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Assessment
There are 2 or 3 problem sets.
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1.1. Conventions.

In this course we only consider the Cauchy problems of nonlinear
wave equations. We will consider functions u(t, x) defined on

RY™" = {(t,x): t € R and x € R"},

where t denotes the time and x := (x!,--- ,x") the space variable.
We sometimes write t = x° and use

0 0 .
6025 and 0; ::@forjzl,~--,n.

For any multi-index oo = (g, - -+ , ) and any function u(t, x) we

write

la| ==apg+a1+---+a, and 0% :=0y°0" -0y u.



Given any function u(t, x), we use

Owu® = " [0jul’ and  [Oul* := |doul* + |Oyul*.
j=1

We will use Einstein summation convention: any term in which an
index appears twice stands for the sum of all such terms as the
index assumes all of a preassigned range of values.

m A Greek letter is used for index taking values O, --- , n.

m A Latin letter is used for index taking values 1,--- | n.

For instance

n n
b”@uu:Zb“(?“u and bjaju:ijﬁju.
1=0 j=1
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1.2. Gronwall’s inequality.

Lemma 1 (Gronwall's inequality)

Let E, A and b be nonnegative functions defined on [0, T| with A
being increasing. If

t
E(t) < A(t) +/ b(r)E(t)dr, 0<t<T,
0
then there holds

E(t) < A(t)exp (/Otb(T)d7'> , 0<t<T.

Proof. Let 0 < tg < T be a fixed but arbitrary number. Consider



t
V(t) := A(to) +/ b(T)E(T)dT.
0
Since A is increasing, we have E(t) < V/(t) for 0 < t < t5. Thus

%V(t) = b(t)E(t) < b(£)V(t)

which implies that V() < V/(0) exp ( I b(T)dT) . Therefore, by
using V(0) = A(tp), we have

E(t) < V(t) < A(to) exp (/Ot b(r)dr) , 0<t<t.

By taking t = tp we obtain the desired inequality for t = tg. Since
tp is arbitrary, we complete the proof. O
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1.3. The Sobolev spaces H°.

For any fixed s € R, H® := H*(R") denotes the completion of
Cg°(R™) with respect to the norm

A 1/2

Il = ( [ -+ leprreRde)
where f denotes the Fourier transform of f, i.e.
7(€) ::/ e 8 £ (x)dx.

We list some properties of H® as follows:

m H? is a Hilbert space and H® = [2.
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If s > 0'is an integer, then [[f[|ns & 3_, <, |0f]| 2.

H®2 C H* for any —oo < 51 < s < 0.

H~* is the dual space of H® for any s € R.

Let A:=3"0, 01-2 be the Laplacian on R". Then for any
s,t €R, (I —A)/2: HS — H5tis an isometry.

If s > k + n/2 for some integer k > 0, then HS — Ck(R")
compactly and

Z 10%F]|| o0 < Gs||F|lms, VF € HE,

o <k

where C; is a constant independent of f.

There are many other deeper results on H*® which will be
introduced later on.



m Given integer k > 0, CX([0, T], H®) consists of functions
f(t,x) such that

k

> max [[91f(t, )| < 0.

0<t<T

Jj=0

m Given 1 < p < oo, LP([0, T], H®) consists of functions f(t, x)
such that

T
/ 1£(t,)||fsdT < 0.
0

L>=([0, T], H®) can be defined similarly.
m Both CK([0, T], H%) and LP([0, T], H®) are Banach spaces.
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1.4. Standard linear wave equations.

The classical wave operator on R is
0:=0? - A,

where A = ZJ'-’ZI 81-2 is the Laplacian on R". Given functions f and

g, the Cauchy problem
Ou=0 on]0,00)xR" 1)
U(O, ): f7 8tU(O,‘) =8

has been well-understood. We summarize some well-known results
as follows:



m Uniqueness: (1) has at most one solution u € C?([0, 00) x R™).
This follows from the general energy estimates derived later.

m Existence: If f € CI"/2H2(R") and g € CIM/AH1(R"), then
(1) has a unique solution u € C?([0,00) x R").

In fact, the solution can be given explicitly. For instance,
when n =1 the solution is given by the D'Alembert formula

X+t
(Fx+0)+fx—e)+3 [ glr)dr

N =

u(t,x) =

when n = 2 we have

t f(x+ty) t g(x +ty)
u(t,x) =, [ = w«+/ EXTY) 4
t<27r i<t VI— Iy ) 21 Jyj<1 /T = Ty PP
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and for n = 3 we have

1

ut:x) = g

|0 0 a0 doty).

y—x|=t

m Finite speed of propagation: Given (ty,xp) € (0,00) x R”",
u(to, x0) is completely determined by the values of f and g in
the ball B(xp, to) := {x € R": |[x — xo| < to}, i.e. B(xo,to) is
the domain of dependence of (ty, xp).

We will obtain a more general result by the energy method.
m Huygens’ principle: Given (tg,xp) € (0,00) x R". When

n > 3 is odd, u(ty, xo) depends only on the values of f, and g
(and derivatives) on the sphere |x — xo| = to.
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m Decay estimates: When f,g € C§°(R"), u(t,x) satisfies the

decay estimate

n—1

(1+¢t) =2, n is odd,

u(t, )| <

~

n—1 _n—1 )
z (1+[t—1|x|]])” 2, niseven.

(I+1t)”

We will derive these estimates from the Klainerman-Sobolev
inequality without using the explicit formula of solutions.

These decay estimates are crucial in proving global and long
time existence results for nonlinear wave equations.



2. Energy Estimates
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2.1. Energy estimates in [0, T] x R”
We first consider the linear wave operator
Ogu = 02u — g/ (t,x)d;0xu, (2)

where (g/%(t,x)) is a C* symmetric matrix function defined on
[0, T] x R™ and is elliptic in the sense that there exist positive
constants 0 < A < A < oo such that

NEP < g (t, )68 < NEPP, VEER” (3)

for all (t,x) € [0, T] x R".
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Let Og be defined by (2) with g/k satisfying (3). Then for any
u € C3([0, T] x R") there holds

t
|0u(t, iz < Go (uau(o,-)up + / HDgu(T,-)HLm)
xexp | G / 3 19g*(r, Yudr
Jj,k=1

for0 <t < T, where Cy and (7 are positive constants depending
only on the ellipticity constants X\ and A.



Proof. We consider the “energy”
E(t) := /n (|8tu|2 —|—gjkaju8ku) dx.
It follows from the ellipticity of (g/¥) that
E(t) ~ du(t, ). (4)
Direct calculation shows that
Or (10l + g™ 0judu) = 20rud2u + 2¢™ 80,udu + Oeg™ &y udiu

= 20;ulgu + 20; (gjké?tuﬁku> — 26jgjk8tu8ku + atgjkﬁjuﬁku.
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Therefore, by using the divergence theorem we can obtain

d
aE(t) =2 - Orullgudx

—l—/ (—28jgfk6tu8ku + Gtgjkajuaku) dx.

n
This implies, with ®(t) := ) _ [|0g7|.~, that
k=1

d
SE©) <2050t Y zlowae. e +20(0) [ [oule. ).



In view of (4), it follows that

@ E(t) < 2 Tgu(t, Y| 2E()2 + CoDE(:).

This gives

d
E/f(t)l/2 < | Fgu(t, )2 + CO(R)E()V/2.

Consequently

% E(t)2exp (- C tq>(7)d7
0

< |Tu(t, )2 exp (—c / tw)df) < |Tgu(t, )
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Integrating with respect to t gives

t t
E(t)2 exp (—C/ cb(T)dT) < E(O)1/2+/ |0gu(T, )| 2dT.
0 0
This together with (4) gives the desired inequality. O

The energy estimate in Lemma 2 can be extended for more general
linear operator

Lu = 8§u — gjkajaku + bOru + bjﬁju + cu,

where g/%, b/, b and c are smooth functions on [0, T] x R” with
bounded derivatives, and (g/¥) is elliptic in the sense of (3).

22/262



23/262

Theorem 3
Let0 < T < oo and s € R, Then for any

ue C([0, T], H*TH n CY([0, T], H®) with Lu e L}([0, T], H%)
there holds

t
S 10 ule e < € | 3 10°u0. e+ [ 1Lutr, e
laf<1 laf<1 0

for 0 < t < T, where C is a constant depending only on T, s, and
the L*° bounds of gjk . b/, b, c and their derivatives.
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Proof. For simplicity we consider only s € Z. By an approximation
argument, it suffices to assume that u € C5°([0, T] x R"). We
consider three cases.

Case 1: s = 0. We need to establish

Do lou(t, e s Y Haau(of)”ﬂ+/Ot||L”(7'a‘)HL2dT~ (5)

|| <1 la|<1

To see this, we first use Lemma 2 to obtain

t
10u(t, )iz < 100, )2 + /0 10gu(r, ) 12dr
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From the definition of L it is easy to see that

10gu(r, Mz S ILu(r, Yl + Y 10%u(, )|z

laf<1

Therefore
t
[0u(t, )2 < 10u(0, )] 2 +/ |Lu(T, )| 2dT

/ S 0% u(r, )| 2dr.

la|<1

By the fundamental theorem of Calculus we can write

u(t,x) = u(0,x) + /Ot(‘)tu(r,x)dt.



Thus it follows from the Minkowski inequality that

lu(t,Ylee < Hw/mtu Mezdr.

Adding this inequality to (6) gives

t
S0 u(e, e S 3 19%u(0, )12 + /0 |Lur, ) 2dr

laj<1 la]<1

/ S 0% u(r, )| 2dr.

la|<1

An application of the Gronwall inequality then gives (5).
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Case 2: s € N. Let 8 be any multi-index 3 satisfying |3 <'s. We
apply (5) to 9% u to obtain

D ldkou(t. e S ) 19707 u(o !L2+/ L0 u(r, ) 2dT

lal<1 la|<1
t
< S 980 u(0, )|z + / 108 Lu(r, )| 12d7
la|<1 0
/ L, 8% u(r, )| 2d. (7)

where [L,80] := L8 — 9% L denotes the commutator. Direct
calculation shows that
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(L, 8%y = (af(gfkajaku) - gfkafajaku) + (b@f@tu _ 9 (bBtu)>
+ (Vofoju— 0f(Hoju)) + (cofu— 0 (cu))

from which we can see [L,¢] is a differential operator of order
< |B] +1 < s+ 1 involving no t-derivatives of order > 1. Thus

L0810 < 37 (0300 + |07u)).

[v1<s

Consequently

1L 221

S > (lozoullz +1107ull2) S Y 110% ull e

lyI<s laf<1
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Combining this inequality with (7) gives

t
Do ldkoru(e e S Y 11970%u(0, )2 +/0 182 Lu(r, )| 2dT

o] <1 lo|<1

/ S 0% u(r, ) e,

|| <1
Summing over all 8 with |3| < s we obtain

S 0%t Y < S 10%6(0, ) s + / |Lu(r, Y

lo|<1 || <1

/ S 0%u(r, ) ledr.

|| <1
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By the Gronwall inequality we obtain the estimate for s € N.
Case 3: s € —N. We consider
v(t,:) = (I — Ay)’u(t, ).

Since —s € N, we can apply the estimate established in Case 2 to
v to derive that

t
S 107t M S S0 100, ks + / ILu(7, )|y
lal<1 o<1 0

We can write

Lv(r,:) = (I = A Lu(r,)+ [L, (I — A)°]u(T, )
= (I =AY Lu(r,")+ (I = A)°[(/ — A)~°, L]v(T, ).
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Therefore

ILv (T, M= < (1Ll Yms + 110 = A)7%, Lv(T )l 1e-

Consequently

Do lo%v(e s S Y 19°v(0, )4 +/ ILu(T, )| dT

o<1 laf<1
+ /Ot 17 = 8)7%, Lv(7, )= dT. (8)

It is easy to check [(/ — A)™*, L] is a differential operator of order
< —2s + 1 involving no t-derivatives of order > 1. We can write

[(1=2)=Lv=)" > 8([apdl0%),

|la| <118 |yI<—s



where [,3, are smooth bounded functions. Therefore

e S Z Z 1080%v| 2 < Z 10%V||y-s.

la|<1|B]<-s lal<1

[(1 = 2)~*, L]v|

Combining this inequality with (8), we obtain

t
Do llov(e )<< Y ||3"‘\/(0,~)Ilws+/0 [Lu(T, )[HsdT

|| <1 || <1

/ S 10°v(r, Yl-sdr

0 |aj<1
An application of the Gronwall inequality gives
t
S 10w 5 X 100 e+ [ Lt )
la|<1 la|<1 0

Since [|0°v(t, -)[|y—- = [|0°u(t, )]

Hs, the proof is complete.
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2.2. Finite Speed of Propagation

We consider the wave equation
Ou = 0%u — Au = F(t,x,u,0u,0’u) in[0,00) x R",  (9)
where F(t,x, u,p,A) is a smooth function with
F(t,x,0,0,A) =0 for all t,x, and A.
For any fixed (to,xp) € (0,00) x R", we introduce
Cioo == {(t,x) : 0 <t <tpand |x —xo| < to— t} (10)

which is called the backward light cone through (to, xo).

et
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The following result says that any “disturbance” originating outside
B(xo,t0) == {x € R" : |x — xo| < tp}
has no effect on the solution within Gy ;.

Theorem 4 (finite speed of propagation)

Let u be a C? solution of (9) in Ciyxo- Ifu=0u=0on
B(xo, to), then u =0 in Gy x,.

Proof. Consider for 0 < t < tg the function

E@)= [ (e u(e 0P + [Va(e0)?) o
B(xo,to—t)

to—t
— / / (v + |ue)® + |Vul?) dodT.
0 aB(Xo,T)
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We have

2/ UUt + uruy + Vu- VUf)
B(xo,to—t)

/ (% + el + |VuP) do
BB(Xo,tg t

2/ ¢+ (u+ 0Ou) dx+2/ div(u:Vu)dx
BXo,t() t

B(Xg,fg*t)

/ (0 + |ue)® + |Vul?) do
B(Xg to— t

Using Ou = F(t,x, u,0u,d?u) and the divergence theorem we
have

d
—E(t):Z/ ue (u+ F(t,x, u,du, 0%u)) dx
dt B(xo,to—t)

—|—2/ utVu~z/da—/ (0 + |ue* + |Vul?) do
6B(X07t0—t) BB(X07t0—f)



where v denotes the outward unit normal to 9B(xp, to — t). We
have

2|usVu - v| < 2lug||Vu| < |uef? + [Vul?.

Consequently

dE(t)§2/ Us (u+F(t,x,u,8u762u)) dx.
dt B(Xo,to—t)

Since F(t,x,0,0,0%u) = 0, we have
F(t,x,u,du,d*u) = F(t,x, u,du,d?u) — F(t,x,0,0,0%u)

1
= /o ;SF(t,x, su, sOu, 8 u)ds

1
= /0 <g’:(t,x, su, sOu, 0*u)u + DpF(t, x, su, sdu, 8°u) - 6u> ds.
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This gives

1
F
|F(t,x, u,du, 0°u)| §/ oF t, x, su, sOu, 9%u)| ds|ul
0

8u(

1
+/ |D,,F(t,x,su,58u,82u)‘ds|8u!.
0

Let C = max{Cy, C1}, where

1
F
Co:= max / ——(t,x, su(t,x), sOu(t, x), 0?u(t, x))| ds,
(tX)€Cy. Jo | OU
Ci:= max / IDF(t, x, su(t, x), sOu(t, x), %u(t, x)) | ds.
(tX ECtO X0

IF(t,x,u,0u,8%u)| < C (|u] +[du]).



Therefore

d
9 E() §2(1+C)/ (el (|u] + |9u]) dx < 2(1+ C)E(2).
dt B(Xo,to—t)

Since u(0,-) = ut(0,-) = 0 on B(xo, tp) implies that £(0) = 0, we
have E(t) =0 for 0 < t < tg. Therefore u =0 in Gy, x,- O
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3. Local Existence Results
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We prove the local existence for Cauchy problem of quasi-linear
wave equations. The proof is based on existence result of linear
equations and the energy estimates.

