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Abstract

We use the notion of structural approximation to represent the
Lorentz-invariant Minkowski space-time as a limit of finite cyclic lat-
tices with the action of finite quasi-Lorentz groups

1 Introduction

1.1 A physical theory is an approximation to reality. But what is an
approximation? In [1] we discussed this problem from the perspective
of model theory. This results in the definition of structural approx-
imation which we use here along with a more advanced recent paper
[2] which sets a general background for applications in Foundations of
Physics.

Unilke conventional approimations based on metrics, structural
approximation is designed to preserve the structure even when the
structure is given without a metric. E.g. a sequence of finite groups
can approximate a continuous group (or more often a “compactified”
version of a group).

In the paper we construct a sequence of finite groups acting on
finite lattices which approximates the Lorentz group acting on a com-
pactified Minkowski space.

We suggest this construction as a form of discretisation of space-
time with Lorentzian symmetry, a problem discussed in various pub-
lications, see e.g. [3]. In some sense our mathematical techniques
is not dissimilar to ones proposed in [4] and some other publications
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relying on the p-adic and adelic number system: the pseudo-finite re-
sudue ring K underlying our construction, is quite similar to the ring
of adeles.

1.2 Structural approximation. A structure M is a set M with a
collection Σ of n-ary relations S ⊂Mn for some n, called the language
(or the vocabulary) of M = (M ; Σ).

Suppose we are given a sequence {Mi : i ∈ N}, Mi = (Mi,Σ), of
structures in language Σ. One can choose a Fréchet ultrafilter D on N
and construct the ultraproduct

∗M :=
∏
i∈N

Mi/D

which is a structure in language Σ with the key property (the Loś
theorem): given a first-order sentence σ in the language Σ,

σ is true in ∗M if and only if σ is true in Mi along D (1)

∗M is often referred to as the model-theoretic limit of Mi along D.
In case the Mi’s are finite, ∗M is said to be a pseudo-finite

structure.
It is convenient to consider the system Tn of topologies on ∗Mn, all

n, the basic closed sets of which are realisations S(∗M) of the n-ary
S ∈ Σ. Such a system is said to be quasi-compact (or complete) if
the projection maps prn+1,n : ∗Mn+1 → ∗Mn preserve closed subsets,
that is prn+1,n(S) closed, for S closed.

This definition makes sense for the Mi and indeed for any M in
the language Σ.

A structural approximation of M by {Mi : i ∈ I} along D is a
surjective map

lm : ∗M � M (2)

which has the property:

S ⊂ ∗Mn closed⇒ lm(S) ⊂Mn closed,

As it happens, below, most of the time Mi, M and ∗M are rings
in the language {x + y = z, x · y = z} or groups in the language
x ∗ y = z and closed for S ⊂ Mn means S is the set of solutions of
a system of algebraic equations in n-variables with parameters in M,
or equivalently, closed in Zariski topology.
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Note that despite the coarse topology we still are able to use the
intuition of infinitesimals: two elements a, a′ ∈ ∗Mn are seen to be
“infinitesimally close” if lm a = lm a′.

Thus, in view of (1) and (2) structural approximation is a formal-
isation of the statement a very large structure Mi looks like M from
afar.

1.3 Approximation and compactness. It was established in [1]
that M has to be quasi-compact (complete) in order for it to appear in
(2) for non-trivial sequences Mi. In particular, the field C is not quasi-
compact but its compactification C̄ := C ∪ {∞} = CP1 is. Theorem
5.2(i) of [1] proves that for any zero-characteristic pseudo-finite field E
(in particular, for E = Fp, p non-standard prime number) there exists
a structural approximation

lmE : E � C̄. (3)

Warning: such an approximation can not be explained in terms of
non-standard analysis.

The limit map in (3) is far of being unique but we can pick ones
with some specific and useful properties as in [2], which allows to
mimic complex analysis in the pseudo-finite field E.

On the other hand, the notion is quite restrictive in another sense:
it is proved in Theorem 5.2(ii) of [1] that C is the only locally compact
field for which an approximation by finite fields is possible.

1.4 Scales and scale-dependendence of approximation.
The interplay between the domain and the range of the approx-

imation map lmE as in (3) brings in some features not encountered
in the limit construction with inherent metrics. By its nature field
E is of pseudo-finite characteristic p (more generally we also consider
pseudo-finite residue rings E = ∗Z/N ) while C is characteristic zero
field with a natural metric.

