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Abstract

The paper develops some mathematics supporting an earlier hy-
pothesis that the physical universe is a finite system co-ordinatised by
a huge finite field Fp which looks like the field of complex numbers to
an observer.

Earlier we constructed a place (’limit’ homomorphism) lm from a
pseudo-finite field Fp onto the compactified field of complex numbers.
In the current paper we construct lm in a more concrete form. In
particular, lm sends certain multiplicative subgroups ′R′

+ and ′S′ of Fp

onto the non-negative reals R+ and the unit circle S in C. Thus Fp,
′R′

+ and ′S′ provide co-ordinates for physical universe.
We introduce two systems of natural units corresponding to ′R′

+

and ′S′, respectively, on the logarithmic scale. The passage from the
scale of units of ′R′

+ to the scale of units of ′S′ corresponds to a multi-
plication (on the logarithmic scale) by a ’huge’ (non-standard) integer
i equal approximately to

√
p. This provides an explanation to the phe-

nomenon of Wick rotation.
In the same model we explain the phenomenon of phase transition

in a large finite system

1 Introduction

1.1 The hypothesis that the universe is infinite is an open question. This
concerns both the size of the universe and the number of atoms or elements
that comprise it. Since it is now accepted that there is a minimal length, the
Planck length, assumption of the spatial finiteness of the universe implies the
assumption of the finiteness of the number of its elements.
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In [1] we discussed the concept of approximation in physics and the sug-
gestion that physics universe is co-ordinatised by a huge1 finite field Fp. It
was proved (Proposition 5.2 of [1]) that the only metric field (locally com-
pact field) that can be approximated by finite fields is the field C of complex
numbers. Thus “seen from afar” the huge finite field looks like a field of
complex numbers C.

The current work has been inspired by Hao Hu, the expert in Philosphy of
Physics, who approached the author with the suggestion to apply the idea of
[1] to statistical mechanics and to attack the well-discussed problem of phase
transition (which happen in large finite systems but require the assumption
of infinity for its mathematical theory). We suggest here an answer to the
problem.

Perhaps a more important outcome of the mathematical theory developed
below is the interpretation of the phenomenon of Wick rotation as the result
of the change of scales in physics.

I would also like to note that a compatible attempt to develop the math-
ematical background for a theory of finite physics was presented in [2], [3]
and [4].

1.2 Let us recall the notion of structural approximation suggested in [1],
in the specific context of approximation by huge finite fields Fp. A finite
structure is discrete but to see its grainy structure we should be able to
detect difference, inequality, between its neighbouring elements, which might
be impossible with the instruments we use to observe the structure. However,
if there is a shape within the n-space Fnp which is given by an algebraic
equation then the observer could see it as a shape in a continuous field, say
equal to R, C or maybe a p-adic field, given by the same equation. This
brings us to the idea that such an approximation by an observer is a map
(called “limit”) onto a continuous field K,

lm ∶ Fp → K

which takes tuples (x1, . . . , xn) ∈ Fnp satisfying a polynomial equation
f(x1, . . . , xn) = 0 (with integer coefficients) to the tuple (y1, . . . , yn) ∈ Kn

satisfying the same equation. In other words, lm is a ring-homomorphism.

1We use huge for numbers which some physics authors call “ridiculously large”, see the
discussion in 2.7 below.
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In fact, for a finite Fp this scheme is not going to work verbatim but it
works when we assume that Fp is infinite pseudo-finite, which for all intents
and purposes replaces a huge finite structure, see 1.5 below for definition.

However, as explained in [1], the requirement that lm is defined on the
whole of the discrete structure necessitates that the target structure K must
be compact, which for a metric field can be achieved by adding a point ∞
(so for K = C the compactification gives us the extended complex numbers
C̄ ∶= C ∪ {∞}, equivalently, the Riemann sphere ). In particular, there are
non-zero elements x ∈ Fp indistinguishable from 0 (that is lm(x) = 0) and so
for the inverses x−1 ∈ Fp, lm(x−1) =∞. Such a map lm between fields is called
a place in algebra.

The above mentioned key Proposition 5.2 of [1] states:
There exists a place

lm ∶ Fp → C̄ (1)

from any pseudo-finite field Fp of characteristic 0 onto the compactification
of the field of complex numbers C, and C is the only metric (locally compact)
field for which such a map exists.

1.3 The relationship with the p-adic approach in physics. The p-
adic approach in physics, in particular string theory, has proved quite pro-
ductive, see e.g. the survey [5]. The recourse to a prime p is motivated by the
needs of discretisation and the field Qp of p-adic numbers has the advantage
of bearing a nice metric and locally compact topology. There is no preferred
prime but a very large prime like the above p seems to be a reasonable choice.
We note that by definition there is a canonical place

Qp → Fp (2)

and thus, combining with (1) we get a place

Qp → C̄.