3.1. Existence result for linear wave equations

Consider first the linear wave equation

Lu=F on [0, T] x R",
(11)
ult=o = f, Orult=0 = g,
where L is a linear differential operator defined by
Lu := 82u — g™ 8;0ku + bOru + b Oju + cu

in which g/, b/, b and c are smooth functions on [0, T] x R" and
(g7%) is elliptic in the sense of (3).
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The adjoint operator L* of L is defined by

T T
/ / oL dxdt :/ WL pdxdt, Ve, € CC((0, T)xR").
0 n 0 JRre
A straightforward calculation shows that
L' = 82 — 00k(87¢) — 0:(bp) = 8;(P ) + cop.

If ue C2([0, T] x R") is a classical solution of (11), then by
integration by parts we have for ¢ € C§°((—o0, T) x R") that

T T
/ / Fodxdt :/ / uL*<dedt—/ (0, x)g(x)dx
O n 0 n Rn

T e [£(0, x) = (bp)(0, x)] F(x)dx. (12)
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Conversely, we can show, if u € C2([0, T] x R") satisfies (12) for
all ¢ € C§°((—o0, T) x R"), then u is a classical solution of (11).

We will call a less regular u a weak solution of (11) if it satisfies
(12), where the involved integrals might be understood as duality
pairing in appropriate spaces.

Theorem 5

Let s € R and T > 0. Then for any f € H*}(R"), g € HS(R")
and F € LY([0, T], H5(R")), the linear wave equation (11) has a
unique weak solution

ue C([0, T], ¥t n CY([o, T], H®)

in the sense that (12) holds for all p € C§°((—o0, T) x R").



Proof.

1. The uniqueness follows immediately from Theorem 3.

2. We first consider the case that
f=g=0 and F e G([0, T]xR").

Let s € R be any fixed number. we may apply Theorem 3 to
L* with t replaced by T — t to derive that

T
ot Yl < /0 1L, Y| pyerdr

for any p € C3°((—o0, T) x R")
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Using F we can define on V := L*C§®((—o0, T) x R") a linear
functional ¢g(-) by

-
Le(L* o) :/ / Fpdxdt, ¢ e C°((—o0, T) x R").
0 n

Then we have
]
\#uwNSAwmamqmumHmt

)
sA|ﬁwumHnm,

_
|&wnsé 16(t, perde, Wi € V.
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We can view V as a subspace of L1([0, T], H=5~1). Then, by
Hahn-Banach theorem, ¢f can be extended to a bounded linear
functional on L1([0, T], H=*~1). Thus, we can find

u € L>([0, T], H**1), the dual space of L1([0, T], H=571), such
that

N
:/ /mpdxdt, vy € LY([0, T], H=71).
0 n

Therefore, for all ¢ € C§°((—o0, T) x R") there holds

/ / Fodxdt = (e(L*p / / ul* pdxdt

So u is a weak solution.
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By using Lu = F we have
D¢(0ru) — bdru = g% 0;0ku — B Oju — cu + F € L°°([0, T], H571).
This implies that 9;u € L>([0, T], H*~!) and

d2u € L°°([0, T], H57Y) € L=([0, T], H*72).

Consequently u € C1([0, T], H5~1). Since s can be arbitrary, we
have
ue CH([0, T], C*(R").

Using this and Lu = F we can improve the regularity of u to
ue C>®([0, T] x R").



3. For the case f, g € C§°(R") and F € C5°([0, T] x R™), we can
reduce it to the previous case by considering &t = u — (f + tg).

4. We finally consider the general case by an approximation
argument. We may take sequences {f,}, {gm} C C§°(R")
and {F,} C C§°([0, T) x R") such that

]
i — Fllses + llgm — &l + /O |Fm(,) = F(t, )it — 0

as m — oo. Let u,, be the solution of (11) with data f,,, gm
and Fp,. Then up, € C([0, T] x R") and

um € X7 := C([0, T], H**1) n CX([0, T], H®)
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Since for any m and / there holds
L(um —u)=Fn—F on[0, T] xR",
(um — u)(0,) = fimn — i, Ot(um — u/)(0,°) = gm — &I

we can use Theorem 3 to derive that

> D (um — u)llrs S Nfn = fill e + [18m — &1l 1
la]<1

-
+/ |Fm(t, ) — Fi(t, )| nsdt.
0

Thus {um} is a Cauchy sequence in X7 and there is u € Xt such
that |Jum — u||x, = 0 as m — oo. Since uy, satisfies (12) with f,
g and F replaced by f,, gn and Fp,, we can see that u satisfies
(12) by taking m — oc. O
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3.2. Local existence for quasi-linear wave equations

We next consider the quasi-linear wave equation

92u — g/ (u, 0u)0;0ku = F(u,du),
u(0,-) =f, 8:u(0,") =g,
where
m g/ and F are C™ functions, and F(0,0) = 0;
m (g/¥) is elliptic in the sense that

Co(u, p)[€]* < & (u,p)&ék < Ci(u,p)[E[2, VE ER,

where Co(u, p) and Ci(u, p) are positive continuous functions
with respect to (u, p).
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Theorem 6

If (f,g) € H*1 x HS for s > n+ 2, then there isa T > 0 such
that (13) has a unique solution u € C2([0, T] x R"); moreover

u e L>([0, T], Ht) 0 C%X([o, T, H9).
Proof. 1. We first prove uniqueness. Let v and @i be two solutions.
Then v := u — i satisfies
8fv — gjk(u, 0u)0jokv =R, v(0,-)=0, 0v(0,-)=0,
where

R = [F(u,du) — F(&,91)] + [gjk(u, du) — gfk(a,aa)] ;0.
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It is clear that
|R| < C(lv] +[ov]),

where C depends on the bound on |9?i| and the bounds on the
derivatives of g’k and F. In view of Theorem 3, we have

S 0% (e, Yo < /r ||de7</ S 0% (r, )z
jal<1 jal<1

By Gronwall inequality, 3|, <1[[0%v[|;2 = 0. Thus v =0, i.e.
u=1.

2. Next we prove the existence. By an approximation argument as
in the proof of Theorem 5 we may assume that f, g € C§°(R").
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We use the Picard iteration. Let u_; = 0 and define u,,, m > 0,
successively by

agum - gjk(um—1; aUm—l)ajakum = F(Um—laaum—l)a
f (19

Um(07') , a1.‘Um(0a') =8

By Theorem 5, all up, are in C*°([0,00) x R"). In what follows, we
will show that {un,} converges and the limit is a solution.

Step 1. Consider

Am(t) =Y 0%um(t, )2

|a|<s+1

We prove that {Any(t)} is uniformly bounded in m and t € [0, T]
with small T > 0.
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By using (14) it is easy to show that
Am(O)SA(Jv m:0717"'

for some constant Ag independent of m; in fact Ag can be taken as
the multiple of
11l ps+1 + [lg s

We claim that there exist 0 < T <1 and A > 0 such that

sup Am(t) <A, m=0,1,---. (15)
0<t<T

We show it by induction on m. Since F(0,0) =0, (15) with m =20
follows from Theorem 3. with A = CAq for a large C.
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Assume next (15) is true for some m > 0. By Sobolev embedding,

sup > |0% um(t, x)| < CAm(t) < CA.
(tX)E0,TIXR | <541 [(n+2)/2]

Since s > n+ 2, we have s+ 1 —[(n+2)/2] > [(s + 3)/2]. Thus

sip 3 [0un(tX)| S CA (16)
(tyx)E[O,T]X]R" |OL|§(5+3)/2

By the definition of up,y1 we have for any |a| < s that

020%Ums1 — &7 (Um, OUm) DOk Um1

= 0°F (Um, Oum) — [0%, g (Um, Oum)]|0;0kUm+1. (17)
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Observation 1.

[0%, & (upm, O0Um)]0;O0kum+1 is a linear combination of finitely
many terms, each term is a product of derivatives of upy, or Umy1 in
which at most one factor where up, or umy1 is differentiated more
than (|| + 3)/2 times.

To see this, we note that [0%, g% (um, Oum)]0jOktum+1 is a linear
combination of terms

a(Um, OUm)O - - - 0% U™ Oty - - - 0P QU@ 0% Uy 1,

where |ay| + - + |ak| + |B1] + - + |Bi] + |v] = |af and
v < laf - 1.



m If |[v] > (Ja| —1)/2, then
o]+ o] + [Bu] + -+ [Bi] < (o] +1)/2.

So |aj| < (|| +1)/2 and |Bj] < (Ja| +1)/2 for all aj and ;.

m If |y] < (la| —1)/2, then
laa] + -+ fou| + [Baf 4+ + [Bi] < .

So there is at most one index among {aq, -+, 3/} whose
length is > |a/2.
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Since |a| <'s, we have (Ja| +3)/2 < (s + 3)/2. Using Observation
1, it follows from (16) that

(0%, & (s D0y Ohim| < Cal D" (10 tm] + 107 umia]) + 1)
1B|<|al+1

gCA< > (\aﬂum\ﬂaﬁumﬂy)“).
|8]<s+1

where Cp is a constant depending on A but independent of m. So,
by the induction hypothesis, we have

[0, 8% (tm, Oum)yDhtmsa | , < Ca(Amsa(e) + Am(2) + 1)
< Ca(Am+a(t) +1), (18)
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Observation 2.

O0“F(um, Oum) is a linear combination of finitely many terms, each
term is a product of derivatives of u,, in which at most one factor
where u, is differentiated more than |«|/2 4+ 1 times.

Indeed, we note that 0“F(um, dum) is a linear combination of
terms

a(Um, Oum)0P tp, - - - 0P U@ Ot - - - OV Aup,

where |B1| + -+ |Bk| + [l + -+ |u| = |al. Thus |5j] < |af/2
and |v;| < |a|/2 except one of the multi-indices.

Using Observation 2, we have from (16) that

|8"‘F(um,8um)|§CA( 3 |aﬂum|+1)gcA( 3 |8’8um|+1>.

|B1<|ef+1 |B|<s+1
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Therefore, by the induction hypothesis, we have

|0“F (um, Oum)||12 < Ca(Am(t) +1) < Ca. (19)

In view of Lemma 2, (18) and (19), we have from (17) that

0% (8, 2 + 10Dt (8, )12
< G (19 um41(0, )2 + 19°0ums1(0, )l

+ Ca /Ot(Am_H(T) + 1)d7)
X exp (Cl/ Z Hc") um,aum)> (7, -)HLOo dT)
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Using (16) we have
o (om0, 54

Summing over all « with |a] <'s, we therefore obtain

Amai(t) < CeCAt (Am+1(0) b Cat+ Ca /0 tAmH(T)dT) .
By Gronwall’s inequality and An+1(0) < Ag we obtain
Ams1(t) < CeAt (Ag + Cat) exp (tCCAeCA>
So, if we set A := 2CAp and take T > 0 small but independent of

m, we obtain Ay,4+1(t) < Afor 0 <t < T. This completes the
proof of the claim (15).



Step 2. We will show that {up,} converges to a function u in
c([o, T], HY) n C([0, T], L?). To this end, consider

Em(t) =) 110%(um — um-1)(t, ) 2.

lal<1

We have

(a? - jk(umfla a’Jmfl)ajak) (Um - Umfl) = Rma
(Um - Um—l)(oa ) =0= at“(Um - Um—l)(oa ’)7

where

Rm = [gjk(umfla aumfl) - gjk(umf2yaumf2):| ajakumfl
+ [F(Um—la 8Um—l) - F(Um—2a 8Um—2)]
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Observing that
IRl < (|um—1— tm—2| + |0tm_1 — Otm_2|) (1 + |0?tum_1]).
In view of Theorem 3 and (16), we can obtain

t
En(t) < C/ Em—1(7)dr, m=0,1,---.
0

Consequently

m
(Ct) sup EO(t)7 m = 07 1) U

E..(t) <
m(t) < m! o<i<T

This shows that > = En(t) < Co. Thus {un} is a Cauchy sequence
and converges to some u € X1 := C([0, T], H') x CL([0, T], L?).
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Step 3. We prove that
u e L=([0, T], H*t) n COX([o, T], H®). (20)
In fact, from (15) we have
[um(, M pesr + [|Oetim(t, )| < A.

So, for each fixed t, we can find a subsequence of {up}, say {um}
itself, such that

Um(t,) = 0 weakly in H+1,
Otum(t,-) — w weakly in H°.

Since um(t,:) — u(t,-) in H* and d;upm(t,) — Oru(t,-) in L2, we
must have u(t,-) = & and O:u(t,-) = w.



64/262

By the weakly lower semi-continuity of norms we have

llu(t, )||gs+1 < I|m|nf||um( Mps+1 < A,

|0su(t, )||gs < I|m inf || Orum(t, ) ||gs < A.

We thus obtain (20). By (15) and the same argument we can

further obtain
> 0%u(t, )l <A
|a|<s+1

This together with (15), the result in step 2, and the interpolation
inequality gives

sup_ > [|0%um(t “u(t, )|z — 0.

0<t<T
lal<s
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By Sobolev embedding,

O%um(t,x) — 0%u(t, 0

ol L DL [0%un(tx) = 9%u(tx)] -
la|<(s+1)/2

Therefore up, — uin C?([0, T] x R") and u is a solution. O

Remark. Theorem 6 holds when (f,g) € H*T! x H® with
s> (n+2)/2.

The interval of existence for quasi-linear wave equation could be
very small.

Example. For any € > 0, there exists g € C2°(R") such that
Ou = (de)?, ule—o=0, Oiul—o=g (21)

does not admit a C? solution past time .
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To see this, we first note that u(t,x) = —log(1 — t/e) solves (46)
with g =1/e, and u - c0 as t — €.

Next we fix an R > ¢ and choose x € C§°(R") with x(x) =1 for
|x| < R. Consider (46) with g(x) = x(x)/e, which has a solution
on some interval [0, T]. We claim that the solution will blow up no
later than t = ¢.

In fact, let
Q={(t,x):0<t<e,|x|+t <R}

By the finite speed of propagation, u inside €2 is completely
determined by the value of g on B(0, R) on which g = 1. Thus
u(t,x) = —log(1 — t/e) in Q which blows up at t = ¢.
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The following theorem gives a criterion on extending solutions
which is important in establishing global existence results.

Theorem 7

If f,g € Cg°(R"), then there is T > 0 so that the Cauchy problem
(13) has a unique solution u € C*°([0, T] x R"). Let

T :=sup{T > 0: (13) has a solution u € C*=([0, T] x R")}.
If T, < oo, then

> 10%u(t, x)| € L([0, T.) x R"). (22)

la|<(n+6)/2

Proof. In the proof of Theorem 6, we have constructed a sequence
{um} C C*(]0,0) x R") by (14) with u_; = 0 which converges
in C2([0, T] x R") to a solution u.
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We also showed that for each s > n+ 2 there exist T5 > 0 and
As > 0 such that

> 10%Um(t, Yl <A, 0SS TS (23)
|a|<s+1

forall m=0,1,---. Here the subtle point is that T depends on s.

If we could show that (23) holds for all s on [0, T] with T > 0
independent of s, the argument of Step 3 in the proof of Theorem
6 implies that {un,} converges in C*°([0, T] x R") to u.

We now fix so > n+ 3 and let T > 0 be such that

sup Y [[0%um(t, )2 < G < oo, m=0,1,--
0<t<T
|a|<sp+1



and show that for all s > sy there holds

sup_ Y [0%um(t, )2 < G < o0, V. (24)
0<t<T
|a|<s+1

We show (24) by induction on s. Assume that (24) is true for
some s > sg, we show it is also true with s replaced by s + 1. By
the induction hypothesis and Sobolev embedding,

sup Z |0%Uum(t, x)] < As < o0, Vm.
(E)E0 TR o) <5 11-[(n+2)/2

Since s > n+ 3, we have [(s+4)/2] <s+1—[(n+2)/2]. So

sup Z 0%m| < C, Vm.
(£X)€E[0. TIXR™ | | < (s14)/2
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This is exactly (16) with s replaced by s+ 1. Same argument there
can be used to derive that

>up Z [0%um(t, )|z < Csp1 <00, Vm.

