|)γ(r)
(95)

with γ(r) = n−1
2 (1− 2

r ). Thus we have

‖T T ∗F (t, ·)‖Lrx =

∫
‖K (t − s, ·) ∗ F (s, ·)‖Lrx ds

.
∫ ‖F (s, ·)‖Lr′x

(1 + |t − s|)γ(r)
ds. (96)

It remains to take Lq
t , for which we consider two cases 2/q < γ(r)

and 2/q = γ(r).
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Case 1. 2/q < γ(r). Note that (1 + |t|)−γ(r) is L
q
2 (R). We need

to use the Young’s inequality

‖f ∗ g‖Lq ≤ ‖f ‖La‖g‖Lb (97)

where 1 ≤ a, b, q ≤ ∞ satisfy 1 + 1
q = 1

a + 1
b .

We apply (97) with f = (1 + |t|)−γ(r), g = ‖F (s)‖Lr′x , a = q/2 and

b = q′. It then follows that

‖T T ∗F‖Lqt Lrx . ‖F‖Lq′t Lr′x
.

Case 2. 2/q = γ(r). We need the Hardy-Littlewood inequality.

251/262



Theorem 48 (Hardy-Littlewood inequality)

Let 0 ≤ λ < 1. Assume that 1
a + 1

b + λ
n = 2, there holds∫

Rn

∫
Rn

f (x)|x − y |−λg(y)dxdy ≤ ‖f ‖La‖g‖Lb . (98)

We now take any ϕ(t) ∈ Lq(R). It then follows from (96) and (98)
with f = ‖F (s, ·)‖Lr′x , g = |ϕ|, a = b = q′, λ = γ(r) and n = 1
that∫
R
‖T T ∗F (t, ·)‖Lrxϕ(t)dt .

∫
R

∫
R
‖F (s, ·)‖Lr′x |t − s|−γ(r)|ϕ(t)|dsdt

. ‖‖F (s, ·)‖Lr′x ‖Lq′t ‖ϕ‖Lq
′

t
.
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Therefore
‖T T ∗F‖Lqt Lrx . ‖F‖Lq′t Lr′x

.

Remark. (98) does not work for the end-point case that 2
q =

γ(r) = 1, which is settled by using atomic decomposition See
Keel-Tao (1998).

Step 4. Now we prove (94) and (Disp). Recall that

Kt(x) = K (t, x) =

∫
Rn

e it|ξ|e ix ·ξ|ψ(ξ)|2dξ.

We have

‖K̂t · f̂ ‖L2 . ‖e it|ξ||ψ(ξ)|2f̂ (ξ)‖L2 . ‖f̂ ‖L2 .
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By Planchrel, we can obtain

‖K (t, ·) ∗ f (·)‖L2
x
≤ C‖f ‖L2

x
,

which gives (94).

Next we prove (Disp). It suffices to show that

|K (t, x)| . (1 + |t|+ |x |)−
n−1

2 , ∀(t, x). (99)

It is easy to see that |K (t, x)| . 1 for any (t, x). Therefore it
remains to consider |t|+ |x | ≥ 1. By using polar coordinates
ξ = ρω and ω ∈ Sn−1, we have with a(ρ) := ρn−1ψ(ρ)2 that

K (t, x) =

∫ ∞
0

∫
Sn−1

e iρ(t+x ·ω)a(ρ)dρdσ(ω)

=

∫ ∞
0

e itρσ̂(ρx)a(ρ)dρ (100)
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where σ̂(ξ) =
∫
Sn−1 e iξ·ωdσ(ω). We claim

|σ̂(ξ)| ≤ C (1 + |ξ|)−
n−1

2 , ξ ∈ Rn (101)

Assume (101), we proceed to complete the proof of (99).

Case 1. |t| < 2|x |. We have

K (t, x) =

∫ ∞
0
|σ̂(ρx)|a(ρ)2dρ .

∫ ∞
0
|ρx |−

n−1
2 a(ρ)dρ

. |x |−
n−1

2

∫ ∞
0

ρ−
n−1

2 a(ρ)dρ.

Note that a(ρ) is supported within {1
2 < ρ < 2}, thus we obtain

|K (t, x)| . |x |−
n−1

2 . (|x |+ t + 1)−
n−1

2 .
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Case 2. |t| ≥ 2|x |. Since a(ρ) is supported within {1
2 < ρ < 2},

by integration by parts we have

K (t, x) =

∫ ∞
0

∫
Sn−1

e iρ(t+x ·ω)a(ρ)dρdσ(ω)

=

∫ ∞
0

∫
Sn−1

a(ρ)

i(t + x · ω)

d

dρ

(
e iρ(t+x ·ω)

)
dρdσ(ω)