In other words, p-adic calculations pass via (2) to Fp which, according to (1),
can be reinterpreted as calculations in the complex numbers.

1.4 The main mathematical problem in making a practical use of the idea of
a “physics over a finite field Fp” is to find a way of representing the common-
sense real quantities of physics inside the huge finite field Fp and to find such
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a representation that allows the standard physics calculations. That is to
explain how both R and iR emerge from a large finite field.

In this regard it is useful to invoke a notion of feasible numbers that
was discussed by philosphers of mathematics, mathematical logicians and
computer scientists, see e.g. [9] for a mathematical treatment of the notion.
Roughly speaking, 1,2, . . . ,1000, as well as their ratios such as 1/5 and 0.203
are feasible numbers, but the Avogadro number ∼ 1023 is not feasible. We
think of the latter as very large but potentially observable numbers. This
contrasts with huge numbers, such as p, the number of points in Fp, and
p >> 1023.

Thus, while we work with feasible numbers 1,2, . . . inside Fp we can think
of these as the usual integers but when our integers become very large but
still much less than p then lm takes such ones to ∞. Further on this scale,
according to the approximation theorem of [1], the integers start to behave
like complex numbers, e.g. if an integer i satisfies i2 + 1 = 0 mod p (huge
number) it takes the role of

√
−1.

All this is made precise in the formulation of the Main Theorem in 1.7
below.

1.5 In the current work a “huge finite field” is a pseudo-finite field Fp which
can be obtained by considering a non-principal ultrafilter D on the set of
prime numbers P ⊂ N (positive integers) and the ultraproduct

Fp =∏
p∈P

Fp/D.

Such a construction sees Fp as a logical limit of finite fields Fp along the
ultrafilter: a first order sentence Φ is valid in Fp if and only if it is valid in
almost all, in the sense of D, finite fields Fp.

Model theory tells us that Fp can equaivalently be obtained as the quotient-
ring of the ring ∗Z of non-standard integers by the prime ideal p ∗Z, where p
is the respective non-standard prime number,

Fp ≅ ∗Z/p where ∗Z = ZP /D.

The interpretation of Fp in non-standard integers allows us to apply,
among others, the means of non-standard analysis, in particular the stan-
dard part map

st ∶ ∗Q→ R ∪ {+∞, −∞}
from non-standard rationals l

m , l,m ∈ ∗Z, to the compactification of the reals.
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1.6 Along with p and the field (Fp;+, ⋅,0,1) we specify:
- a non-standard higly divisible number l (each standard integer m divides

l) satisfying some other assumptions below;
- a two-sorted pseudo-finite structure (Up,l,Fp) with

Up,l = (∗Z/(p−1)l;+, 0̂, 1̂)

a pseudo-finite additive cyclic2 group of order (p − 1)l with generator 1̂;
- a surjective group homomorphism

expp ∶ Up,l → F×
p ; n ⋅ 1̂↦ εn

where ε is a generator of the (pseudo)-cyclic group F×
p , n ∈ ∗Z. It follows that

ker expp = (p − 1) ⋅Up,l,

the subgroup generated by (p − 1) ⋅ 1̂, (and suggests that p − 1 of Up,l should
be interpreted as 2πi);

- a pair of surjective “limit” homomorphisms (places) lm which make the
diagram commute

lmU ∶ Up,l ↠ C̄

expp ↓ exp ↓

lmF ∶ Fp → C̄

(3)

There is a natural cyclic order on Up,l in which u + 1̂ > u and there is a
related cyclic order on F×

p in which εn+1 > εn for all n ∈ ∗Z.
We treat 1̂ as an infinitesimal and choose two “units of length” u and v,

elements of Up,l,
1̂ << u << v.

More precisely,

u = p − 1

i
and v = p − 1 (4)

for some i ∈ ∗N such that
il∣(p − 1), i >> l (5)

2here and below “cyclic” means in the pseudo-finite sense, i.e. the ultraproduct of
cyclic groups
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(il divides p − 1).
Thus, u and v are units of two very different scales (see 1.9 below for

further comment).
We assume that

i = ι2 and l = µ2 (6)

for some µ, ι ∈ ∗N.
We also need to assume

i2 + 1 = p or i, l algebraically independent in Fp (7)

(the first is the preferable and more elegant assumption but it is not
known whether it is consistent with p being infinite (the Landau problem)).

It is easy to check that our set of assumptions (5)-(7) along with the
assumption of high divisibility of l are consistent. We are going to slightly
extend these assumption later, in particular (24) assumes that ln < p for all
n ∈ N.