0StST | <st2

We complete the induction argument and obtain a C* solution.

Finally, we show that if T, < oo, then (22) holds. Otherwise, if

sup Z |0%u(t, x)| < € < oo,
[0.T)XR™ 14| < (n+6) /2

then applying the above argument to u we have with sy =n+3
that

sup Y [10%u(t,)]l2 < Go < o0
[0, T )xR" la|<so+1
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Repeating the above argument we obtain for all s > sy that

sup > [10%u(t, )z < G < oo
[OJ;)XRHMHSS+1

So u can be extend to u € C>([0, T,] x R").

Since f, g € C§°(R"), by the finite speed of propagation we can
find a number R (possibly depending on T.) such that u(t,x) =0
for all |x| > R and 0 < t < T,. Consequently

u(Te,x) = 0ru(Ti,x) =0 when |x| > R.

Thus, u( Ty, x) and Oru( Ty, x) are in C§°(R"), and can be used as
initial data at t = T, to extend u beyond T, by the local existence
result. This contradicts the definition of T,. O



4. Klainerman-Sobolev inequality
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We turn to global existence of Cauchy problems for nonlinear wave
equations
Ou = F(u,du).

This requires good decay estimates on |u(t, x)| for large t. Recall
the classical Sobolev inequality

< S [0 Flp, VxeR?
|| <(n+2)/2

which is very useful. However, it is not enough for the purpose. To
derive good decay estimates for large t, one should replace 9f by
Xf with suitable vector fields X that exploits the structure of
Minkowski space. This leads to Klainerman inequality of Sobolev

type.



4.1. Invariant vector fields in Minkowski space

m We use x = (x%, x1,--- | x") to denote the natural coordinates
in R where x° = t denotes time variable.

m We use Einstein summation convention. A Greek letter is used
for index taking values 0,1,--- , n.

m A vector field X in R is a first order differential operator of
the form

“ o
- B_Z Y
X = §'_0:x T = X"9),

where X* are smooth functions. We will identify X with (X*).

m The collection of all vector fields on R1*" is called the
tangent space of R1™" and is denoted by TR*".
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m For any two vector fields X = X*0, and Y = Y*#0,, one can
define the Lie bracket

[X,Y] = XY — YX.
Then

[X, Y] = (X"9,) (Y"0,) — (Y"9y) (X*O,.)
= XMY9,0, + X" (9,Y") 0, — Y’ X"D,8, — Y” (,X") 9,
= (XD, Y — YF9,XV) D, = (X(Y") — Y(X"))d,.

So [X, Y] is also a vector field.
m A linear mapping 17 : TR — R is called a 1-form if

n(fX) = fn(X), Vfe C®RY"), X ¢ TR
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For each 4 =10,1,---, n, we can define the 1-form dx* by
dx"(X) = X', VX = X"9, € TR,
Then for any 1-form 1 we have
n(X) = Xn(0u) = nuax"(X),  where 1, :=1(0,)-

Thus any 1-form in R can be written as 7 = nudx* with
smooth functions 1,. We will identify n with ().

m A bilinear mapping T : TR*" x TR*" — R is called a
(covariant) 2-tensor field if for any f € C°(R'*") and
X,Y € TR™" there holds

T(X,Y)=T(X,fY)=fT(X,Y).
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It is called symmetric if T(X,Y)= T(Y,X) for all vector
fields X and Y.

m Let (my,) =diag(—1,1,---,1) be the (14 n) x (1+n)
diagonal matrix. We define m : TR*" x TR!*" — R by

m(X,Y) :=my,X'Y"
for all X = X#9,, and Y = Y*9, in TR It is easy to
check m is a symmetric 2-tensor field on R*". We call m the

Minkowski metric on R'*". Clearly

m(X,X) = = (X974 (X) 7+ (X7,
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m A vector field X in (R1*7 m) is called space-like, time-like, or
null if

m(X,X) >0, m(X,X)<0, or m(X,X)=0

respectively.

m In (R",m) one can define the Laplace-Beltrami operator
which turns out to be the D'Alembertian

O=m™8,0,, where (m"):=(m,,)".

m The energy estimates related to [lu = 0 can be derived by
introducing the so called energy-momentum tensor. To see
how to write down this tensor, we consider a vector field
X = X*0, with constant X*.
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Then for any smooth function u we have

(Xu)Ou = XP0,umt”0,0,u
= 0, (XM 0, u0,u) — XPm""0,,0,ud, u.

Using the symmetry of (m*") we can obtain
XPm* 9,0,ud,u =0 1X” H9,u0
m*" 8, 0pudyu = 9 | ZXPmGuudyu | .
Therefore (Xu)Ou = 9, (Q[u]l,X*) , where

Q[u]}, = m"?0,ud,u — %5;: (MP?79,ud,u)

in which 5;1 denotes the Kronecker symbol, i.e. 5; = 1 when
w=v and 0 otherwise.
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m This motivates to introduce the symmetric 2-tensor
= P =0,ud 1 P70,u0,
Qlulpw = my, Qu]) = Oyud,u — Emuv (m??0pudyu)

which is called the energy-momentum tensor associated to
Ou = 0. Then for any vector fields X and Y we have

QLu(X, Y) = (Xu)(Yar) — %m(X, Y)m(du, du)

m The divergence of the energy-momentum tensor can be
calculated as

m"0,Q[ul,, =m0, <6l,u8pu — %m,,p (m“"@ouﬁnu)>

=m"0,0,ud,u = (Du)o,u.
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m Let X be a vector field. Using Q[u] we can introduce the
1-form

P, = Qu]wX".

Then we have

m*9, P, = m"5, (Q[u],,X”)
= M8, Q[u],, XP + M Q[ul, 0, X"
= 0Ou0pu X? + m" Q[u],,,m"0,,.X,

= (Ou)Xu + %Q[u]“p (OuX, 4+ 0,X,) -

where Q[u]*” = m*’m?” Q[u] 5.
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m For a vector field X, we define
K7 = 0, X0 + DX,

which is called the deformation tensor of X with respect to m.
Then we have

1
(M P,) = (Ou)Xu + EQ[U]W X7 (25)
m Assume that u vanishes for large |x| at each t. For any

to < t1, we integrate J,(m*”P,) over [to, t1] x R" and note
that 0; is the future unit normal to each slice {t} x R", we

obtain
// Ou(m*” P, )dxdt = / Q[u](X, 0¢)dx — / Q[u](X, Or)dx
[to,t1] X R” {t=t1} {t=to}
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Therefore, we obtain the useful identity

Q[u](X, 0r)dx = / Q[u](X, d¢)dx + // Ou - Xudxdt

{t=t} {t=to} [to,t1] xXR"

+% / / Qul M, dxdt. (26)

[to,t1] xR"
m By taking X = 9; in (26), noting (%) = 0 and
1
Q[u](0r, 0¢) = 5 (10cul? + [Vul?),

we obtain for E(t) = %f{t}an(\&uP + |Vul?)dx the identity

E(t1) = E(to) + // Ou 0rudxdt.
[to,t1] xR"
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Starting from here, we can easily derive the energy estimate.

m The identity (26) can be significantly simplified if X = 0. A
vector field X = X*9,, in (R, m) is called a Killing vector
field if X)w =0, i.e.

Xy +0,X, =0 in RM"

We can determine all Killing vector fields in (R1*" m). Write
Ty = (X)WW, Then

OpT = 0,0, X0 + 0,0, X,
OuTvp = Ou0y Xy + 040, X0,
Oy pp = 0y0, X, + 0,0, X,.

Therefore

Oumup + Oumpy — Opmy = 20,0, X,,.
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If X is a Killing vector field, then 9,0, X, = 0 for all u, v, p.
Thus each X, is an affine function, i.e. there are constants
apy, and b, such that

Xy = apx” + b,.
Using again 0 = 0, X, + 0, X,,, we obtain a,, = —a,,. Thus

X = XFO, = m" X,0, = m" (a,,x" + b,) 9,

= Z (Z + Z) a,px’mt 0, + m*b,0,

p<v p>v
= E g aypx’mt o, + E E a,px’mt 0, + m*b,0,
v=0 p<v p=0v<p

n
= Z Z (avpX’m" 0, + ap, x"mt*0,) + m"b,0,

v=0 p<v
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In view of a,, = —a,,, we therefore obtain

n
X = Z Z ayp (xXPm* 9, — x"mt*9,) + m*b,0,
v=0 p<v

This shows that X is a linear combination of 9, and €,

where
Q= (MPPx" —mP"x") 0,.

Thus we obtain the following result on Killing vector fields.

Any Killing vector field in (R1*" m) can be written as a linear
combination of the vector fields 0,,, 0 < 1 < n and

Qu = (MPPX” —m?x")d,, 0<pu<wv<n.
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m Since (m") = diag(—1,1,---,1), the vector fields {€,,}
consist of the following elements

Qoi = Xiat +td;, 1<i<n,
Q,'j:Xja,'—Xiaj, 1§i<j§n.
m When (X)Trw, = fm,,, for some function f, the identity (26)

can still be modified into a useful identity. To see this, we use
(25) to obtain

D, (m*'P,) = (Cu)Xu + %fm’“’Q[u]W

1—
= (Ou)Xu + Tnfm“’ja#ua,,u.
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We can write

fm*0,ud,u =m0, (fud,u) — m"ud,fo,u — fullu

1 1
= m"0,(fud,u) — m"’0, <2u28Mf> + EUZDf — fudu

1 1
=m0, <fu81,u — 2u28,,f> + §u2Df — fulu
Therefore, by introducing

~ ~1 ~1
P, = Pu—i-in 2 fud,u — !

w20, f

we obtain

- 1 1
Ou(m*P,) =Ou (Xu+ . 2 fu) 0 5 u?0f.
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By integrating over [ty, t1] x R" as before, we obtain

Theorem 9

If X is a vector field in (R'", m) with X7 = fm, then for any
smooth function u vanishing for large |x| there holds

/QX(‘)tdx_/QXE?td // P Ofdxdt
[to,t1]><R"
// (Xu—l—

[to,t1] xR"

1 fu) Cudxdt,

where tg < t; and

é(X,ﬁt) 8 Q(X Ot) -+ T <fu8tu — *U 8tf> 0



m A vector field X = X#9,, in (R1*", m) is called conformal
Killing if there is a function f such that (X7 = fm, i.e.
OuXy + 0, X, = fmy,.

m Any Killing vector field is conformal Killing. However, there
are vector fields which are conformal Killing but not Killing.

(i) Consider the vector field

Lo = ZX”(?“ = x"0,.

u=0

we have (Lo)* = x* and so (Lp), = m,,x”. Consequently

(LO)WW = 0u(Lo)y + 0u(Lo)p = Op(myyx) + 9y (M x")

=m0, +m,,6;) =2m,,.

Therefore Ly is conformal Killing and (%) = 2m.
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(i) For each fixed 4 =0,1,---, n consider the vector field
K, = 2m,,x"x?0, — my, x"x"0,,.
We have (K,)? = 2m,, x"x” —m,, x"x"6f. Therefore
(Ku)p = Moy (Ku)" = 2mppmy, xVx" — mp,m,,, x¥x7.
By direct calculation we obtain
Ky — —
(K )77/"7 = 0p(Kyu)n + 0n(Ki)p = 4myx"m,,.

Thus each K|, is conformal Killing and (K = 4m,, x"m.
The vector field Kj is due to Morawetz (1961).

All these conformal Killing vector fields can be found by
looking at X = X*0,, with X* being quadratic.
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m We can determine all conformal Killing vector fields in
(R m) when n > 2.

Proposition 10

Any conformal Killing vector field in (R'*", m) can be written as a
linear combination of the vector fields

8ua 0<pu<n,

Qu = (mPXx” —mP"x1)0,, 0<pu<v<n,

LO = ZX“&M,

=0

Ky = my,x"x"0, — m,,x’x"0,,, p=0,1,---,n.
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Proof. Let X be conformal Killing, i.e. there is a function f such
that

KV = 0 Xy + X, = fmy,. (27)
We first show that f is an affine function. Recall that
20,0,X, = OuTyp + OuTpp — OpTpn-
Therefore
20,0, X, = m,,0,f +m,,0,f —m,,0,f.
This gives

200X, = 2m" 9,0, X, = (1 — n)d,f. (28)
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In view of (27), we have
(n+1)f =2m""9, X,
This together with (28) gives
(n+1)Of =2m"9,0X, = (1 — n)m"”0,0,f = (1 — n)Of.
So [Jf = 0. By using again (28) and (27) we have
1—n

(1= )80, f = (0,0, + 8,0,f) = 8,0X,, + 9,0X,
= 00X, + 8,X,) = m,, Of = 0.

Since n > 2, we have 0,0,f = 0. Thus f is an affine function, i.e.
there are constants a,, and b such that f = a,x" + b.
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Consequently

X7 = (apx" 4 b)m.

Recall that (L) = 2m and (K = 4m,,, x"m. Therefore, by

introducing the vector field

1

~ 1 y
X =X- EbLO — Zm“ aVKM,

we obtain
v 1 1
X g = X g — Zp (Lo)p _ “mt,, (K = 0.
2 4

Thus X is Killing. We may apply Proposition 8 to conclude that X
is a linear combination of d,, and £2,,,,. The proof is complete. [J
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The formulation of Klainerman inequality involves only the
constant vector fields

Ouy 0 pu<n
and the homogeneous vector fields

Lo = xP0,,

Q= (MPHX" —m?Px")0,, 0<pu<v<n.

There are m + 1 such vector fields, where m = % We will
use I to denote any such vector field, i.e. I = (g, - ,I,) and

for any multi-index oo = (v, - - - , ay) we adopt the convention
o — oo, . ram
=T om



Lemma 11 (Commutator relations)

Among the vector fields 0, €2, and Ly we have the commutator
relations:

[0, 0v] = 0,
[@u LO] = aﬂa
[0p, Q] = (m7H5,) — m"”ég) s,
[Qu, Qpo] = m7HQ,, — mPHQs, + M Qg — m77Q,,
[Qu, Lo] = 0.
Therefore, the commutator between 0, and any other vector field
is a linear combination of 0, and the commutator of any two

homogeneous vector fields is a linear combination of homogeneous
vector fields.
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Proof. These identity can be checked by direct calculation. As an
example, we derive the formula for [Q,,,,Q,,]. Recall that

Q= (Mm"x” —m"™x") 0,.
Therefore
[9,,,Q2,5] = Qu (MTPx7 —M"7xP) 0 — Qe (M XY — M xH) 0,
= (m"x" —m7"x*) (m"”&'f — m""éﬁy’) O
— (M7"x7 —m"7x") (mm‘é: - m””éfy‘) Oy
=m7* (m"Px" — m"xP) 0, — mPH (m"7x” — m""x7) 0,
+m” (m"7x* —m"™x7) 0, — m7” (m"x* —m"x?) 0,

=mo"Q,, —mHQ,, + mPQ,, — m7YQ,,,.

This shows the result. O
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Lemma 12
For any 0 < u, v < n there hold

3,0, =0, [O0,9.,]=0, [O,L)]=20

Consequently, for any multiple-index « there exist constants c,g
such that
Ore = ) cul0. (29)
18I<|a|

Proof. Direct calculation. O

Let A := {(t,x) : t = |x|} be the light cone. The following result
says that the homogeneous vector fields span the tangent space of
]le” at any point outside A.
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Lemma 13
Let r = |x|. In R\ {0} there hold

(t—r)o Zartx

where the sum involves only the homogeneous vector fields, the
coefficients are smooth, homogeneous of degree zero, and satisfies,
for any multi-index «, the bounds

|6%ar(t,x)] < Cot + |x|) 7.