= −
∫ ∞

0

∫
Sn−1

1

i(t + x · ω)
e iρ(t+x ·ω)a′(ρ)dσ(ω)dρ

Repeating the procedure, we have

|K (t, x)| . |t|−N

for any N ∈ N, which shows it decays faster than (|x |+ t + 1)−
n−1

2 .
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To complete the proof of (Disp), it remains to check (101). For
simplicity, we only consider n = 3.
By rotational symmetry it suffices to take ξ = (0, 0, ρ), ρ = |ξ|. Then
using spherical coordinates on S2 = {(x , y , z) : x2 + y 2 + z2 = 1}

ω =

 x = sinφ cos θ
y = sinφ sin θ
z = cosφ

where 0 < φ < π, 0 < θ < 2π, we have

σ̂(0, 0, ρ) =

∫ π

0

∫ 2π

0

e−iρ cosφ sinφdθdφ

= 2π

∫ 1

−1

e iρrdr = 4π
sin ρ

ρ
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Strichartz estimates for inhomogeneous wave equations

Consider the solution of inhomogeneous wave equation

�u = F on R1+n, n ≥ 2,

u|t=0 = f , ∂tu|t=0 = g .
(102)

By using Duhamel’s principle and Theorem 46 we can obtain the
Strichartz estimate for the solution of (102).

Theorem 49

Let (q, r) be wave admissible as defined in Theorem 46 and
s = n

2 −
1
q −

r
n . Then for any solution of (102) there holds

‖u‖Lqt Lrx ≤ C (‖f ‖Ḣs + ‖g‖Ḣs−1 + ‖F‖
Lq
′

t Lr′x
) (103)
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An example

Now we consider the semi-linear wave equation

�u = u3 on R1+3,

(u, ∂tu)|t=0 = (f , g) ∈ Ḣ
1
2 × Ḣ−

1
2

(104)

A function u ∈ Lq
t Lr

x(R1+n) with 3 ≤ q, r <∞ is called a weak

solution of (104) if for any ϕ ∈ C
(
0R1+n) there holds∫ ∞

0

∫
Rn

u�ϕdxdt+

∫
Rn

[f ∂tϕ(0, ·)− gϕ(0, ·)] dx =

∫ ∞
0

∫
Rn

u3ϕdxdt.

In the following we will show that if

E0 := ‖f ‖
Ḣ

1
2

+ ‖g‖
Ḣ−

1
2

is sufficiently small, (104) has a global solution in u ∈ L4
t L4

x(R1+n).
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To see this, we define u−1 ≡ 0 and

�uj = u3
j−1 on R1+3,

uj(0, ·) = f , ∂tuj(0, ·) = g .
(105)

Let
X (uj) := ‖uj‖L4

tL
4
x

+ ‖uj(t, ·)‖
Ḣ

1
2

+ ‖∂tuj(t, ·)‖
Ḣ−

1
2

Then it follows from (103) that

X (uj) ≤ C

(
‖f ‖

Ḣ
1
2

+ ‖g‖
Ḣ−

1
2

+ ‖u3
j−1‖

L
4
3
t L

4
3
x

)
≤ C

(
‖f ‖

Ḣ
1
2

+ ‖g‖
Ḣ−

1
2

+ ‖uj−1‖3
L4
tL

4
x

)
≤ C

(
E0 + X (uj−1)3

)
(106)
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By using u−1 = 0 and an induction argument, it is straightforward
to show that

X (uj) ≤ 2CE0, j = 0, 1, · · · (107)

provided that 8C 3E 2
0 ≤ 1.

Next we apply (103) to

�(uj+1 − uj) = u3
j − u3

j−1 = (uj − uj−1)(u2
j + ujuj−1 + u2

j−1)

with vanishing initial data, and use (103) to obtain

X (uj+1 − uj) ≤ C1‖(uj − uj−1)(u2
j + ujuj−1 + u2

j−1)‖
L

4/3
t L

4/3
x

≤ C1‖uj − uj−1‖L4
tL

4
x
‖u2

j + ujuj−1 + u2
j−1‖L2

tL
2
x

≤ C1(X (uj)
2 + X (u2

j−1))X (uj − uj−1).
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In view of (107), we obtain

X (uj+1 − uj) ≤ C2E 2
0 X (uj − uj−1) ≤ 1

2
X (uj − uj−1)

provided E0 is sufficiently small. So {uj} is a Cauchy sequence
according to the norm X (·) with limit u. Since each uj satisfies∫ ∞

0

∫
Rn

uj�ϕdxdt+

∫
Rn

[f ∂tϕ(0, ·)− gϕ(0, ·)] dx =

∫ ∞
0

∫
Rn

u3
j ϕdxdt

for all ϕ ∈ C∞0 (R1+n). By taking j →∞ we obtain∫ ∞
0

∫
Rn

u�ϕdxdt+

∫
Rn

[f ∂tϕ(0, ·)− gϕ(0, ·)] dx =

∫ ∞
0

∫
Rn

u3ϕdxdt,

i.e. u is a globally defined weak solution of (104).
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