We also define additive subgroups of Up,l called suggestively ′R′ and ′iR′.

1.7 Main Theorem. There exists a surjective ring homomorphism (place)

lmF ∶ Fp↠ C ∪ {∞}

and a surjective additive semigroup homomorphism

lmU ∶ Up,l↠ C ∪ {∞}

such that:
the diagram (3) is commutative,

lmU ∶ ′R′↠ R; (8)

lmU ∶ ′iR′↠ iR; (9)

where i =
√
−1.

For any l ∈ ∗Z such that 0 < l ≤ l,

lmF ∶ l ⋅ l−1 ↦ st( l
l
) ∈ R (10)

lmF ∶ expp(lu)↦ e−πz, for z ∶= st( l
l
) ∈ R (11)
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lmF ∶ expp(lv)↦ eiπz, for z ∶= st( l
l
) ∈ R (12)

where st is the standard part map.
For a ∈ Q+, a complete square and µ ∈ ∗Z such that µ2 = l ∶

lmF ∶
1

µ
∑

−il/a≤n<il/a

expp(a
n2

2l
u) ↦ ∫

R
e−aπx

2

dx (13)

and ∫R e−ax
2
dx = 1√

a
, according to the standard definition of the Gaussian

integral;

lmF ∶
1

µ
∑

−l/a≤n<l/a

expp(a
n2

2l
v) ↦ ∫

R
eiaπx

2

dx (14)

where ∫R eiaπx
2
dx = e

πi
4
√
a

according to the Quantum Mechanics calculus.

Note that (8) and (9) give us subgroups of F×
p

′R′
+ ∶= expp(′R′) and ′S′ ∶= expp(′iR′)

furnish a good analogue of polar coordinate system in Fp.

1.8 Remark. Since lm is a place, (10) determines the values of lm(Q(l) for
any rational function Q(x) over Z.

1.9 Discussion. The theorem clarifies the relationship between two differ-
ent scales in (Up,l,Fp) presented by units u and v. These should be though of
as units for physics of ’low energy’ and ’high energy’, respectively, the latter
being physics at quantum level and the former the physics at the level of
Brownian motion.

The statements (11) and (12) demonstrate that the action of the huge
pseudofinite integer i which changes the scale of units in Up,l (recall that
v = i ⋅ u, and i ≈ √

p) is seen in C as the Wick rotation eπz ↦ eiπz.
The Gaussian integrals in (13) and (14) are mathematical manifestation

of the same phenomena expressed by the summation formulae over Fp on the
left hand side of ↦ . The difference in the integral expressions on the right
comes from the difference in the scale of units that measure the respective
processes.

Thus the puzzling regularity of the transition from the Brownian motion
integral (13) to the quantum mechanics integral (14) known and exploited
by physicists as Wick rotation has an explanation as a mathematical conse-
quence of the change of scales.
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1.10 Discussion. The “limit” lmF maps the discrete field Fp into (the
compactification of) the field of complex numbers and thus endows the im-
age with a metric. The Theorem determines lmF on the subring generated
by specific points (see (10), (11) and (12)) but leaves the rest free. This
means that the observer, which sees Fp with all the algebraic geometry over
it through lmF, has some freedom in choosing the metric on algebraic vari-
eties. In particular, if Z ⊆ Fmp is an algebraic subvariety, say a torus, then
lmF(Z) is a subset of the compactification of Cm, a compact complex variety.
In general, such a compactification is far of being unique.

Thus the freedom in the choice of lmF implies a respective degree of
freedom in the choice of complex/metric version of physics.

2 Statistical physics and phase transition

2.1 Physical units and dimensions
In the formalism of two sorts Up,l and Fp introduced in 1.6 the sort Up,l

is assumed to be the sort thar holds all the physical units (dimensions). It
is convenient for each principal unit of measurement to define a special sort
Di, i = 1, . . . , k which is going to be naturally interpreted in terms of Up,l. .

Each sort Di is a subgroup of Up,l and so has a cyclic additive group
structure with the unit (generator) di ∈ Up,l (Di-unit). Di is isomorphic to
Up,l/keri, where

keri =
(p − 1)l

di
⋅Up,l, di∣ (p − 1)l.

Thus the size of Di,

∣Di∣ =
(p − 1)l

di
.

Between some of the unit sorts there are bilinear maps

D1 ×D2 ↠ D3; (x1d1, x2d2)↦ x1x2d3

where we assume ker3 = ker1 ∩ker2 and

x1 = u1 + ker1, x2 = u1 + ker2, x1 ⋅ x2 ∶= u1 ⋅ u2 + ker3

in the ring ∗Z/(p − 1)l.
Thus counting in units of D3 gives

x3 = x1x2
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and this can be equivalently written as

x1 = x−1
2 x3.