Proof. It suffices to show that

(£ = r?)0; = tQ0 + x'Qj —XLo, j=1,---,n,
(2 = r*)0: = tlo — x'Q;,



where we used Einstein summation convention, e.g. xiQU means
o1 x'Qj;. To see these identities, we use the definitions of Lo,
Qo; and Q;; to obtain

x'Qoi = r?0; + tx'0; = r?0; + t(Lo — t0;) = (r* — t2)8; + tlo,
xX'Qy = xIx'0; — r?0; = X (Lo — tdy) — r?0;
= xLg — t(Qoj — t9)) — t20; = xI Lo — tQq; + (t* — )0}

The proof is thus complete. ]

Let 0, ;== r ! 27:1 x'0;. We have from the definition of Ly and
Qo; that

Lo =t0; +rd, and x'Qoj = r’d; + rto,.
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Therefore ‘
rlo — ;X’.Qo; = (r2 — tz)a,.

This gives the following result.

Lemma 14
Let 0, := r 1320, x/9;. Then in R} \ {0} there holds

(t—r)o, —ao(tho+Z (t, x)Qo;,
=1

where a; are smooth, homogenous of degree zero, and satisfies for
any multi-index « the bounds of the form

0% ai(t, x)| < Ca(t+ |x) 71

whenever |x| > §t for some § > 0.
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4.2. Klainerman-Sobolev inequality

It is now ready to state the Klainerman inequality of Sobolev type,
which will be used in the proof of global existence.

Theorem 15 (Klainerman)

Let u € C*([0,00) x R™) vanish when |x| is large. Then

(L+t+ D)™+ e [xIlu(t, )P < € Y IFu(t, )i

+2
‘MS"T

fort > 0 and x € R", where C depends only on n.

In order to prove Theorem 15, we need some localized version of
Sobolev inequality.



104/262

Lemma 16
Given ¢ > 0, there is Cs such that for all f € C>°(R") there holds

FO)R < G R
lal<( n+2)/2 yl<s
We can take Cs = C(1 + 6="~2) with C depending only on n.

Proof. Take x € Cg°(R") with supp(x) C {|ly| <1} and x(0) =1,
and apply the Sobolev inequality to the function

xs(y)f(y), where xs5(y) := x(y/9),

to obtain

FOF<c Y [ tufmidy

lal<(n+2)/2
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It is easy to see [0%xs(y)| < C,07 1l for any multi-index a.. Since
supp(xs) C {y : |yl <}, we have

FOP<ca+s2) Y / 0°F(y)Pdy.
la|<(n+2)/2 7 V=0

The proof is complete. O

Observe that, when restricted to S"~1, each Q;,1<i<j<n,is
a tangent vector to S"~1 because it is orthogonal to the normal
vector there. Moreover, one can show that {Q; : 1 </ < j < n}
spans the tangent space at any point of S"~1. Therefore, by using
local coordinates on S 1, we can obtain the following result.



(a) Ifue C>®(S"1), then

wWE<c Y / n2do(n), Ve €S,

‘ |<n+1

where O = Q5 - -- Qf;ﬁlm with p = n(n—1)/2.

(b) Given § >0, for all v € C®°(R x S"71)

gw)P <G S /

J+|a|<n+2 p‘<5

| 10isvarp.Pdatndy
neS"™

where sups>s, Cs < oo for all o > 0.

106/262



107/262

Proof of Theorem 15. If t + |x| < 1, the Sobolev inequality in
Lemma 16 implies the inequality with I taking as 9, 0 < u < n.
In what follows, we assume t + |x| > 1.

Case 1. [x| < 5 or |x]| > % We first apply the Sobolev inequality
in Lemma 16 to the function y — u(t,x + (t + |x|)y) to obtain

‘U(tyx)lz < C Z / ‘8}?‘ (u(t’x+(t+’X’)Y))‘2dy
la|<(nt2)/2 7 IYI<1/8

=c ¥ (t+|X|)2'°"_"/ "

la]<(n+2)/2 <=~

(O u)(t, x + y)[Pdy

We will use Lemma 13 to control (9 u)(t,x + y) in terms of
(Fr*u)(t,x + y) with T being homogeneous vector fields. This
requires (t,x + y) to be away from the light cone.



We claim that

3 : 1
[t = Ixtyll = 5t +Ix]) if Iyl < g(t+Ix]).  (30)

Using this claim and Lemma 13 we have for |y| < (t + |x|)/8 that

@)t x+ Y S e+ 30 [P x+y)|.
1<|B|<le
Therefore

(- )lu(e )P S D / |(Tu)(t, x + y)|* dy
la|<(nt2)/2 7 YI<(t+Ix])/8

S D Irue)E.

|| <(n+2)/2
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We show the claim (30). When |x| > 3t/2, we have
2t < t+ x| < 5| \
= x| < =|x|.
2 3

So for |y| < (t + |x|)/8 there holds

On the other hand, when |x| < t/2 we have 3|x| < t + |x| < %t.
So for |y| < (t + |x|)/8 there holds

2 1
= Ixyll 2t [x = Jy| > ( fffff ) (t4Ix)) =
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Case 2. t/2 < |x| < 3t/2.

Since t + |x| > 1, we always have t > 2/5 and |x| > 1/3. We use
polar coordinate x = rw with r > 0 and w € S"~! and introduce

qgq=r—t

which is called the optical function. Then the light cone {t = |x|}
corresponds to g = 0. We define the function

v(t, q,w) = u(t, (t+q)w) (= u(t,x))
It is easy to show that

Oqv = 0ru, qOqv = (r —t)0,, O5v=05u. (31)
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Since t/2 < |x| < 3t/2 <= |q| < t/2, it suffices to show that

s ) e (32)

lo|<(n+2)/2

t"1(1 + |qo])|v(t, g0, w)

for all |qo| < t/2 and w € "1,

We first consider |go| < 1. By the localized Sobolev inequality
given in Lemma 17 on R x S"1 we have

v tqo,w)\2</ / 1 0205 v(t, q0 + q,m)|>do(n)dq
lgl<t Jsn—

+|Oé|< n+2

/|< /s . (B u)(t, (¢ + qo + q)n)[do(n)dg,

+|C¥‘< n+2

where I denotes any vector fields ;;, 1 </ < j < n.



Let r:=t+qo+q. Then t/4 <r <T7t/4. Thus

7t
4 .
Meaw)f e [0 [ S @) m) et do(dr
2

jHla|<m2

ser X eyl

e
#SWIST jtjal<np

gince ly| >4 >4 and 6, = $k0k, we have 0rul S 37 51 |08 ul.
0

e u(t, oy )P < / S reu(t, ) 2dy.
RI‘I

o< 252

We obtain (32) when |qo| < 1.
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Next consider the case 1 < |qg| < t/2. We choose x € Cgo(—%, %)
with x(0) = 1, and define

Vo (t, g, w) == x((q — q0)/qo)v(t, q,w).
Then V4, (t, qo,w) = v(t, qo,w) and
. 1
VQO(t7q7w):0 'f’q—CIO‘ >§‘q0|

In order to get the factor |qo| in (32), we apply Sobolve inequality
to the function (g,7) € R x ™! — V, (t, g0 + qog, n) to obtain

t qo,w )’ = ‘qu(t qo,w )|2

/q|< /Snl Z |94, (Vo (t, 90 + 909, 7) ‘ do(n

1
2 _/—0—|a\<"+2
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Consequently

v(t, qo,w)[?
j o 2
= C/ 1/ ‘ qoaq)jan qu) (t, QO+Cqu,77)} do(n
lg|<35 JSn—1 it \<"+2
:qu\l/ / 3 1(908qY 0 Vao(t, q,m)|* do(n
q qo TO §n= 1_/+| |<n+2

Since |(q09qY [x((q — 90)/q0)]| S 1. we have for |g[ ~ |qo| that

J
|(900qY 05 Vo (£, g, m)| < Z‘ (q09q) 05 v(t, q,n)
k=1

114/262

)dq



Therefore

‘q0||V(t, q07W)|2

i 2
< J g
S oo fon 2 lta02¥ovte g0 dor)e

2 2 Jtlal<m2

For |g| ~ |qol|, we have

J
(a0daY05v| S |05 v] £ 3" |(a0) 05w
k=1

Hence, by using |qo| < t/2,

. o 2
wlvtean?s [ [ Y [@youeqnf ot
q|<F IO

JHlel< g2
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Recall (31). We have with I denoting Q;;, 1 < i < j < n, that

|qol[v(t, qo,w
iro 2
/ 3t/ X (g0, YTu(t, (t + q)n)|” do(n)dq
q‘< Sn= +‘ |<n+2
- )
/ t/ ) > (r=0)dYreu(t, rm)|” do(n)dr
=3 S" _]«H |<n+2
o 2
/ / 2 [(r=0a YT, r)| " do(n)dr
ZES |<m2
- )
- / ; |((r = )0 Y Tu(t, y)|" dy. (33)
Zj+|a\<"+2
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Since |y| > t/4 and t > 2/5, Lemma 14 gives

((r =)oY u(t. )| S Y ITu(t,y)]

laf<j

where the sum only involves the homogeneous vector fields ' = L
and €,,,, 0 < pu < v < n. Combining this with (33) gives (32). O
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5. Global Existence in higher dimensions
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We consider in R the global existence of the Cauchy problem

Ou = F(0u)

(34)
U‘t:0=€f7 at“’t:O:5g7

where n >4, £ > 0 is a number, and F: R™*" 5 Ris a given C*
function which vanishes to the second order at the origin:

F(0)=0, DF(0)=0. (35)

The main result is as follows.

Theorem 18

Let n >4 and let f,g € C(R"). If F is a C* function satisfying
(35), then there exists g > 0 such that (34) has a unique solution
u € C>®([0,00) x R") for any 0 < & < &p.




120/262

Proof. Let
T.:={T > 0:(34) has a solution u € C*([0, T] x R")}.

Then T, > 0 by Theorem 7. We only need to show that T, = occ.
Assume that T, < oo, then Theorem 7 implies

> 10%u(t,x)| € L([0, T.) x R").
la<(n+6)/2

We will derive a contradiction by showing that there is g9 > 0 such
that for all 0 < & < gq there holds

sup > [0%u(t,x)| < 0. (36)

(t,x)€[0, T ) xR" || <(n46)/2
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Step 1. We derive (36) by showing that there exist A > 0 and
€0 > 0 such that

Alt):== > [oru(t, )| <Ae, 0<t<T, (37)
|a|<n+4

for 0 < & < gg, where the sum involves all invariant vector fields
Ou, Lo and Q.

In fact, by Klainerman inequality in Theorem 15 we have for any
multi-index § that

orfutt,x) < c+0~7 Y Irearfu(e, ).
lal<(n+2),2
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Since [I', 0] is either 0 or +0, see Lemma 11, using (37) we obtain
for |B| < (n+6)/2 that

Orfu(e, )| < CL+ )7 > areu(e, )
|| <n+4
= C(1+1t) "7 At)

n—1

< CAe(1+1)""7.

(38)

To estimate [P u(t, x)|, we need further property of u. Since
f,g € Cg°(R"), we can choose R > 0 such that f(x) = g(x) =0
for |x| > R. By the finite speed of propagation,

u(t,x) =0, f0<t< T,and|x|]>R+t.
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To show (36), it suffices to show that

sup IFu(t,x)| < oo, V|al<(n+6)/2.
0<t< Ty, |x|<R+t

For any (t, x) satisfying 0 < t < T, and |x| < R+ t, write
x = |x|w with |w| = 1. Then

Mu(t,x) = Tu(t, |x|w) — Tu(t, (R + t)w)
1
= / 9T u(t, (slx| + (1 = s)(R + t))w)ds (|x| = R — t)’.
0
In view of (38), we obtain for all |a] < (n+ 6)/2 that

IFu(t, x)| < CAe(1+ 1)~ (R+t —|x|) < CAs(1+t)""=".



Step 2. We prove (37).

m Since u € C*([0, T,) x R") and u(t,x) =0 for [x| > R + t,
we have A(t) € C([0, T)).

m Using initial data we can find a large number A such that

A(0) < > Ae. (39)

&=

By the continuity of A(t), there is 0 < T < T, such that
A(t) <Asfor0<t<T.

m Let
To=sup{T €0, T,) : A(t) < Ae,¥0 <t < T}.

Then Ty > 0. It suffices to show Tg = T,.
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We show Ty = T, be a contradiction argument. If Tg < T, then
A(t) < Ae for 0 < t < Ty. We will prove that for small £ > 0 there
holds

A(t) < %Ae for0<t< Ty
By the continuity of A(t), there is § > 0 such that
A(t) <Ae for0<t<Tg+94
which contradicts the definition of Tg.
Step 3. It remains only to prove that there is £g > 0 such that
A(t) < Aefor0 <t < To:>A(t)§%A5for0§t§ To

for 0 < ¢ < gy.
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By Klainerman inequality and A(t) < Ae for 0 < t < Ty, we have
for |B] < (n+6)/2 that

_n—2

0MPu(t, x)| < CAe(1+t)" 2, Y(t,x) € [0, To] x R".  (40)

To estimate ||OM*u(t,-)||;2 for |a] < n+ 4, we use the energy
estimate to obtain

t
[T u(t, )2 < 107 u(0, )2 + C/O IOr*u(r, )| 2d7. (41)

We write
Or¢e = [O,T%u 4+ I*(F(0u))

and estimate [|[*(F(0u))(7,)|;2 and |[[E, F*]u(T, )|l 2
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Since F(0) = DF(0) =0, we can write

F(ou) = Z ik (0u)0judu,
Jj,k=1

where Fj are smooth functions. Using this it is easy to see that
F*(F(Ou)) is a linear combination of following terms

Fay.om(Ou) - T 0u - T*20u - - - - - T Qu

where m > 2, F,,...q,, are smooth functions and |a1| + - - - + |am|
= |a| with at most one «; satisfying |«;| > |a|/2 and at least one
«a; satisfying |a;] < |a]/2.

m In view of (40), by taking ¢ such that Asg < 1, we obtain
| Fay-am(Ou)|| e < C for 0 < € < g with a constant C
independent of A and ¢.



m Since |a|/2 < (n+4)/2, using (40) all terms ' Ju, except

the one with largest ||, can be estimated as

. _n1
T 0u(t, x)|| oo (o, To)xrr) < CAe(1+ )™ 2

Therefore

IF(F(8u))(t, )|l 12 < CAe(1+ t)~ Z IFP8u(t,
1B<]al
< CAe(1+ 1) "7 Ab).

Recall that [0, T] is either 0 or 2LJ. Thus

O.rul s Y IFP0ul S Y IFP(F(0w)].

181<la| 181<la
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e

(42)



Therefore

IO, T (e, )l < € Y IIFP(F t,)lle2
18I<|al

< CAe(1+t)""T A1) (43)

Consequently, it follows from (41), (42) and (43) that

t
lor“u(t, )|z < ||OT%u(0, )| 2 + CAs/ L)n_dr
o (1+7)

Summing over all & with |a] < n+ 4 we obtain

A(t)SA(O)+CAa/t(A()1d < Ae+ CAe/t(A(T)nldT.
0 0

1+7)> 1+7)=
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By Gronwall inequality,

At) < A cae [ 9T\ g<ier
< JAcexp € ) Grneoz) 0sts 0-
For n >4, [° (HT;IW = % < 0o. (This is the reason we

need n > 4 for global existence). We now choose £y > 0 so that

2
—CA < 2.
eXP<n_|_2 60) =

Thus A(t) < Ag/2 for 0 <t < Ty and 0 < € < gg. The proof is
complete.
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Remark. The proof does not provide global existence result when
n < 3 in general. However, the argument can guarantee existence
on some interval [0, T.], where T. can be estimated as

ec/e, n=3,
T->< c/e?, n=2, (44)
c/e, n=1

In fact, let A(t) be defined as before, the key point is to show that,
forany T < T,

1
A(t) <Asfor0 <t < T:>A(t)§§A5forO§t§T



The same argument as above gives

At) < TAcexp [ CA /t‘” 0<t<T
=3P\ )y o) T

Thus we can improve the estimate to A(t) < 2Ae for 0 < ¢t < T if

T. satisfies
T
¢ dr
exp <CA5/O (1—1_7_)(,71)/2> S 2

When n < 3, the maximal T, with this property satisfies (44).
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Remark. For n =2 or n = 3, the above argument can guarantee
global existence when F satisfies stronger condition

F(0)=0, DF(0)=0, ---, DKF(0)=0, (45)

where k =5 — n. Indeed, this condition guarantees that F(Ju) is a
linear combination of the terms

Fj j (8u)8j1 u--- 8jk+1 u.