It is clear by algebraic considerations that

lmE : {1, 2, 3, . . .}E 7→ {1, 2, 3, . . .}C

where {1, 2, 3, . . .}E ⊂ E, {1, 2, 3, . . .}C ⊂ C include all usual (stan-
dard) integers. Moreover,

lmE : {1

2
,
1

3
,
1

4
, . . .}E 7→ {

1

2
,
1

3
,
1

4
. . .}C
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and in the limit we can see approximate reals emerging in E. In other
words, an observer which has only access to small scale elements of E
can think of E as being R. Define

Ereal = {x ∈ E : lmE(x) ∈ R}.

So the remark we made is that small-scale elements of E are in Ereal.
However, as we continue along the natural cyclic order 1, 2, 3, . . .

of E, inevitably, we will encounter an element i ∈ E such that

lmE : i 7→ ı =
√
−1; i · Ereal → ıR

and so with other complex numbers.
Again by (3), we will also have a non-empty domain

E∞ = {x ∈ E : lmE(x) =∞}.

So, an observer which has tools to explore the global characteristics
of E has to think of E as a Riemann sphere C̄. We say that E locally
looks like R while globally looks like C̄.

It is clear that Ereal, iEreal and E∞ should be considered of “dif-
ferent scales”, perhaps in some context related to “low energy – high
energy” philosophy. In [2], section 3, we introduce a formal notion
which allows us to speak about scales and use it in constructing ap-
proximations with prescribed properties.

1.5 The main result of the paper is a construction of a structural ap-
proximation of the Minkowski space M by finite 4-dim lattices along
with an approximation of the Lorentz group SO+(1, 3) by finite groups
acting on the lattices respectively and preserving the Minkowski met-
ric.

Note that unlike other approximations of Lorentz action, we have
actual groups Gi acting on the discrete spaces M(Ki) so that the
groups Gi approximate, locally, the Lorentz group and the space
M(Ki) approximates locally the Minkowski spaceM(R) with Minkowski
metric, see 2.9 and (10) therein. Globally, the same lattices approx-
imate the complexified and compactified model of Minkowski space-
time M̄(C) along with a complexified and compactified version of the
group which acts on M̄(C).

Note that, for the reasons explained above, the discrete (pseudo-
finite) Minkowski space-time in its limit continuous version presents
itself as compactified and complexified, agreeing with Penrose’s ap-
proach.
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2 Pseudo-finite rings and groups and

their limits

2.1 As in [2] let ∗Z be an ℵ0-saturated model of arithmetic, N ∈ ∗Z
divisible by all standard integers and K = KN := ∗Z/N be the (non-
standard) residue ring.1

2.2 It is well-known that SL(2,C) is a double cover of the Lorentz
group SO+(1, 3) and it acts in agreement with this on the Minkowski
space .

More precisely (see e.g. [5]): represent a vector with components
(t, x, y, z) ∈ R4 (Minkowski space) as a 2× 2 matrix

X :=

(
t+ z x− iy
x+ iy t− z

)
with X† = X and det(X) = t2 − x2 − y2 − z2, consider

X 7→MXM † with M ∈ SL(2,C). (4)

This preserves detX and thus the Minkowski metric, which leads to
the proof that (4) is a Lorentz transformation and all Lorentz trans-
formations can be expressed in this way. The fact that ±M both give
the same transformation of X corresponds to the fact that SL(2,C) is
the double cover of the Lorentz group, that is

SO+(1, 3) ∼= SL(2,C)/Z2 (5)

We denote
(M(R), SL(2,C)/Z2)

the structure which consists of R-linear Minkowski space M(R) with
metric given by X 7→ detX along with the group SL(2,C)/Z2 acting
on the space as describe in (4).

We note that the isomorphism of groups induces the isomorphism
of structures

(M(R),SL(2,C)/Z2) ∼=
(
M(R), SO+(1, 3)

)
(6)

1Note that
K ∼=

∏
p|N primes

∗Z/pηp

where ηp ∈ ∗Z positive, and so, for all standard primes ηp >> 1. It follows that in the
limit ∗Z/pηp will be seen as the ring Zp of p-adic integers (see [1]) and the whole K as the
ring AZ,fin of finite integral adeles.
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Let C̄ = C ∪ {∞} which we will treat as a Zariski structure, that
is the set with Zariski closed relations R ⊂ C̄n on it.