The units u and v introduced in 1.6 are examples of D-units.

2.2 The field sort Fp is assumed to be dimensionless and the exponentiation
map expp restricted to a sort Di is a homomorphism

expp ∶ Di↠ F×
p ; n ⋅ di ↦ expp(ndi).

2.3 In Statistical Mechanics the dimensions in Up,l are usually Energy (E),
Temperature (T) and (in ferromagnets) magnetic moment (H).

According to this theory probability that the system in temperature T
is in a state σ is equal to exp(−EσkT ), and the probability pn that the system
consists of exactly n atoms, out of possible N, is

pn =
Pn
ZN

, Pn = ∑
σ∈Σ(n)

exp(−Eσ
kT

),

where Σ(n) are all the states with exactly n atoms and

ZN =∑
σ

exp(−Eσ
kT

),

where σ runs in all possible states with at most N atoms.
Setting (with some simplifications) y ∶= exp(− H

kT ), the equilibrium state
of the system of volume N (that is having up to N particles) is analysed via
the polynomial

PN(y) ∶=
N

∑
n=0

pny
n.

which is called the grand partition function of the system.
Assuming frequentist probabilities we may regard the Pn and ZN integers.
Since there are very few restrictions on states in the models the number

ZN is close to the number of all possible subsets, that is

N

∑
n=0

Pn = ZN ≈ 2N . (15)

(The estimate (15) appears also in [8] on page 4, for N the Avogadro num-
ber, and the number ZN is being characterised as ridiculously large number.)
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Also note that when n is near N/2, Pn is near its maximum

Pn ≈ ( N
N
2

) ≈ 2N√
N

(16)

2.4 We note that since N is supposed to be very large number, by (16)
Pn can reach huge values and so modulo p will be outside the real part ′R′

of Fp. Same is true for ZN . Hence in general the pn should be treated as
probability amplitudes rather than classical probabilities, and PN should
be treated as a polynomial with complex coefficients rather than polynomial
over R.

2.5 The seminal work of C.N.Yang and T.D.Lee, [6] - [7] (1952), laid the
ground for the modern theory of critical points in the evolution of large finite
systems such as the ideal gas.

The main theorem of [6] states that the phase transition in the system
happens at the point ycrit (a critical point) such that

PN(ycrit) = 0

which obviosly can not be a real point. The paper analyses complex
roots of the polynomial which proves very important for the behaviour of the
system near the critical point.

The modern theory resolves this paradox by assuming N →∞, in which
case 1

N lnPN(y) converges, away of the critical point, to an analytic function
(the passage to the thermodynamical limit) and ycrit converges to a real point.
This solution of the paradox is not considered to be fully satisfactory as the
actual systems are always finite, although very large. Under the passage to
thermodynamical limit some information is being lost.

2.6 The hypothesis of the universe over finite field suggests a solution to
the paradox. Under the hypothesis ycrit ∈ Fp, that is ycrit is an integer such
that

PN(ycrit) = 0 mod p. (17)

One can explore the assumption further using the reduction (24) from [7]
together with Theorem 3 therein which states that after the reduction all the
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zeroes of PN are on the unit circle and the limit of the zeroes is = 1. This
leads us to the conclusion that

PN(1) = 0 mod p

Equivalently,
N

∑
n=1

Pn = 0 mod p.

Combining this with (15) and assuming that the number of atoms N is
≈ 1023, the Avogadro number, we can make an estimate on p, the upper
bound:

p < 2N ≈ 21023 (18)

On the other hand the same argument proves that there is a low bound
on the volume N of gas which allows a phase transition, that is has a critical
point satisfying (17):

N > log p.

2.7 Discussion. The assumption of physics over a finite field explains
the necessity of extending the definition of grand partition function as the
function of complex variable as well as explains the phase transition in a
large finite system.

In a forthcoming paper we develop an analytic theory on Up,l which, via
lmU corresponds to the analytic theory on C. In particular the expression like

1

N
lnPN(y) and lmU { 1

N
lnPN(y)}

become the lawfull objects of the theory and one can carry on the thermo-
dynamic theory as usual, along with the discrete theory on Fp.

The rest of the paper is purely mathematical. It provides the construction
of the limit map lm and proofs.

3 The pseudo-finite exponentiation

Fix notation for a non-standard model of C

∗C = CP /D
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where P and the ultrafilter D on P are defined in 1.5.
Note that by construction ∗Z ⊂ ∗C and this allows us to identify elements

l ∈ Fp which are represented by l ∈ ∗Z, 0 ≤ l < p, with l ∈ ∗C in the theorem
below.