1 Jk+1
Thus M'*(F(9u)) is a linear combination of the terms
fiyi, Q)T %100 - ... - T Qu,

where r > k+1, |oa| + - - + || = |a| and f;,...; are smooth
functions; there are at most one «; satisfying a;; > |«|/2 and at
least k of «; satisfying |a;| < |a|/2.
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We thus can obtain

(n—1)k

IT(F(Ou))(t,)ll2 < CAe(L+ )" 2 A(t),

(n—1)k

IO, T u(t, )|z < CAs(1+t)” 2 A(t).

Therefore

1 t dT
A(t) < ZAE exp (CA5/0 1+ T)((nl)k)/2> ’

Since k =5—n, [;* M{W converges for n =2 or n = 3.
The condition (45) is indeed too restrictive. In next lecture we
relax it to include quadratic terms when n = 3 using the so-call
null condition introduced by Klainerman.



6. Null Conditions and Global Existence: n=3
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We have proved global existence of the nonlinear Cauchy problem

Ou = F(du)

Ult—o = f, Otult—0 = g

in R with n > 4, for sufficiently small ¢, where F : R1T" - R is
a given C™ function which vanishes to second order at origin, i.e.

This global existence result in general fails when n < 3 if there is
no additional conditions on F.

Example. Fritz John (1981) proved that every smooth solution of
Ou = (9,u)?

with nonzero initial data in C§°(R3) must blow up in finite time.
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For details please refer to

m F. John, Blow-up for quasi-linear wave equations in three-space
dimensions, Comm. Pure Appl. Math., Vol. 34 (1981), 29-51.

Example. (Due to Klainerman and Nirenberg, 1980) On the other
hand, for the equation

3
Du=(0ru)® = > (9ju)®, t>0,xcR? (46)

J=1
we have global smooth solutions for small data:
U|t:0:€f, atu’t:0:5g7 (47)

where f,g € C§°(R®) and € > 0 is sufficiently small.
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To see this, let v(t,x) =1 — e “(tX) Then v satisfies
DV — 0, V|t:0 — 1 - e7€f7 at'V|t:0 = Egeisf (48)

which is a linear problem and thus has a global smooth solution. If
[v(t,x)| <1 for all (t,x), then

u(t,x) = —log[l — v(t, x)] (49)

is a global solution of (46) and (47). To show |v| < 1, we can use
the representation formula of solutions of Clv = 0 to derive

where A is a constant depending only on L* norm of v|:—o and
OV|t=o. In view of (48), it is easy to guarantee A< 1ife >0 is
sufficiently small. Hence |v| < 1.



6.1. Null forms in R1*"
m A covector £ = (€,) in (R, m) is called null if

m"’¢.€, = 0.

m A real bilinear form B in (R*" m) is called a null form if

B(&,€) =0  for all null covector &.

Any real null form in (R'*" m) is a linear combination of the
following null forms

00(67 77) = m/wf;mua (50)
QW(&??) = 5#771/ - gun,uv 0<pu<v<n (51)

139/262



140/262

Proof. Let B be a null form. We can write B(§,n) = Bs(&,n)+
B.(&,m), where

1

Bu(6.) = 5 (B(En) + B.)), Bal&.n) = 5 (B m) ~ B.E)).

N

Then Bs is symmetric, B, is skew-symmetric, and both are null
forms. Therefore it suffices to show that

m If B symmetric, then it is a multiple of Qq;

m If B skew-symmetric, then it is a linear combination of Q;w-

When B is skew-symmetric, we can write B({,n) = b*€,n, with
b*" = —b"*. Therefore

B(f, 77) = Z bwj(gunu - fﬂ]u)-

0<pu<v<n



141/262

When B is a symmetric null-form, we can write B(&,n) = b*§,m,
with b* = b"¥. Then

b €,€, =0 for null covector £ = (&,). (52)
For any fixed 1 < i < n, we take the null £ with
So==x1, & =1 and & =0forj#0,i.
This gives b% + 2% + b = 0. Consequently
PP =p0=0 and KO +b"=0 i=1,---,n. (53)
Next for any fixed 1 < i < j < n, we take null covector & with

fo=V2, &=¢=1 and & =0for k#0,i,j.
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Using (52) and (53) we obtain b = 0. Therefore
(b") = b¥diag(1, -1,--- , —1).
Consequently B(¢,1) = —b%Qo(£,7) and the proof is complete. [

Recall that we have introduced in (R*” m) the invariant vector
fields 9,,, £2,,, and Lo which have been denoted as I'. For each of
them, we may replace 0, by &, to obtain a function of (x,¢),
which is called the symbol of this vector field. Thus

m the symbol of 9, is §,;

m the symbol of Q,,, is Q,,(x,§) == (MPHxY — mPVxH)E,,;

m the symbol of Lg is Lo(x,&) 1= xH&,,.

We then introduce the function
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r(ng) = Z QMV(Xa§)2 + LO(X7§)2 + Zéﬁ

0<u<v<n u=0
Let |£| denote the Euclidean norm of £&. Then we always have

B(& )| < Goléllnl, V& e RV, (54)

where Cp := max{|B(&,n)| : |£] = |n| = 1}. The following result
gives a decay estimate in |x| when B is a null form.

Lemma 20
A bilinear form B in (R**" m) is null if and only if

B, €] < CA+ Ix)THI(x, EDIIF(x, €2, Vx, &' e R
(55)
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Proof. (55) == B is null. Let & be a nonzero null covector. We
define x = (x*) by x* := Am*”¢, with X\ > 0. It is easy to see

Lo(x,&) = AmME,6, =0 and  Q,(x,§) =0.
Thus I'(x,&) = [¢]. Consequently (55) gives
[B(& O < CA+ AN, ¥a>o0.

Taking A — oo gives B(£,£) =0, i.e. Bis null.

B is null = (55). It suffices to show that
M(x, ") =T(x&) =1=[B(" &) < CL+|x)™"  (56)

Since I'(x, &) = 1 implies €| < 1, we can obtain (56) from (54) if
|x| < 1. In what follows, we will assume |x| > 1.
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Let & := (&) with § = m, x”. We decompose
& =0+
with (n, ) =0 and t; € R. Then
B(¢',€%) = B(i',n*) + 2B(n', €) + 1B(§*, 1) + 12 B(E, £¥).
In view of || = |x|, we have from (54) that

1B(Y, €2 < Co (In* || + [t2llx[In* + lallx|n?]) + |l el B(EX, €.
Since B is null, we have from Lemma 19 that

1B(E™, &) < GolQo(&7, £)| = Colm™ELET| = Colmy, xHx"|.
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Therefore
1B(EH €2 < Co (Int1?] + [l x|+ [ta] x| 10?] + [t [ 2] [mx*x"]) -
We can complete the proof by showing that

[t + 0’| S Ix[7F and [t [myxxY| S 1.

Observing that (x, &) = 1 implies

€1<1, |Lo(x&) <1 and > Qu(x¢) <L

0<p<v<n

Using (n',&<) = 0 and |¢'| < 1 we can derive that t?|¢X|* < 1.
Thus [tj]|x| = []|¢*] < 1.
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Since
Lo(x, &) = X“nL + tixHE, = XHUL + timy, xH'x",
we have from |Lo(x,&7)| < 1 that
[l [ M x| < 1 (x|l

Thus [tj]|m,,x*x”| < 1 if we can show || < [x|71. It remains
only to prove |n'| < |x|~!. Noticing that

(3, €7) = (P — P XY = (P — P ) x°
This implies

QW(X,'SI) = qu(X n ) + tIQW(X §) = W(X n )

=0.



Therefore

> Qb= Y Q&)

0<p<v<n 0<p<v<n

We will be able to obtain |n/| < |x|~! if we can show that

ST Qux,n’)? = xR, (57)

0<u<v<n

To obtain (57), recall that & = —x? and ¢X = x/ for 1 < i < n.
Since (m*”) = diag(—1,1,--- ,1), we obtain

Yo Qb= Y (Gl —En)’

0<u<v<n 0<pu<v<n
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By expanding the squares, we obtain

S Q)

0<u<v<n
= > (€PN + (€2 — 265mign])

0<u<v<n
> @M= >0 Y gme,
0<p<nv#p 0<p<nv#p

2

= 1&PIn')? - qu%

Since (¢X,n') = 0, we obtain (57).
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6.2. Null condition and main result
We consider the Cauchy problem of a system of N equations

Ou' = Fl(u,0u) inRE3, 1=1,...
U(O, ) = Efa 81‘”(07 ) = &g,

7N7

(58)

where e >0, f = (f1,--- [ fN)and g = (g}, -, g") are C§°(R3),
and F = (F!,--- ,FN) are C*. Of course, the unknown solution
u=(ul, -, u")is RN-valued. To obtain a global existence
result, the so called null condition on the quadratic part of each F’

should be assumed.

m The quadratic part of a function F defined on RM around 0 is

Qr(z) =Y %aaF(O)za, vz € RM.
laj=2



Definition 21 (Klainerman, 1982)
F:=(F,--- ,FN)in (58 ) is said to satisfy the null condition if

(i) F vanishes to second order at the origin

F(0)=0, DF(0)=0.

(i) The quadratic part of each F/ around 0 has the form

N3
J K
Qr(0u)= > Y a0’ u",
J,K=1 p1,v=0
where a}, are constants satisfying, for all /,J,K =1,--- | N,
3
Z €., =0 for all null covector ¢ € RM3.
p,v=0
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Klainerman (1986) and Christodoulou (1986) proved the following
global existence result independently.

Theorem 22 (Klainerman, Christodoulou)

Assume that F in (58) satisfies the null condition. Then there
exists g = €o(f, g) > 0 such that (58) has a global smooth
solution provided € < &.

We first provide necessary ingredients toward proving Theorem 22.

The proof is carried out by the continuity method which is
essentially based on suitable energy estimates and hence requires
to handle MF(u, du) for invariant vector fields 0, Lo and €2,
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According to the null condition on F and Lemma 19, we have

Lemma 23

If F in (58) satisfies the null condition, then each component
F!(u,0u) has the form

F!(u,0u) = Qi (du) + R (u, du),

where R! is C* and vanishes to third order at 0 and

Qpi(0u) = Za,JKQO (Ou?,0u")+> " > b Quu(du?, 0u")

J,K 0<pu<v<3
with constants ajkx and b}

The term MR/ is easy to handle. The term I'*Qg/(Ou) needs
some care; we need only consider F*Q(du’, 9u¥) for null forms Q.
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Lemma 24
Let Q be one of the null forms in (19) and (23)

1Q(Av, dw)(t, X) _c D) ) rw(t, x)]

<3
v |X| |a|=1 |a|=1

Proof. In view of Lemma 20, we have

C

< -
Q.)€ T

IT(t, x,0v)I(t,x,0w)|.

Since [(t,x,0v) = > =1 [T*v(£, x)|, we obtain the result. O



Therefore, in order to estimate I'*Q(dv, dw) for a null form Q, it
is useful to consider first the “commutator”

[, Q)(dv,0w) =TQ(dv,dw) — Q(ATv,0w) — Q(dv, dlw)

We have the following result.

Lemma 25

Let Q be any null form, let Qo and Q.. be the null forms given by
(50) and (51). Then

[6%17 (Q] =0, [1-07 (:?] = =2 C?,
[QHZH QO] = 07

Qv Qo] = (M™6; — m™6)Qpp — (M5 — m™ 6 Qs
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Proof. All these identity can be derived by direct calculation. We
derive [Q,,,, Qpo] here. Let v and w be any two functions. Then

[Qu, Qo] (Ov, 0w) = Q,, (0,v0sw — O;w0,Vv)
~ (0 Q)05 w — 05(Quv)Ow )
- (apvaa(nww) . ac,vap(QWW))

= —[0,, Qu]v - Oow + [05, Qu|v - Opw
— 0pV - [Oo, QW + 05 v - [0, Q] w.

Recall that
(05, Q] = (m”“dz - m””éﬁ)@n.
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By substitution we obtain

[Quw QPU](8V7 ow) = (m™sy — m”"ég)an((?v, ow)
- (m”“ég — m"”éﬁ)QW((?v, ow).

The proof is complete. O

Proposition 26

For any null form Q, and any integer M > 0, we have

@+t +1x)) Y Ir*Q(av, ow)|

la|<M
< X vl X Irwe)
1<|al<M+1 1<]al<¥+1

rau( X e (> Iewe)l).

1<|a|<¥ 41 I<|a|<M+1
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Proof. By induction on M. For M = 0 it follows from Lemma 24.
For a multi-index o with |a| = M > 1, we can write [ = T
with |5| = M — 1. In view of Lemma 25, we have

r“Q(av,dw) =2 (Ir, QJ(dv, dw) + Q(Arv, dw) + Q(dv, drw)).
Therefore

doreQavi,ow) < Y [MPQ(av, ow))

lal<M BlI<M-1
+ Y rPQarv,ow)|
|B|I<M—1
+ Y MPQ(av, arw)l.
|BI<M—1

By the induction hypothesis, we complete the proof. O
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In order to apply Proposition 26, we need to know how to estimate

> Ireu(t, e

Ja|<M+1
This will be achieved by considering a suitable conformal energy.

We have shown in Theorem 9 that if X is a conformal Killing
vector field in (R'*", m) with X)7 = fm, then for any smooth

function u vanishing for large |x| there holds
/ / u?Ofdxdt

[to,t1]xR"

/QXath—/QXatd

e

[to,t1]xR"

—1 fu> Dludxdt, (59)
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where
~ n—1 1 2
Q(X,(?t): Q(X,at)+T fu@tu—iu 8tf ,
1
Q(X, 8t) = (XU)atU — Em(X, 8t)m(8u,3u).

We have also determined all conformal Killing vector fields in
(R¥7 m). In particular, d; is Killing and the Morawetz vector field
Ko = (% + |x|?)0; + 2tx'0;

is conformal Killing with (Ko)r = 4tm. Take X = Ky + 9. Then

X)r = fm  with f = 4t.



Therefore
Q(X,0:) = [(1+ t2 + |x|?)0su + 2tx’6,-u] Oru

+ %(1 + t2 + [x]?)m(du, du)

1

2(1 + t2 4+ [x]?)|0u|? + 2tx'0;udyu.

Consequently

Q(X,0:) = =(1 + t2 + |x|?)|0u|? + 2tx'0;udru + 2tudsu — u?

(]8u|2 + |Loul® + Z |QWu|2> + 2tudru — u?,
0<pu<r<3

NI =N

where the second equality follows from some calculation.
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We introduce the conformal energy
Bo(0)i= [ QWX.00dx,
{t}xR3

According to the formula for é(X,@t) we have

1
Bo(0) =5 [ (1002 +1LouP + Y i@u02)de
2 Jrs 0<p<v<3
—i—/ (2tudeu — u?) dx. (60)
R3

We will show that E(t) is nonnegative and is comparable with
Dot T u(t, |12z, where the sum involves all vector fields .,
Q,, and Lo.



Lemma 27
E(t) > 0 and for t > 0 there holds

t
()2 < E(O)Y2 + /0 I+ 7 + )0, )l zdr

Proof. Observing that

2tudru = 2u(Lou — x’@,-u) = 2ulgu — Xiai(u2)
= 2ulou + 3u® — 9;(x'v?).

Therefore, by the divergence theorem, we have

/ 2tudrudx = / (2uLou + 3u2) dx. (61)
R3 R3
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Consequently

1
Eo(t) = > /R3 <\8u\2 + |Loul® + Z 1Q,u? + 4ulou + 4u2>dx
0<u<r<3

__1 2 2 2
_/Rg (100 + Lou+202 + 3" [Quu?)dx, (62)

2 0<pu<r<3
which implies E(t) > 0.