2.3 There is a surjective homomorphism lmK of Zariski structures

lmK : K→ C̄.

In particular,

lmK(x+ y) = lmK x+ lmK y, if lmx 6=∞ and lm y 6=∞

lmK(x · y) = lmK x · lmK y, if lmK x 6=∞ and lmK y 6=∞

lmK is the composition of two Zariski homomorphisms

prK,E : K � E and lmE : E � C̄

where E is a pseudo-finite field.

The subsets

Kfin = {x ∈ K : lmx 6=∞} and Kreal = {x ∈ K : lmx ∈ R}

are subrings of K.
For every positive n ∈ N

nx = 0⇒ lmx = 0

Proof. Since N , the order of K, is divisible by every standard
prime q, there is a ring-homomorphism pr : K � Eq, for an infinite
non-standard q. It follows that, if a polynomial P (X) over Z has a
zero in K then it has a zero in Eq, a field of characteristic 0, and so in
C. Now one constructs lm by the same back-and-forth procedure as in
the proof of Proposition 5.2(i) of [1] using the fact that the cardinality
of K is not smaller than that of C.

The statements about Kfin and Kreal follow from the fact that lm
preserves + and · of K.

Finally, assume that nx = 0 for x ∈ K. Note that since lm is
surjective lm 0 = 0 and lmn · 1 = n for 1 ∈ K. Clearly, if lmx 6= ∞
then 0 = lmnx = nlmx and so lmx = 0. But if lmx =∞ then by the
law on multiplication lm (n ·1 ·x) =∞ which contradicts the fact that
n · 1 · x = 0.

�
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2.4 Complexification of a ring. Let A be a commutative unitary
ring. Define

A(2) be the unitary ring obtained from the ring A as follows:

A(2) := {(a, b) ∈ A×A};

(a1, b1)+(a2, b2) := (a1+a2, b1+b2), (a1, b1)·(a2, b2) := (a1a2−b1b2, a1b2+a2b1).

Clearly, a 7→ (a, 0) is an embedding of A into A(2) as a subring
(A, 0) and

(a, b) 7→ (a,−b) an automorphism of A(2).

2.5 Let M(2, A(2)) be the set of 2×2 matrices overA(2) which we treat
as an 8-dim A-module and let SL(2, A(2)) be the group of matrices of
determinant 1.

A Minkowski A-lattice is the A-submoduleM(A) of M(2, A(2))
consisting of matrices Xt,x,y,z over A(2) of the form

Xt,x,y,z = X :=

(
(t+ z, 0) (x,−y)
(x, y) (t− z, 0)

)
, t, x, y, z ∈ A.

We have

det(X) = (t2 − x2 − y2 − z2, 0) ∈ A× {0}

and this defines Minkowski A-metric length of (t, x, y, z).
For the general A(2)-matrix

Y =

(
(a1, a2) (b1, b2)
(c1, c2) (d1, d2)

)
define the adjoint matrix

Y † :=

(
(a1,−a2) (c1,−c2)
(b1,−b2) (d1,−d2)

)
Clearly, X† = X for X ∈M(A). In general

(Y Z)† = Z†Y †.

In particular, Y is self-adjoint (Y = Y †) iff a2 = 0 = d2 and b1 = c1,
b2 = −c2.
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It follows that for any M ∈ SL(2, A(2)), X ∈M(A)

MXM † ∈M(A) and detX = detMXM † (7)

Let

C = {M ∈M(A) : MXM † = X for all X ∈M(A).}

Let M0 ∈ C. In particular, M0M
†
0 = I. It is equivalent to M †0 = M−1

0

and thus M0XM
−1
0 = X for all X ∈M(A). This readily implies that

M0 is diagonal, in the centre of SL(2, A(2)) and so

C = {M =

(
(a1, a2) 0
0 (a1, a2)

)
; a2

1 − a2
2 = 1 & a1a2 = 0} (8)

Thus we have established:

2.6 Proposition. The 2-sorted structure(
M(A),SL(2, A(2))/C

)
is interpretable in the ring A along with the group action X 7→MXM †

and A-Minkowski metric.
The action and Minkowski metric are defined by systems of poly-

nomial equations over Z.
In particular, SL(2,K(2))/C is the group of K-linear transforma-

tions of M(K) preserving Minkowski K-valued metric.