3.1 Theorem. Then there is a place I ∶ Fp → ∗C̄ . such that I maps:
for all l ∈ ∗Z satisfying −l ≤ l ≤ l

l ↦ l (19)

ι↦ e−
πi
4 and i↦ e−

πi
2 (20)

For all a ∈ Q, for all l ∈ ∗Z, −l < l ≤ l,

ε
al(p−1)

2l ↦ e−
alπi
l (21)

ε
al(p−1)

2li ↦ e−
alπ
l . (22)

The proof is by Lemmata below.

We consider linear equations of the form

k

∑
i=1

ci ⋅Xi = 1

where the variables Xi are assumed to be in a specific subset G of the field.
A solution x1, . . . , xk is said to be non-degenerate if for any proper subset
K ⊂ {1, . . . , k}

∑
i∈K

ci ⋅ xi ≠ 1.

3.2 Lemma. There is a function f ∶ N→ N, an η ∈ ∗N and a highly divisible
ν ∈ ∗N such that

2νη∣(p − 1),
for all n ∈ N νn∣η,
and
for all k ∈ N, for all rational functions c(X,Y ) = ⟨c1(X,Y ), . . . , ck(X,Y )⟩,

for any 0 ≤ l ≤ ν
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any non-degenerate solution x1, . . . , xk ∈ Fp

of ∑k
i=1 ci(l, η) ⋅ xi = 1 & ⋀i xνi = 1

satisfies ⋀i xf(k)i = 1.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(23)

Proof. Recall that Fp is a field of characteristic 0. Thus the well-known
Theorem of Mann about linear equations in roots of unity with rational
coefficients is applicable. A consequence of Mann’s Theorem is that there
is a function f satisfying (23) for any ν, η ∈ N (see [14] for this and other
consequences).

We treat the expression xν as an arithmetic function of x, ν defined in
(∗Z;+, ⋅,p) along with the interpretation of the field Fp.

LetMc ⊂ ∗N2 be the set of (ν, η) ∈ ∗N2 such that (23) holds for given k and
c(X,Y ). ClearlyMc is definable in (∗Z;+, ⋅,p). By the above consequence of
the Mann Theorem N2 ⊆Mc and so

N2 ⊆⋂
c
Mc

where c runs in all k-tuples of rational functions c(X,Y ).
Since each n ∈ N divides p − 1 it follows that the countable type

⋀
c
(ν, η) ∈Mc & 2νη∣(p − 1) & ⋀

n∈N
n∣ν & νn∣η

is consistent, thus has a realisation in the ℵ0-saturated structure ∗Z. �
Below we use notation

∗Z[l] ∶= {l ∈ ∗Z ∶ −l ≤ l ≤ l}.

Assuming l << p we may equally treat ∗Z[l] as a subset of Fp.

3.3 Corollary. We may assume that for all k and c(X,Y ) (23) is satisfied
when ν ∶= l and, if i2 + 1 ≠ p, η ∶= i. In particular,

ln∣i, for all n ∈ N and
i2 + 1 = p or i is transcendental in Fp over ∗Z[l] (24)

3.4 Set
′iR′ ∶= {κ

l
v ∶ −ml/2 ≤ κ ≤ml/2, m ∈ N} ⊂ Up,l

and let
′S′ ∶= expp(′iR′) ⊂ Fp.

Since expp(v) = 1, ′S′ is the group of all the elements γ of F×
p satisfying γl = 1.
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3.5 Lemma. Let γ1, . . . , γn ∈ ′S′ be multiplicatively independent. Then
γ1, . . . , γn are algebraically independent over Q(∗Z[l], i).

Proof. Suppose not. Then for some k, for some c1, . . . , ck ∈ Q(∗Z[l], i), for
some monomials xi = xi(γ1, . . . , γn), i = 1, . . . , k, the equality ∑k

i=1 ci ⋅ xi = 1
holds. We assume that k is minimal with this property. Since γ1, . . . , γn
are roots of 1 of order dividing l so are their products x1, . . . , xk−1. Since k
is minimal, the solution xi(γ1, . . . , γn), i = 1, . . . , k, of the equation is non-
degenerate. Thus the xi(γ1, . . . , γn) satisfy (23) and so are roots of unity
of order ≤ f(k). This would contradict our assumption on multiplicative
independence. �

3.6 Corollary. There is a place

I ∶ Q(∗Z[l], i, ′S′)→ ∗C̄

which satisfies (19),(20) and (21).
Proof. Denote Q(∗Z[l], i, ∞

√
1) the extension of Q(∗Z[l], i) by roots of 1.