To derive the estimate on E(t), we use (59) to obtain

Eo(t) = E(0) + /Ot /]1@3 (Xu + 27u) QudxdT,

Thus J
Eo(t):/ (Xu + 2tu) Oudx.
dt R3



Therefore

d -
S Eot) = [I(1+t+x]) (X + 2t 2I(1 + ¢+ [x)Du(t, )l 2.

In view of the definition of X, we have

Xu+2tu = (1 + t? 4 |x|?)0eu + 2tx'0;u + 2tu
= Oru + t(Lou + 2u) + x'Qo;.

By Cauchy-Schwartz inequality it follows that

3
X+ 2t < (14 8+ ) (00 + |Lou + 20 + 3 |20:f?)

i=1
Hence

I+ ¢+ Ix) 7 (X + 260)| 2 < 2Eo(e).
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Consequently

—EO < V2E()|I(1 4 ¢+ |x))Du(t, )|l2-
This implies that

d
a/:'('f)l/2 <[+t 4+ x)Bu(t, )l 2

which gives the estimate by integration. O

Lemma 28

There is a constant C > 1 such that

CH ) lIru(t, )lIf < Eo(t) < € ) IFu(t, )1z,

laf<1 jal<1

where the sum involves all vector fields 0, Lo and 2,,,,.



Proof. In view of (62), the inequality on the right is obvious. Now

we prove the inequality on left.
We will make use of (60) for E(t). To deal with [ 2tud;udx, we
use Qo; to rewrite 0;. We have

x'Qoi = r?0; + tx'0;.
Thus, by introducing Q, := r_lxiQo;, we have

Or = r1Q, — r2tx'0;.
Therefore

/2tu8tudx = /2r1tu§2,udx— tz/r2xi(‘3;(u2)dx.
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Integration by parts gives

/2tu8tudx = / (2r*1tu§2ru + r72t2u2) dx.

On the other hand, we obtained in (61) that

/2tu8tudx = / (2uLou + 3u?) dx.

Therefore

/(2tu8tu — u?)dx

1
3/(2uLou—|—3u2) dx+4/(2r1tu§2ru+r2t2u2) dx—/u2dx

3 5 1 1
:/<2uLou—|—4u2+2r tuf, u—|—4 t2 2) dx.
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In view of (60) we obtain Eqo(t) = 3 (h + k + I3), where

/1:/<|8u]2+ 3 yQWuF—m,uF)dx

0<pu<r<3

1
l2:/<\§2,u|2+r tuf2, u+2 t2 2> dx,
2 > 2
/3:/(‘L()U’ +3UL0U+2U>CIX.

By the definition of €2, and Cauchy-Schwartz inequality we have

3 2 3
2 2
> Qoiu| <> [Qojul

|Q,u|2 =

This implies /; > 0.
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We also have I > 0 because
2, -1 I 500 1 2 -1, 12
|Qpul+r tuQ,u+§r tu” = 5 <\Q,u| + ‘Q,u+ r tu‘ ) > 0.

Therefore I3 < 2Ey(t). It remains only to show that

/ (v + |Loul?) dx < hs.

To see this, we write
2 5,
|Loul +3uLgu—|—§u

= |aLou + bu? + (1 — a®)|Lou|® + <2 - b2> u? + (3 — 2ab)ulou.
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It is always possible to choose a > 0 and b > 0 such that

3—-2ab=0, 1-—2a°>0, g—b2>0.

Thus

5
|Lou|?® + 3ulou + Euz > |Lou|?® + .

This shows that /3 > [(u? + |Lou|?)dx. We therefore complete the
proof. O
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We are now ready to derive, for any integer M > 0, the estimate on

> Iru(t, e

Jo|<M+1

Proposition 29 (Energy estimates)

For any integer M > 0, there is a constant C such that

Yo Irutz<c Y Ir*u(o,)e:

|| <M+1 la|<M+1

ey / (14 7+ - YreDu(r, )| 2dr

|| <M

for all t > 0 and all u € C*([0,0) x R3) vanishing for large |x|.
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Proof. The estimate for M = 0 follows from Lemma 27 and
Lemma 28 immediately.

For the general case, let 8 be a multi-index and apply the estimate
for M =0 to M u to obtain

Dorerfu(e e S Y IF T u(0, )|

lal<1 |af<1
t
+/ (1 +74 |- DArfu(r, )| 2dr.
0
Since [, T] is either 0 or 20J, we have

@+ 7+ - DEFPu(r e $ Y 1@ +7+]- DO, )2
[v1<18]



Therefore

Yo lrerPu(e, e £ Y0 IrerPu(o, ) e

o<1 lo|<1

£ 5 [ DD s

IvI<IBI

Summing over all 8 with |3| < M gives the desired estimate. O

6.3. Proof of Theorem 22: global existence

Let

T, :=sup{T > 0:(58) has a solution u € C*([0, T] x R"}.
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By local existence theorem, T, > 0, and, if T, < oo, then

> lo%ul & L=([0, T.) x R").

laf<4

On the other hand, we will show that there exist a large A > 0 and
a small g > 0 so that

Ae
@ < — 0 V(t T.) x R"
> (e )| < g Y(Ex) 0T <ET (69

|| <4
for 0 < € < ¢gg. This is a contradiction and hence T, = oo.

We will use the continuity method to obtain (63).



Since f,g € C§°(R") and F(0,0) =0, we can find a large A >0
such that

Z ITu(0, x)| < %Aa, Vx € R".

lor| <4
We can find R > 0 such that f(x) = g(x) =0 for |x| > R. By
finite speed of propagation,

u(t,x) =0 for |x| > R+t

Thus by continuity, there exists T > 0 such that

Ae
IFu(t,x)]| < ———, V(t,x) €[0, T] xR". (64)
O4Z<4 1+ t+ |x]
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It remains only to show that there exists 9 > 0 such that if (64)
holds for some 0 < T < T, and 0 < € < gg, then there must hold

S Ireu(t 0 € s W(t,x) € [0, T xR, (65)
2, 20+t X))

We will show this by two steps.
Step 1. Show that there exists constants Cy and C; such that

At) < Go(L+ 1) A0), 0<t<T, (66)

where

= > lIru(t, )l

|| <7
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To see this, we use Proposition 29 to obtain

A(t) < CA(0) + C/t Z L+ 7+ |- )FrOu(r, )| 2d7. (67)
% Jal<6
We need to estimate
1A+ 7+ - DrBu(r, e = [+ 7+ |- DFF(u, du)(7, )| 2.
Since F satisfies the null condition, we have
F(u,0u) = Qr(du) + R(u,du), (68)

where Qf(Ou) is the quadratic part, and R(u, du) vanishes up to
third order.
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Therefore R(u,du) is a linear combination of the terms
Rg, 5,5 (1, u)Pr ud® ud® u,

where each f; is either 0 or 1. So I'*R(u, du) is a linear
combination of the terms

a(u,du)r*19%y - .. TomgPmy, (69)

where a(-, ) are smooth functions, each ; is either 0 or 1,
lai| + -+ + |am| = |a| with m > 3, and at most one «; satisfies
|aj| > 3. In view of (64),

la(u, du)(t,x)| < C, V(t,x) €0, T] x R".



For all the terms M 3% u except the one with highest |aj|, we can
use (64) to estimate them. We thus obtain

ST+ T+ DIR(u, du)(r, )|

o <6

C(A¢e)? C(A¢e)?
< r . = A <7r<T.
Ly 2 Irule = S, o< s

For I'*Qf(Ou), we can use Proposition 26 and (64) to obtain

Do+ D QE(Au)(r, )12

| <6

< C Yo ru(r = Y IFu(r, )l <

laf<4 laf<7

CAe
1+71

A(T).
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Therefore

oI+ predu(r e <
|ol<6

This together with (67) gives

t
A
A(t) < CA(0) + CAs/ _(:) dr, 0<t<T.
0

By Gronwall inequality,

dr
+ 7

A(t) < CA(0) exp <CA5 /Ot . ) = C(1+t)“A(0), 0<t<T.

This shows (66).
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Step 2. We will show (65). We need the following estimate of
Hoérmander whose proof will be given later.

Theorem 30 (Hormander)

There exists C such that if F € C?([0,00) x R3) and Ou = F with
vanishing initial data at t = 0, then

dyds
1+t (t,x)| < C r“F
(el <€ [ [ rere 2

|a|<2

In order to use Theorem 30 to estimate | “u(t, x)| with |a| < 4,
we need u(0,-) =0 and 9:*u(0,-) = 0. So we define w, by

Ow, = 0, Woc‘t:O = (raU)|t:O7 8tWa’t:O = (8trau)‘t:0'



We then apply Theorem 30 to v — w, to obtain

L+ t+[x]) D Iru(t, x) — wa(t, x)|

|| <4

<cy Z/ IrPoreu(s, y)\dydss

la|<4|B|<2

Since [0, ] is either 0 or 2], we have

(Lt Ix) D M u(t,x) — wa(t,x)|

la|<4

//|F"Du dyds— Z/ IF F (u, 9u)(s, y)|fyd5
R3 +

| |<6 || <6
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We use again (68). For the quadratic term Qg(du), we may use
Proposition 26 to obtain

(L+5) D IF*Qe(du)(s,¥)| < € > [Mu(s,y)I.
|or|<6 la|<7
This together with (66) gives

/ S I Qe(@u)(s iy < 1 Y (s I

|| <6 || <7
< CA(0)(1 + 5)"1+2G4e,

For T'*R(u, du), we use again (69). We use (64) to estimate all
factors except the two factors with highest |o;|.



185/262

Then

/|r R(u, du)ldy < = 3 (s, )|

| |<7
< CAeA(0)%(1 + s)~1H2GAe,

Therefore

t
(L+t+|x]) Z ITu — wol(t, x) < CA(O)Q/ (14 5)2+2G0A g,
|o| <4 0

It is easy to see that A(0) = O(e). We take €9 > 0 such that
4C1As < 1. Then for 0 < € < gg there holds

(Lt +[x) D IFu(t,x) — wa(t, x)| < Ce?

laf<4
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By shrinking £ > 0 if necessary, we can obtain

Ae
ITu(t, x) — wo(t,x)| < —————
|az<:4 41+ t+|x])

This will complete the proof of (65) if we could show that

Ae
|C§<:4|Wa(t,x)| S TErR) (70)

To see (70), we observe that [F“u(0,-)| < C,e with C, depending
on « and f, g. Since w, is the solution of a linear wave equation,
by the representation formula, we can conclude

Cae
alt < — t R3.
> wa(tx)| < pesar GO LOR
|| <4
By adjusting A to be a larger one, we obtain (70). O
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6.4. Proof of Theorem 31: an estimate of Hormander
Theorem 31 (Hormander)

There exists C such that if F € C?([0,00) x R3) and Ou = F with
vanishing initial data at t = 0, then

dyds

1+t+ (t <C / rF R ———
(et blu(e <€ S0 [ | I Fe I

|a| <2

(71)

We first indicate how to reduce the proof of Theorem 31 to some
special cases. Take ¢ € C*°(R*) such that

(s,y) = 0 when s?+|y]2>2/3
PEYIZ1 1 when 2+ |y < 1/3

and write F = F; + F», where F; = ¢F and F> = (1 — ¢)F.
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Then
supp(F1) € B(0,2/3) and supp(F2) c R*\ B(0,1/3).

Define u; and up by [u; = F; with vanishing Cauchy data, then
u = uy + up. If the inequality in Theorem 31 holds true for u; and
up, then it is also true for u, considering that [[*p| < C,.

Therefore, we may assume either

m F is zero in a neighborhood of the origin, or

m F is supported around the origin.

We need the representation formula for u satisfying u = F with
vanishing Cauchy data at t = 0.
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Recall that the solution of the Cauchy problem [Ju = 0 with
u(0,-) =0 and 0:u(0,-) = g is given by

1

U(t,X) = m

/ g(y)do(y). (72)
ly—x|=t

Lemma 32
The solution of Ju = F with vanishing Cauchy data att =0 is
given by

dy

) =g [ Rl (73)

Proof. The Duhamel’s principle says that u(t, x) = fot v(t, x; s)ds,
where, for each fixed s, v(t, x;s) satisfies

02v—Av =0, v(s,x;5)=0, 0:v(s,x;s)=F(s,x).



In view of the representation formula (72) we have

1
T =) /M:ts F(s,y)do(y).

v(t,x;s) =

Therefore

L[ F(s.y)
£x) = — 5 do(y)d
e =g [ B et

t — [e—
:1// Ft=7x=2) 1o yar
41 Jo Jiz|=r T
1

F(t— |z\,x—z)$.

2|

4m |z|<t

This completes the proof.
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Corollary 33

(a) Maximum Principle: Assume that u; and up satisfy
Ouj = Fj with vanishing Cauchy data at t = 0. If |F1| < Fo,
then |ui| < up.

(b) If F is spherically symmetric in the spatial variables, i.e
F(t,x) = ), then the solution u of Ju = F with
vanishing Cauchy data at t = Q is also spherically symmetric,
ie. u(t,x)=Tu(t,|x|), where

r+ts~
u(t, )pdpd:
r 2[‘//| SpppS

Proof. (a) follows immediately from (73) in Lemma 32.
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(b) The spherical symmetry of u follows from the formula (73).
Let r = |x| and e3 = (0,0,1). Then

1 ~ dy
() = o(ere) = o [ Fe—iyllres =)
yl<t

Taking the polar coordinates y = 7(sin 6 cos ¢, sin 0 sin ¢, cos 6)
and using |re3 — y| = v/r2 — 2rr cos§ + 72, we obtain

1 t 2w o
u(t,x) = 477/0 /0 /0 F(t —7,\/r2 — 2rr cos 0 + 72)7 sin 0d0dpd.

Let p = /r2 —2rrcosf + 72. Since pdp = rrsinHdf, we have

1 t r+7 _
u(t,x) = 2r/0 / | F(t —T,p)pdpdT.

This completes the proof by setting s =t — 7. O
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Lemma 34

There exists C such that if Ju = F with F € C?([0, <) x R3) and
vanishing Cauchy data at t = 0 then

t dyds
x||u(t,x)| < C/ / Fr“F(s,
[x[|u(t, x)| e > IF*F(s,y)l vl

o <2

where the sum involves ' = Q;;, 1 < i < j < 3 only.
Proof. Define the radial majorant of F by

F*(t,r) := sup |F(t, rw)|,
weS?

and let u*(t,x) solve Ou*(t, x) = F*(t, |x|) with vanishing Cauchy
data at t = 0.
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It follows from Corollary 33(a) that
u(t, x)| < u*(t,x).

In view of Corollary 33(b) we then obtain with r := |x| that

r+(t— s)
Ixlfu(t, )] < [x]u* / /| F(s, p)pdpds. (74)

—(t—s)|

Using the Sobolev inequality on S?, see Lemma 17(a), we have

Fi(s.p) = sup |F(s.p) < € 3 [ [(F)(s.pw)ldo(v)

2
wES |a‘<2

where the sum involves only I' = ;; with 1 </ < < 3.



Combining this with (74) yields

Ix[|u tx|<CZ// /ra (s, pw) | pdor(w)dpds
|r—(t—s)| JS?

|a|<2

<C) / / /82 (T*F)(s, pw)|pdo(w)dpds

|a|<2
_CZ//|FC“ dﬁs.

The proof is complete. O

Now we are ready to give the proof of Theorem 31. We first
consider the case that F is supported around the origin.
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Proposition 35

Let u satisfy Ou = F with F € C?([0,00) x R3) and vanishing
Cauchy data at t = 0. If F is supported around the origin, say,
supp(F) C {(s,y) : s+ [y| <1/3}, then

dyds
1+t+ (t <C// F“F(s
(1+ £+ |x]) u(t, )| > Il

la|<2
where the sum only involves the vector fields I = 8j, 0<j<3.

Proof. We claim that u(t,x) = 0 if |t — [x|| > 1/3. Indeed, recall

that ) J
ly
u(t,x) = — F(t—lyl,x—y)—.

ly[<t



197/262

It is easy to see that for |y| < t there hold
(t=1IyD)+x =yl =]t =[x
Therefore when [t — |x|| > 1/3 we have
F(t—|yl,x—y)=0 forall |y| <t.
Consequently u(t,x) =0 if [t — |x|| > 1/3.