2.7 Lemma.
SL(2,C(2))/C ∼= SO(4,C)

where C is the centre of SL(2,C(2)) and

C ∼= Z2 × Z2.

Proof. By the Proposition SL(2,C(2))/C is the group of transfor-
mations of M(C) preserving Minkowski C-valued metric, that is the
form x2

0 +x2
1 +x2

2 +x2
3. But this is also the definition of group SO(4,C).

The form of C is determined by (8). �
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2.8 Compactification of C-structures. ConsiderM(C) and SO(4,C)
as complex quasi-projective algebraic varieties, in particular we have

M(C)× SO(4,C) ⊂ P

where P is a projective variety (not uniquely determined, to be chosen
later). Note that

M(C)× SO(4,C)×M(C) ↪→ P×P

and so the graph of the action of SO(4,C) on M(C) is also a quasi-
projective subvariety of P×P.

Define the compactification of the structure (M(C),SO(4,C)) ,

(M(C),SO(4,C))P ⊇ (M(C),SO(4,C))

to be the structure defined by the relevant Zariski closed subsets and
relations in cartesian powers of P.

2.9 Theorem. There is a Zariski homomorphism of structures

Lm :
(
M(K), SL(2,K(2))/C)

)
� (M(C), SO(4,C))P (9)

Its restriction to the structure over Kreal is a Zariski homomorphism

Lm :
(
M(Kreal),SL(2,K

(2)
real)/C

)
�
(
M(R), SO+(1, 3)

)
(10)

Proof. By 2.3 we have an induced Zariski homomorphism

lmK :
(
M(K), SL(2,K(2))/C

)
�
(
M(C), SL(2,C(2))/C

)P
which by 2.7 is the same as (9).

The restriction of limit maps to the structure over Kreal by con-
struction has the form(

M(Kreal),SL(2,K
(2)
real)/C

)
� (M(R),SL(2,C)/C)

which becomes (10) when one takes into account (5). �

2.10 Commentary.
The statement in (10) can be interpreted as the statement that at

low scale the pseudo-finite space looks like the canonical Minkowski
space M(R) with the action of the Lorentz group SO+(1, 3).
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3 Addendum

3.1 Relation between the discrete Minkowski space M(K)
and the discrete universe U of [2].

Recall that the 1-dimensional universe U of [2] is defined as the
additive group of the residue ring

K = ∗Z/N , where N = (p− 1)l,

p non-standard prime and l a highly divisible non-standard integer.
Thus U can also be considered a 1-dimensional K-module, where we
can now identify K with the one from previous sections, introduced in
2.2.

Thus, for the Minkowski K-space M(K) one establishes an iso-
momrphism

M(K) ∼= U4

as K-modules, and the constructions above define the action of the
quasi-Lorentz group SL(2,K(2))/C on U4 along with the Minkowski
K-valued metric invariant under SL(2,K(2))/C.

In [2] we identified in the universe U and its cartesian powers Un

subdomains which correspond to the scales of quantum mechanics
and statistical mechanics and developed elements of these theories in
the model on U which unified the two theories. The current work
demonstrates that the same model can incorporate special relativity.

3.2 Klein-Gordon wave-functions

φ(r̄, t) := exp(ik̄ · r̄ − iωt)

where

k̄ · r̄ =

j=3∑
j=1

kjrj .

Thus
∂

∂rj
φ = ikjφ;

∂

∂t
φ = iωφ

and Klein-Gordon is satisfied:

−~2 ∂
2

∂t2
φ = (−~2c2

∑ ∂2

∂r2
j

+m2c4)φ
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In operator terms
T := ~k̄; E = ~ω

and Klein-Gordon
E2φ = (P2c2 +m2c4)φ

so
(P2c2 +m2c4) = H2

Recall that solutions to the Dirac equation is a combination
of two solutions of the Klein-Gordon equation.

3.3 Lorentz invariance: (r̄, t) 7→ g(r̄, t) implies φ 7→ φg such that

φg(g(r̄, t)) = φ(r̄, t).

That is, for X ∈M

φg(gX) = φ(X) = exp(iK ·X)

where

K ∈M, K ·X =

j=3∑
j=1

kjxj − k0x0, Minkowski scalar product.

It follows
φg(Y ) = exp(iK · g−1 · Y )
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