First define the place I0 ∶ Q(∗Z[l], ∞
√

1))→ ∗C̄ to be defined as the obvious
embedding of the subfield of Fp generated by ∗Z[l] and ∞

√
1) into ∗C̄, where

∗Z[l] is treated as both subset of Fp and of ∗C.
In case i satisfies the option i2 + 1 = p of (24), i is a square root of −1 in

Fp and so can be identified with an appropriate element of ∞
√

1) and thus
included into the domain of I0.

In the alternative option i is independent over the domain of I0 and so
one can extend I0 to an I1 sending i to

√
−1 of ∗C.

By Lemma 3.5 I1 can be extended to I as required. �

3.7 Let
′R′ ∶= {κ

l
u ∶ −ml/2 ≤ κ ≤ml/2, m ∈ N} ⊂ Up,l,

a subgroup of Up,l,
and

′R′
+ ∶= expp(′R′) ⊂ Fp,

a subgroup of F×
p .

Remark. Note that the definition of expp in 1.6 depends on the choice
of the generator ε. So the above ′R′

+ depends on ε as well (but ′S′ does not).
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3.8 Lemma. Let k, l ∈ N and α = α(ε) = ε p−1
li . Let M̄ = ⟨M1, . . . ,Mk⟩ in

∗Zk, −ll <Mi < ll.
Let ḡ(Z̄) = ⟨g1(Z1, . . . , Zk), . . . , gk(Z1, . . . , Zk)⟩ be a k-tuple of rational

functions over Q(∗Z[l], i) and c̄ = ⟨c1, . . . , ck⟩, ci ∈ Q(Z[l], i, ′S′) of the form

ci = gi(s̄), s̄ ∶= ⟨s1, . . . , sk⟩, for s1, . . . , sk ∈ ′S′.

Consider a non-standard Laurent polynomial in Fp of the form

Pc̄,M̄(X) ∶=
k

∑
i=1

ciX
Mi − 1. (25)

Then there is a generator ε of Fp such that for all M̄ and s̄ as above

Pc̄,M̄(α) ≠ 0.

Proof. For a given M̄ and c̄, Pc̄,M̄(X) has at most ll zeroes. There are
at most (ll)k possible tuples c̄ = ḡ(s̄) and (ll)k of tuples M̄, so at most (ll)2k

polynomials (25) altogether, so (ll)2k+1 zeroes of the polynomials.
On the other hand α(ε) takes any value of primitive root of order li as

ε runs through generators of F×
p . Thus there are ϕ(li) (the Euler function)

such α and the well-known lower estimate gives us ϕ(li) >
√
li, which is bigger

than (ll)2k+1 by (24). Thus there is an ε such as α(ε) is as required. �

3.9 Corollary. There is ε such that α(ε) is not a zero of any Pc̄,M̄(X) for
all l, k, M̄ and c̄ ∈ Q(∗Z[l], i, ′S′)k as in 3.8.

Proof. Note that the conclusion of 3.8 can be restated as a formal state-
ment ∃εΦl,ḡ(α(ε), l, i,p) in the language of arithmetic. The statement of (3.8)
readily generalises to the statement that α avoids zeroes of a finite number
of polynomials of the form (25), by taking the product of the polynomials.
Thus the type

{Φl,ḡ(α(ε), l, i,p) ∶ l, ḡ as in (3.8)}
in variable ε is consistent. Since ∗Z is ℵ0-saturated there is an ε such that
α(ε) ∈ Fp is not a zero of any polynomial (25) �

3.10 Lemma. There is a generator ε such that any multiplicatively inde-
pendent γ1, . . . , γm ∈ ′R′

+ are algebraically independent over Q(∗Z[l], i, ′S′).
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Proof. Let ε be as stated in 3.9. Suppose γ1, . . . , γm are multiplica-
tively independent and satisfy a polynomial equation R(γ1, . . . , γm) = 0. The
equation can be rewritten as

∑
j

cjγ
m̄j = 1

for some monomials γm̄j =∏i γ
mji
i and cj ∈ Q(l, i, ′S′).

Clearly, γm̄j belong to the group ′R′
+ and so γm̄j = α(ε)Mj , for some Mj,

∣Mj ∣ < ll, contradicting our choice of ε. �

3.11 Corollary. The place I of 3.6 can be extended to

I ∶ Q(∗Z[l], i, ′S′,′R′
+)→ ∗C̄

which satisfies (22).
Proof. I of (22) is an isomorphism of groups. Since the only relations in

the language of rings between elelements in ′R′
+ are multiplicative relations,

I is a place in the language of rings. �

3.12 Since ∗C is algebraically closed the I of 3.11 can be extended to a
place

I ∶ Fp → ∗C̄.