Case 1. |x| < t/2. Since t + |x| > 1, we have t > 2/3. So

-l =t —|x| > ot > &
—x||=t—|x| > = =.
2 3

Consequently u(t,x) = 0 and the inequality holds trivially.



Case 2. |x| > t/2. We may use Lemma 34 to obtain

Ix||u tx|<c//yF dyds

+cz//~a 2o

1<|a|<2

where the sum involves only I' = Q;;, 1 </ < j < 3. Since

Q2 F (s, ¥)| < 119y F(s, )l

and F(s,y) =0 for s+ |y| > 1/3, we have

FF(s, )l < Clyl Y 1(87F)(s,¥)l-

1<|B]<2
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Therefore, using |x| > (t + |x|)/3, we have

(t+ x])u(t, x)<C/ / (s, dyds

ey // (02F)(s.y)\dyds.  (75)

1<|a|<2

In order to proceed further, we need

Lemma 36

If o(r) is C1 and vanishes for large r, then

[e @] 1 o0
/ o(R)lrdr < X / &(r)] 2.
0 2 Jo



Using Lemma 36, we have

E@JFGK .éh/ [F(s, rw)|rdrdo(w)
= 2/82/0 ‘ar(F(s, rw))| r*drdo(w)

< ;/S /OOO|(8yF)(s, rw)| Pdrdo(w)
=5 [ 1@l

This, together with (75) and F(s,y) = 0 for s+ |y| > 1/10, gives
the desired inequality. O
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Proof of Lemma 36. Since |p(p)| is Lipschitz, dip\cp| exists a.e. and

d
| <10 ae
Since ¢(p) vanishes for large p, we have

o= [ (e do= [~ (2ol + (5o ) oo

Therefore

zﬁwwmep<AwL;wwn

f®<A ¥’ (p)|p*dp.

The proof is complete. O



To complete the proof of Theorem 31, we remains only to consider
the case that F vanishes in a neighborhood of the origin. We need
a calculus lemma.

Lemma 37
For any f € C([a, b]) there holds

1 b b
|f(t)] < / |f(s)|ds+/ |f'(s)|ds, Vte€ [a,b].
b—a/, a
Proof.By the fundamental theorem of calculus we have

f(t)=f(s)+ /t f'(t)dr, Vt,s € |a,b]

S
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which implies
b
F(8)] < IF(s)| + / 77| dr.

Integration over [a, b] with respect to s yields the inequality. O

Proposition 38

Let u satisfy Ou = F with F € C2([0,00) x R3) and vanishing
Cauchy data at t = 0. If F vanishes in a neighborhood of the
origin, say, supp(F) C {(s,y) : s+ |y| > 1/6}, then

& dyds
1+t t,x)| < C FF(s,y)|—2—
(144 x)u(t x)] < /0 /R3 2| Sy

la|<2

where the sum only involves the homogeneous vector fields I = Ly
and Q;;, 0 <i<j<3.
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Proof. Since supp(F) C {(s,y) : s + |y| > 1/6}, it is equivalent to
showing that

(t+ |x])|u txy<c//|z|:|ra dy‘|’5| (76)
<2

We mention that it suffices to prove (76) for t = 1. In fact, if it is
done for t = 1, we consider the function uy(t, x) := u(At, Ax) for
each A > 0. Then

Ouy = Fy,  with Fy(t,x) := AM2F(\t, Ax).
We apply (76) to uy with t =1 to obtain

(b= [ [ S AL

|| <2



Since I are homogeneous vector fields, we have
(F*FA)(s,y) = A2(T*F)(As, Ay).

Since uy(1,x) = u(A, Ax), this and the above inequality imply

(1 + [x])|u )\)\x|<CZ//)\2 (F“F)(Xs, Ay)| dﬁ;’

|| <2

dzd7‘
=C\! / / (r“F
2 4 p

|| <2

Therefore

(A + [Ax])|u )\)\x|<CZ/ / (FF)(r, )| -2297

|a|<2 U ’Z|
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Since A > 0 is arbitrary and Ax can be any point in R3, we obtain
(76) for any t > 0.

In the following we will prove (76) for t = 1.

We need a reduction. By taking ¢ € C*([0, 00) with ¢(r) =1 for
0<r<1/3and p(r) =0 for r >1/2, we can write F = F; + F;,
where

Fi(s,y) == ¢(lyl/s)F(s,y), Fas,y) = (1—(lyl/s))F(s,y).

Since ¢(|y|/s) is homogeneous of degree 0, for any homogeneous
vector field I we have || < 1 for all |o| < 2. Consequently

Y (rAl+IR) S Y IFF.

la|<2 o <2
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Thus, if (76) with t = 1 holds true for F; and F;, it also holds true
for F. Since

supp(F1) C {(s,y) : Iyl < s/2}, supp(F2) C {(s,y) : ly| = s/3},
therefore, we need only consider two situations;

e F(s,y) =0 when |y| > s/2; or

e F(s,y) =0 when |y| < s/3.

(i) We first assume that F(s,y) = 0 when |y| > s/2. Using (73) it
is easy to see that u(1,x) = 0 if |x| > 1. Thus, we may assume
|x] < 1. It then follows from (73) with t = 1 that

d
4re|u(L, )| 3/ F-lyx - Y =4,
ly|<1 ‘y,



where

dy dy
h=[ IR k= [ Fa-xe
1olyl<1 |yl Iyl |yl

1
<3

To deal with /1, By Lemma 37 we obtain

1
IHP—HJ—yNSA(F@M—yﬂ+@F@x—mD$-

Therefore
1
us/ / (IF(s.x — y)| + [0:F (s.x — )]) dyds
0 Ji<lyl<1

1
< [ UFGp)I+ 0:F syl dyes
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Since supp(F) C {(s,y) : ly| < s/2}, from Lemma 13 it follows

1
0sF| < > |reF,

|a|=1

where the sum involves only the homogeneous vector fields. So

/ L 3 e re S

|| <1

Next we consider /. We use Lemma 37 on [1/2,1] to derive that

1
F(L— ylx— )| < / (F(s,x — y)| + 10:F (s,x — y)]) d.

2
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Thus

dyds
b < / / rF|+\asF\)(s,x—y>*,y
<l yl

We may use Lemma 36 as before to derive that
1
B [ [ (8F1+ 0,05, y)dyes
1 Jr
2

Since supp(F) C {(s,y) : |y| <s/2} and 1/2 < s < 1, we have
from Lemma 13 that

1
\(%F\—Hay(?sF\gSiH > reF.
1<]e<2
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Therefore

kS // > I FeTT

1<|a|<2

Combining the estimates on /1 and I we obtain the desired
inequality.

(ii) Next we consider the case that F(s,y) = 0 when |y| < s/3.
If |x| > 1/4, then we have from Lemma 34 that

dyds
s+ |yl

1
1+ Il ] S a0 < [ [ )

as desired.



So we may assume |x| < 1/4. We will use (73). Observing that

1
(1—|yl,x—y) €supp(F) =[x —y| > 5(1 —|yl)
s x> = [y >
= = — x| > —= —.
3V~ 3 12 Y1~ 16
Therefore, it follows from (73) that
w1l S [ IR ylx -yl

%<|y|<1

Consider the transformation

o(r,y) =71 —|yl,x —y),

where 1/16 < |y| <1l and 1 <7 < 16/15.
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By Lemma 37 we have

F(1—|yl,x —y) < F(o(r,))l

16

<[ (|F(¢(T,y)> N ‘;T(F(@(T,y)))‘) i
Observing that

S (F(o(ry) = H(LF)(o(r.))

Therefore

16
15
u(L,x)| < / / (F| + |LoF1) (o(r. y))dydr.
0 Ji<lyl<1
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Under the transformation (s, z) := ¢(7, y), the domain
{(r,y):1<71<16/15,1/16 < |y| < 1}
becomes a domain contained in
{(s,2): 0<s<1,|z| < 2}.

The Jacobian of the transformation is 73(1 — x - y/|y|) which is
bounded below by 3/4. Therefore

1
(1, %) < / / I+ ILoFI)s.2)oeds

dzds
(|F| + |LoF|)(s, z
< [ ] ORI Iois ) 2

The proof is thus complete.



7. Littlewood-Paley theory
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Localization is a fundamental notion in analysis. Given a function,
localization means restricting it to a small region in physical space,
or frequency space.

m Physical space localization is the most familiar. To localize a
function f(x) on a open set, say, B,(xp), in physical space,
one can choose a C§° function x supported on B,(xp) which
equals to 1 on B, 5(x0). Then x(x)f(x) gives the localization.

m Frequency space localization is an equally important notion.
Let (&) denote the Fourier transform of a function £(x).
Given a domain D in frequency space, one can choose a
smooth function x(&) supported on D and define a function
(mpf)(x) with

~

Tpf(€) == x(€)F(€).

Then wpf is a frequency space localization of f over D.
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Littlewood-paley decomposition of functions is based on frequency
space localization.

7.1 Definition and basic properties

There is certain amount of flexibility in setting up the Littlewood
-Paley decomposition on R"”. One standard way is as follows:

m Let ¢(€) be a real radial bump function with

NS
MQ_{Q 6> 2.

m Let ¢)(£) be the function



Then ¢ is a bump function supported on {1/2 < || < 2} and

dow(E/2¥) =1, ve#£o. (77)

kEZ

m Define the Littlewood-Paley (LP) projections Py and P<j by

Pef(€) = w(€/24)F (), Poxf(€) = 6(€/24)F(€)
In physical space
Pkf:mk*f, (78)

where my(x) := 2"%m(2kx) and m(x) is the inverse Fourier
transform of ¢(£). Sometimes we write fi := Pjf.

Using the Littlewood-Paley projections, we can decompose any L2
function into the sum of frequency localized functions.
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For any f € [?(R") there holds f = Z Pyf.
k€EeZ

Proof. By definition, we have for any N, M > 0 that

SRR = Y (062 ale/2 M) Fe)

—M<k<N —M<k<N
= (#(e/2") - o(e/2771) F(9).
Therefore

|-

- Hf— Z Pef

~M<K<N k<N
< H¢(2M+1')fHL2 + (1= )2

[2
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Since ¢(2M+1¢) is supported on {|¢| < 27M} and ¢p(27V¢) =1 on

{1 < 2N}. ['herefore
1/2
e </£|§2’V’| € §>

[F= > P
1/2
s 2
+ ( A e dé‘)

—M<k<N
—0 as M,N — occ.

This complete the proof. O

In the following we give some important properties of the LP
projections. For any subset J C Z, we define P, := %", Px.



Theorem 40

(i) (Almost orthogonality) The operators Py are selfadjoint and
Py, Pk, = 0 whenever |ky — ko| > 2. In particular

I1£1172 = D IPefIIZ (LP1)
k

(ii) (LP-boundedness) For any 1 < p < co and any interval J C Z,

|Psfllee < [|f|lee (LP2)

(iii) (Finite band property) There hold

10Pf e S 20 Fllee,  24(|Pef e S |1OF |- (LP3)

~

For any partial derivative OPyf there holds OPyf = 2k13kf where IE’k
is a frequency cut-off operator associated to a different cut-off
function 1), which remains supported on {% < |&| <2} but may fail

to satisfy (77). The operators Py satisfy (LP2).
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Theorem (Theorem 40 continued)

(iv) (Bernstein inequality) For any 1 < p < q < oo there holds

1Pufllee < 27C/PHD||fl|is, | P<ofllee S IFlle (LPA)

(v) (Commutator estimates) For f,g € C$°(R") define the commutator
[Pk, flg = Px(fg) — fPxg. Then

I[Pk, Flgllee S 27 IV Fllelg]le- (LPS)

(vi) (Littlewood-Paley inequality). Let

1

Sf(x) == (Z Pkf(x)|2> :

kEZ

For every 1 < p < oo there holds

[fller S USFllee S N fllees VE € CoE(RT). (LP6)
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Proof. (i) For any f, g € L?(R"), we have

(Pif,g) = (Pif.8) = (W(27%)F, 8) = (F.v(27%)g)

A ——

= <f>Pkg> = <f7Pkg>

Therefore Py is self-adjoint. Since 1(£/2%)y(£/2%2) = 0 whenever
|ki — ka| > 2, we have

Prs P F(€) = (£/24)p(¢/2)F (€) = 0.

So Py, P, f = 0 whenever |k; — ko| > 2. Next prove (LP1). We
first have

112 = HZPka (Pf,Puf) = " (Puf, Pu)
kk’ Z lk—k'|<1
< Z [Pif || 2| Perfll 2 < 32 P f|72-
lk—k'|<1
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On the other hand, since ¥(£/2%) = 0 for 2k=1 < |¢] < 2K we

have
SRR = S IR IR = X [ Iote/2 e
keZ kEZ keZ
<y / 7()[2de < / 17()2d
keZ 2k71§‘£|§2k+1 Rn
— 1712 = [IF2.

(i) It suffices to prove (LP2) for J = (—o0, k] C Z, i.e.

1P<kfllee < NI lee-

(79)

Let m(x) be the inverse Fourier transform of ¢(§) and let my(x)

= 2"k m(2kx). Then

PSkf:ﬁ‘lk*f.
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Since [[mkl]|r = ||M]|x < 1, we have
IP<kfliee S lmucll ol fllee < NIl

where we used the Young's inequality: for 1 < p, g, r < oo with
1+ % = % + %, there holds

[k flla < |Ikl[er[Ifllee (Young)
(iii) To prove (LP3), recall that Pxf = my x f, we have
8j(Pkf) = 2k(8jm)k * f,

where (9;m)(x) = 2"€9;m(2kx). Since ||(9;m)k |2 = [|0jm|| 2
< 1, by Young's inequality,

10;(PiF) e < 2°(F -

~



Next we write
Z ’£|26Xjf£, £#0.
Let xj(&) = 72pt(€), we have
2kPif (€ sz Ww(&/zk Dy f(€) = j_i;xj-(f/f)(?/xﬁ(f)-

Let h; be inverse Fourier transform of y; and (h;)x := 2"¥h;(2¥x),
then

n

2XPrf = (k)i Oif.

j=1
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Therefore

21Puflle < Y IillisllOsfllee < Y 10if Nl < 19F]lLe-

j=1 j=1

(iv) To see (LP4), we use Pcf = my x f and Young's inequality
with 1+ ¢ 1 = r~1 4+ p~! to obtain

| Prfllea = [[my * flla S Nl mull e |11 e

The first inequality in (LP4) then follows, in view of

1
o = 27" (/ ’m(zkx)\de> = 27D m £ 274679,
Rn

The second inequality in (LP4) follows directly from the first.
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We remark that Bernstein inequality is a remedy for the failure of
W P(R") < L>(R"). It implies the Sobolev inequality for each
LP component Pif. The failure the Sobolev inequality for f is due
to the divergence of the summation f =), fi.

(v) We now prove (LP5). Since Pf = my = f, we have

Pu(2)(x) — F(x)Pig(x) = / me(x — y)(F(y) — F(x))g(y)dy

n

Note that |f(y) — f(x)| < |x — y|||Of|| L=, we have
IPe(f) (x) — F()Prg(x)] < 2 ¥|0F |1 /R e (x — y)e(y)ldy

where m(x) = |x|m(x) and mx(x) = 2"%m(2kx). (LP5) then
follows by taking LP-norm and using Young's inequality.
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(vi) To prove (LP6), we need some Calderon-Zygmund theory.

Definition 41

A Calderon-Zygmund operator T is a linear operator on R” of the
form

T = [ K(x= i)y

for some (possibly matrix valued) kernel K which obeys the bounds

KOS Ix=y7" 10Kyl S Ix—y[T™Y x#y (80)

and T : L2(R") — L2(R") is bounded.