This finishes the proof of Theorem 3.1.
�

3.13 Proof of the Main Theorem 1.7: (8) - (12).
Define

lmF ∶= st ○ I.
In particular, taking into account that, for st ∶ ∗C→ C̄,

st(ex) = est(x)

we get
lmF ∶ ε

l
2l
u ↦ e−π st( l

l
); ε

l
2l
v ↦ e−iπ st( l

l
).

It is easy to check that

′R′ ∩ ′iR′ = {0}.

16



For l
l ∈ ∗Q (non-standard rationals), such that l

lu ∈ ′R′, define

lmU(
l

l
u) ∶= −2πst( l

l
). (26)

This is an additive homomorphism

′R′↠ R.

Then also l
lv ∈ ′iR′, and define

lmU(
l

l
v) ∶= −i2π st( l

l
), (27)

an additive homomorphism
′iR′↠ iR.

This defines lmU on ′R′+′iR′ respecting the commutation with exp . More-
over,

lmU ∶ ′R′ + ′iR′↠ C.

Note that the definition of the homomorphism lmU on ′R′ and ′iR′ above
extends uniquely on their divisible hulls

lmU ∶
1

n
′R′ → R and lmU ∶

1

n
′iR′ → iR, for n ∈ N

The sum of divisible hulls H(′R′)+H(′iR′) is a divisible subgroups of Up,l

and so can be complemented by a subgroup Up,l(∞),

Up,l = H(′R′)+̇H(′iR′)+̇Up,l(∞).

Define lmU(u) =∞ for all u ∈ Up,l(∞). Using expp and exp as in the commut-
ing diagram (3) this can be extended to lmF so that (8), (9), (10), (11) and
(12) are satisfied. �

The rest of the Main Theorem will be proved in the next section.

4 Integration

Recall that l = µ2 and i = ι2 elements of ∗N.
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4.1 Proposition. Let a = d2

l2 for some d, l ∈ N.

∑
−il/2a≤n≤il/2a

expp(−a
n2

2l
u) = µ ιω√

a
(28)

∑
−l/2a≤n≤l/2a

expp(−a
n2

2l
v) = µ ω√

a
(29)

where ω ∈ Fp is a primitive root of 1 of order 8. and µ, ι and d, l should be
seen as elements of Fp corresponding to the respective integers.

Proof. Let ν ∈ ∗N be even and 2ν2∣(p− 1). Let ξ ∈ Fp be a primitive root
of order 2ν2, equivalently, for some ε ∈ Fp, a primitive root of order p − 1,

ξ = ε
p−1

2ν2 .

Writing n =mν + k, 0 ≤m,k < ν, we get

∑
0≤n<ν2

ξn
2 = ∑

0≤k<ν

ξk
2 ⋅ ∑

0≤m<ν

ξm
2ν2+2mkν . (30)

Now we use the fact that m2−m
2 ∈ ∗Z and get in Fp

∑
0≤m<ν

ξm
2ν2+2mkν = ∑

0≤m<ν

ξmν
2+2mkν = ∑

0≤m<ν

ξ2mν( ν
2
+k) =

= { ν, if ν
2 + k ≡ 0 mod ν,

0, otherwise

using that ξ2mν( ν
2
+k) = ξ2ν2 = 1 in the first line and that

∑
0≤m<ν

ζm = 0,

for ζ ∶= ξ2ν( ν
2
+k), ζν = 1 but ζ ≠ 1, in the second line.

Hence in the sum (30) only k = ν
2 contributes, and we get

∑
0≤n<ν2

ξn
2 = ν ξ ν

2

4 = νε p−1
8 = ν ⋅ ω (31)

for ω ∶= ε p−1
8 , a primitive root of 1 of order 8.

Note that

∑
0≤n<ν2

ξn
2 = ∑

−ν2/2≤n<ν2/2

ξn
2

18



because of periodicity
ξ(n+ν

2)2 = ξn2

.

Finally, set

ν ∶= µι√
a

for (28) and ν ∶= µ√
a

for (29)

and (28) and (29) follow. �

4.2 Corollary (proof of the Main Theorem, (13) and (14))

lmF ∶
1

µ
∑

−il/a≤n<il/a

expp(a
n2

2l
u) ↦ 1√

a

lmF ∶
1

µ
∑

−l/a≤n<l/a

expp(a
n2

2l
v) ↦ e

πi
4

√
a

This follows from the facts that lmF(ι) = e−
πi
4 and that lmF(ε

p−1
8 ) = eπi4 , see

(26) and (27) together with Theorem 3.1.

4.3 Note that 1√
a
= ∫R e−ax

2
dx, the classical Gaussian integral. Analogously,

in quantum mechanics ∫R eiax
2
dx ∶= e

πi
4
√
a
, although the integral is not classi-

cally defined since eiax
2

is oscillating on the whole of R. One of the ways of
justifying the assignment of the value to the integral expression is by refer-
ring to the fact that the respective Fresnel integral ∫

A

−A e
iax2dx is well-defined

for any A > 0 and

lim
A→∞

∫
A

−A
eiax

2

dx = e
πi
4

√
a
.

4.4 The domains of integrations and domains of summation.
Let, for l ∈ N

Il = {n ∈ ∗Z ∶ −lµ ≤ n ≤ lµ} and I =⋃
l∈N

Il.

Let a = m
l and

Ia,u = {n ∈ ∗Z ∶ −il/2a ≤ n ≤ il/2a} and Ia,v = {n ∈ ∗Z ∶ −l/2a ≤ n ≤ l/2a}
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the domains of summations of (28) and (29). Clearly, using the assumptions
on l and µ,

I ⊂ Ia,u and I ⊂ Ia,v

and
u

µ
⋅ I ⊂ ′R′ and

v

µ
⋅ I ⊂ ′iR′.

The application of lmU defined in 3.13 gives us

lmU ∶
u

µ
⋅ Il↠ R ∩ [−lπ, lπ] and

u

µ
⋅ I↠ R,

lmU ∶
v

µ
⋅ Il↠ i(R ∩ [−lπ, lπ]) and

v

µ
⋅ I↠ iR,

that is u
µ ⋅ I can be seen as a Riemann integration partition of sets ′R′ with

the infinitesimal mesh u
µ , and respectively v

µ ⋅ I in iR with mesh v
µ .

Note that in (28) and (29)

n2

2l
= 1

2
(n
µ
)2; lmU(

n2

2l
u) = −πx

2

2
, lmU(

n2

2l
v) = −iπx

2

2

for x = st(nµ).

4.5 Lemma. For every l ∈ N

lmF ∶
1

µ
∑
n∈Il

expp(−a
n2

2l
u)↦ ∫

l

−l
e−ax

2

dx

lmF ∶
1

µ
∑
n∈Il

expp(−a
n2

2l
v)↦ ∫

l

−l
e−iax

2

dx

and the integrals are well-defined.
Proof. Note that by (21) and (22) the map I translates the respective

elements of the sums from Fp to the elements of the non-standard model ∗C
of complex numbers:

I ∶ expp(−a
n2

2l
u)↦ e−aπ(

n
µ
)2

I ∶ expp(−a
n2

2l
v)↦ e−iaπ(

n
µ
)2
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and thus

I{ 1

µ
∑
n∈Il

expp(−aπ
n2

2l
u)} and I{ 1

µ
∑
n∈Il

expp(−aπ
n2

2l
v)}

become non-standard Riemann sums with infinitesimal mesh 1
µ

∑
−l<n

µ
<l

1

µ
e−aπ(

n
µ
)2 and ∑

−l<n
µ
<l

1

µ
e−iaπ(

n
µ
)2

Since the summation is over a compact interval [−l, l] ⊂ ∗R the application
of the standard part map gives us (see e.g. the integration via non-standard
analysis in [12])

st( ∑
−l<n

µ
<l

1

µ
e−aπ(

n
µ
)2) = ∫

l

−l
e−aπx

2

dx and st( ∑
−l<n

µ
<l

1

µ
e−iaπ(

n
µ
)2) = ∫

l

−l
e−iaπx

2

dx

4.6 Corollary.

lmF ∶
1

µ
∑
n∈I

expp(−a
n2

2l
u)↦ ∫

R
e−ax

2

dx = 1√
a

lmF ∶
1

µ
∑
n∈I

expp(−a
n2

2l
v)↦ lim

l→∞
∫

l

−l
e−iax

2

dx = e
π
4

√
a

Proof. In both cases the right-hand side is the limit of integrals in 4.5
since I = ⋃l Il. In the first case the classical Gaussian integral over the whole of
R converges and is equal to the limit. In the second case the right-hand side
as the limit of the Fresnel integral is well-defined but the Riemann integral
is not.

4.7 Discussion. The left-hand sides of 4.2 and of 4.6 differ in the domains
of summations but the right-had sides are the same. This implies that our
definition of lmF is such that

lmF

⎛
⎝

1

µ
∑

n∈Ia,u∖I

expp(−a
n2

2l
u)

⎞
⎠
= 0 and lmF

⎛
⎝

1

µ
∑

n∈Ia,v∖I

expp(−a
n2

2l
v)

⎞
⎠
= 0

In these “tail domains” Ia,u∖I and Ia,v∖I the respective values under exponen-
tiation are very large, non-feasible numbers, and according to the inerpreta-
tion of Fp in C the application of exp to such values oscillates uncontrollably.
R.Feynman intuition was that for this reason the sum should be considered
negligible, see e.g. [13], 2-3.
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