Proposition 42

Calderon-Zygmund operators are bounded from LP into LP for any
1 < p < co. They are not bounded, in general, for p =1 and
p = 0.
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We first prove ||Sf||» < ||f||Le. To this end, we introduce the
linear operator

Sf(X) = (Pkf(x))k€Z~

It is easy to see that S has vector valued kernel

K(xy) = (2%m@(x = y))) .
keZ

where m is the inverse Fourier transform of ). Observing that m is

a Schwartz function, (80) can be verified easily. Moreover, (LP1)

implies that S : L2 — 2 is bounded. So S is a Calderon-Zygmund
operator and Proposition 42 implies that

15Flle = ISFlelle < NI£ ]l e

~



Next we prove ||f|[» < [|Sf||L» by duality argument. For any
Schwartz function g, by using PxP = 0 for |k — k| > 2, the
Cauchy-Schwartz inequality, and the Holder inequality, we have

/ dx_/ZPk x)Prrg(x)dx

k,k'€Z

/Z Py f (x)Pirg(x)dx

|k—k'|<1

1
2
/(me ) (ZPk’ ) dx
SISl elISell e S IS ellgll s

where 1/p+1/p" = 1. This implies ||f||p < ||SF]| 1.
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Spaces of functions

The Littlewood- Paley theory can be used to give alternative
descriptions of Sobolev spaces and introduce new, more refined,
spaces of functions. In view of LP1,

1l = Y IPef 3
keZ
We can give a LP description of the homogeneous Sobolev norms
I HHs(Rn)-

17113, ~ > 22 Pif |12,
keZ

and for the H® norms

117 ~ D (1 + 29| Puf | 2.
kEZ
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Definition 43

The Besov space B3 ; is the closure of C3°(R") relative to the
norm

Ifllz, = D (1 +25)° [Pl 2-
keZ

and the corresponding homogeneous Besov norm is defined by

1Fllgs, = D 2*I1Pef |2
’ keZ

Observe that H* C B3 ;. We have the following embedding
inequality by LP4
o < n .
£l < 1915
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7.2 Product estimates

The LP calculus is particularly useful for nonlinear estimates.
Let f, g be two functions on R”. Consider

Pk(fg) = Pk Z Pk/f . Pk//g . (81)
k' k" eZ

Now since Py f has Fourier support D’ = {2K'~1 < |¢| < 2K'+1}
and Pynf has Fourier support D” = {2K'~1 < |¢| < 2K'+1} It
follows that Py f - Pyng has Fourier support in D’ + D”. We only
get a nonzero contribution in the sum of (81) if D’ + D" intersects
{2k=1 < |¢] < 2KF1Y. Therefore, writing fi = Pif, fo) = Pif,
and f; := P,f for any interval J C Z, we can derive that
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Proposition 44 (Trichotomy)

Given functions f,g we have the following decomposition
with
HH,(f,g) = > Pr(fir - g
k! k!> k+5,| k' — k"' |<3
LLk(f, &) = Pk(fik—5k+5] - 8[k—5,k+5])
LHi(f,g) = Pi(f<k—s5 - 8lk—3,k+3])
HLk(f, &) = Pr(fik—3,k+3] - 8<k—5);

where LLy consists of a finite number of terms, which can be
typically ignored.
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For applications, we can further simplify terms as follows,

HH(f,8) = Pi() _ fm - &m), LH(f.8) = Pi(f<igi),

m>k

HL(f,g) = Pi(fx - g<k)- (82)

We now make use of Proposition 44 to prove a product estimate

Proposition 45

The following estimate holds true for all s > 0

1fgllms S I lleellgllmes + llg oo 1F[ls- (83)

Thus for all s > n/2,

Ifglins < Ifllmsllg s (84)



Proof. Since ||f - g||2. & 3, cn(1 + 25)%||Pi(f - g) |12, it suffices
to consider the higher frequency part

1= 22| Pu(f - g)lI7:

k>0

By using (82), we proceed by using LP2 and Holder's inequality

h =Y |[2"HL(f, )7 < I3 lg] 7o
k>0

b= _|[2"LH(f,8)ll3> S IIflI7<llgllis
k>0

ls=>_[I2HH(f, )7 S 1Y 2t m2m || Pof | 2% HgHLoo
k>0 m>k

S I llgliis

where we employed Young's inequality to derive the last inequality.

By combining 1, I, and /3, we complete the proof.
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8 Strichartz estimates
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We will prove some Strichartz estimates for linear wave equation
and derive a global existence result for a semilinear wave equation.
Given a function u(t, x) defined on R x R”, for any q,r > 1 we use
the notation

ull o = (/R </R |U(t,X)!’dX>7 dt) : )

8.1 Homogeneous Strichartz estimates

We start with the homogeneous linear wave equation

Ou=0 on RY" with n> 2,

U(Oa ) = f, 61_-U(07 ) =g. (85)
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Theorem 46
Let u be the solution of (85). There holds

lullige, < €Al s + gl ys-1) (86)

where s = 5 — % — 2 for any pair (q, r) that is wave admissible , i.e.

2 n-1 2
2<g<oo, 2<r<oo, and=Z<? <1—>.
q 2 r

We will prove Theorem 46 except the so-called endpoint cases

1:22”_1<1—2>.
q 2 r

One may refer to (Keel-Tao, Amer J. Math., 1998) for a proof.
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The proof of Theorem 46 is based the Littlewood-Paley theory and
consists of several steps.

Step 1 Applying the Littlewood Paley projection Py to (85), and
using the commutativity between P, and [, we obtain

OPu=0 on R x R"

(87)
Piult—=o = Pif, O¢Prult=0 = Pkg.

We claim that it suffices to show

1Peulligry S 2% (1Peflliz +2C V|| Pegllz, VhkeZ,  (88)



In fact, since r > 2, g > 2, and u= ZkeZ Py u, by using Theorem
40 (vi) and the Minkowski inequality we have

1/2 1/2
lullyse, S (Z |Pku|2) S (Z ||Pkullim>

kez i \kez
1/2
< (Z (22Sk\\Pkaf§ + 22(5_1)k\\/’kg!ﬁ§>>
kez

S 1l gs + lgll s
Step 2. We next show that (88) can be derive from the estimate
1Poullar; < [1Poflliz + [[Pogll 2 (89)

for any solution u of (85).
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In fact, by letting

u(t, x) = u(27kt,27kx),
fr(x) = f(2_kx),
gk(x) = 2_kg(2_kx).

Then there holds

Oue =0 on R x R",
uk(0,-) = fi,  Oruk(0,-) = gxk.

Therefore (89) can be applied for uy to obtain

| Poukllaer < 1Pofilliz + [1Pogkll2- (90)
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By straightforward calculation we have

|Pounluseg = 27 ¥ | Pr oy
IPofiliz = 2% I1Puf .z
IPogillz = 227X Pegl 2.
These identities together with (90) give (88).

Step 3. It remains only to prove (89) for any solution u of (85).
Let @i(t,&) be the Fourier transform of x — u(t,x). Then

OFu+[¢Pa=0, 0(0,-)=F, 0:0(0,) =g
This show that

o(.) = 5 (F0) + £ ) el 3 (o) - £ ) e,



i.e. 0(t,€) is a linear combination of etl¢I7(¢) and ei"tm%(;').

Define eftV—24 by

eitV=Af(¢) = e"HIF(¢).
Then, it suffices to show
1Poe™ 2 F|l a1 S IFlli2qo) (91)

To derive (91) we need to employ a 77 argument. Recall that,
for1 < p < oo,

Illee = sup{[{f, )| - € S, Il <13,

where p’ denotes the conjugate exponent of p, i.e. 1/p+1/p' = 1.

245/262



246/262

Similarly, for 1 < g, r < 0o, one has for the mixed norms,

IFllLar, = sup{l(F, ®)[ - ® €S, [|o] (92)

Wiy <ak

Lemma 47 (TT* argument)

The following statements are equivalent:
(i) T :L2— L{LL is bounded,

(i) T*: LY LY — 12 is bounded,

(i) T7*: LY L — LILL is bounded.

Proof. For any f € L2 and F € L{L’, we have

(TEE)N =T R < [Ifll2ll T Fll 2,
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It follows from (92) that (ii) implies (i), and the converse follows
from

[ THF) = KT £ ) < [TFll o IF

/
q /.
Ly Lk

Obviously (i) and (ii) together imply (iii). Since

IT*Fllfa = (T*F. T*F) = (F, TT"F) < |IFll ., , ITT*Fll 51,

L
we conclude (iii) implies (ii). O

Return to the proof of (91). We define 7 : L2 — L{L. by

TF = Poeifmf:/ S y()F(e)ds,  (93)

n

where (&) is the symbol of the Littlewood Paley projections.
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Let 77 : L?, L" — 2 be the formal adjoint of 7. By Lemma 47, to
show || 7f || o, < [[f]l12, it suffices to show

< 1.

/
q’ q
LI L 19y ~

7Tl

We need to calculate 7*F. By definition,

(£, T Fhiz = /R [ Tr Foat - /R [ e @) Fe et

_ /]R () < /R / nefX'feffiézp(g)ﬁ(t,g)dgdt> dx.

This shows that

T*F(x) = /R/ e/t () F (¢, €)dEdt.
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Therefore

f?ﬁu@r:Jﬂw@f¢@r=48“ﬂwwwﬁwa$

Let
K(x) = K(t.x) i= [ e eriDlu(o)Pae.
Rn
Then
TTF(t,x) = / K(t—s,-)* F(s,-)(x)ds
R
where K(t —s,-) % F(s,-)(x) :== [pa K s,y)F(s,x — y)dy. We
claim
IK(t —s,-) % F(s, )z < CIIF(s, )iz (94)
ClIF(s: )l .
IK(t = s,-) % F(s,)llege < = (Disp)
L+l s)
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Assuming the claim, by interpolation we have for r > 2 that

1F(s, )l

_s. . I, <
|K(t—s,)* F(s,)|lr S T80 (95)
with y(r) = 51(1 — 2). Thus we have
ITTF(t, )l Z/HK(fs,')*F(Sw)HL;dS
IF(ss )y
< >~ ds.
ek %0

It remains to take L{, for which we consider two cases 2/q < ~(r)
and 2/q = (r).
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Case 1. 2/q < (r). Note that (1 + |¢])™7() is L3(R). We need
to use the Young's inequality

[+ glla < [Iflleollgllce (97)
where lga,b,qgoosatisfyl—k%:%—i-%.

We apply (97) with f = (1+[t)™"), g = ||[F(s)[|,y, a= q/2 and
b= ¢'. It then follows that
ITT Flla, S IF

!
q’ e
Ly Ly

Case 2. 2/q = (r). We need the Hardy-Littlewood inequality.
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Theorem 48 (Hardy-Littlewood inequality)
Let 0 < XA < 1. Assume that % + % T % = 2, there holds

/ / )lx — y[ g (y)dxdy < Fllollgls.  (98)

We now take any ¢(t) € LY(R). It then follows from (96) and (98)
with f = [|F(s,")|l,r. g =1lpl,a=b=¢q, A=7(r)and n=1
that

/||TT* M ()dt<//HF Yap £ s 7O o() dscl

S MG Mgl el
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Therefore
I TTFllpa, SIIF

!
q’ e
Ly Ly

Remark. (98) does not work for the end-point case that % =
~v(r) = 1, which is settled by using atomic decomposition See
Keel-Tao (1998).

Step 4. Now we prove (94) and (Disp). Recall that

Kt(x):K(t,x):/ el €|yp(£)2de.

Rn

We have

1Ke - Flliz < 1™ ©PFE) iz S 1722
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By Planchrel, we can obtain
IK(t, ) F( )z < ClIf]l 2,
which gives (94).

Next we prove (Disp). It suffices to show that

K(e)] S U+ [+ )77, ¥(E ). (99)

It is easy to see that |K(t,x)| < 1 for any (¢, x). Therefore it

remains to consider |t| 4+ |x| > 1. By using polar coordinates
¢ = pw and w € S"71, we have with a(p) := p"~19(p)? that

K(t,x) / /S" 1 eP(t+x) 5 p)d pd o (w)
= | espato)de (100)



where 6(£) = [so-1 €“do(w). We claim

~ —n-1 n
(I < CA+[)" 2, R (101)
Assume (101), we proceed to complete the proof of (99).

Case 1. [t| < 2|x|. We have
o ) 00 a1
Kt = [ 16(latePdp < [ IoxI T alo)dp
n—1 0 n—1
< X\‘?/O p~ 7 a(p)dp.
Note that a(p) is supported within {1 < p < 2}, thus we obtain

n—1 n—1

Kt X)[ S Ix77 S (x[+t+1)" 2.
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Case 2. [t| > 2|x|. Since a(p) is supported within {3 < p < 2},
by integration by parts we have

Kt = [ [ e ap)dpdo(e)

S e () et

- 1 in(tdx-w
g /0 /Snl me P(t+ )a/(p)do'(w)dp

Repeating the procedure, we have

K (&) < [t~

_n—-1
2

for any N € N, which shows it decays faster than (|x| +t+1)

256 /262



To complete the proof of (Disp), it remains to check (101). For
simplicity, we only consider n = 3.

By rotational symmetry it suffices to take £ = (0,0, p), p = |£|. Then
using spherical coordinates on S? = {(x,y,z) : x> + y?> + 22 = 1}

X = sin ¢ cos 6
w=1< y=singsinf

Z =Cos¢

where 0 < ¢ < 7,0 < 6 < 27, we have

o

1
:27r/ ePrdr = 47rsm—p
p
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Strichartz estimates for inhomogeneous wave equations

Consider the solution of inhomogeneous wave equation

Ou=F on R n>2,

(102)
U’t:O = f, 81.‘“‘1::0 =8

By using Duhamel’s principle and Theorem 46 we can obtain the
Strichartz estimate for the solution of (102).

Theorem 49

Let (g, r) be wave admissible as defined in Theorem 46 and

5= 4 = % — ©. Then for any solution of (102) there holds

lull gy, < CUIFll s + gl pgss + IF N o) (103)
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An example
Now we consider the semi-linear wave equation

Ou = u? on R1*3,

. . 104
(U,atu)‘t:():(f,g)eH% XHié ( )

A function u € L7LL(R") with 3 < g, r < oo is called a weak
solution of (104) if for any ¢ € CéRH”) there holds

/ / uDapdde—/ [fO:¢(0,-) — gv(0,-)] dx :/ / w3 pdxdt.
0 n R” 0 n

In the following we will show that if
Eo := ||fHH% + ”gHH—%

is sufficiently small, (104) has a global solution in u € LjL}(RY™).



To see this, we define u_; = 0 and

Uuj = uf_l on RT3, (105)
uj(0,-) =f, 0:uj(0,-) =g.
Let
X(uj) = Nlujll oy + Nui(E, g+ 1000 ),
Then it follows from (103) that
X() < € (Il + el + il g 5 )
< C(I1fll,3 + llgl -y + - 1\|L4L4)
< C(E+ X(uj,1)3) (106)
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By using u_; = 0 and an induction argument, it is straightforward

to show that
X(u;) < 2CE, j=0,1,--- (107)

provided that 8C3E2 < 1.
Next we apply (103) to

D(UJ'_H — uj-) = UJ3 — Uf_l = (Uj - uj—l)(uj2 + Uiy + ujg—l)

with vanishing initial data, and use (103) to obtain
X(ujp1 — ) < Gl (g = vj-1)(uf + wjuj1 + uf—l)HL‘:/3Li/3

< Gllyj - “j—l”L‘gL§||Uj2 +ujuj1 + UJ?—1||L§L§
< G(X(uy)? 4+ X(uF )X (uj — wj—1).
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In view of (107), we obtain
5 1
X(ujr1 = uj) < GEyX(uj — uj-1) < 5 X(uj — uj—1)

provided E is sufficiently small. So {u;} is a Cauchy sequence
according to the norm X(-) with limit u. Since each u; satisfies

/ / uJ-Dgodxdt—i—/ [fOrp(0,-) — gp(0, )] dx :/ / uf’godxdt
0 n R" 0 n

for all ¢ € C§°(RY*"). By taking j — co we obtain

/ / chpdxdt+/ [fOrp(0,-) — gp(0,-)] dx = / / w3 pdxdt,
O n Rn 0 n

i.e. uis a globally defined weak solution of (104).



