A Minkowski space-time lattice with Lorentzian invariance

Boris Zilber

January 21, 2025

Abstract

We use the notion of structural approximation to represent the Lorentz-invariant Minkowski space-time as a limit of finite cyclic lattices with the action of finite quasi-Lorentz groups

1 Introduction

1.1 A physical theory is an approximation to reality. But what is an approximation? In [1] we discussed this problem from the perspective of model theory. This results in the definition of **structural approximation** which we use here along with a more advanced recent paper [2] which sets a general background for applications in Foundations of Physics.

Unilke conventional approximations based on metrics, structural approximation is designed to preserve the structure even when the structure is given without a metric. E.g. a sequence of finite groups can approximate a continuous group (or more often a "compactified" version of a group).

In the paper we construct a sequence of finite groups acting on finite lattices which approximates the Lorentz group acting on a compactified Minkowski space.

We suggest this construction as a form of discretisation of spacetime with Lorentzian symmetry, a problem discussed in various publications, see e.g. [3]. In some sense our mathematical techniques is not dissimilar to ones proposed in [4] and some other publications relying on the p-adic and adelic number system: the pseudo-finite resudue ring K underlying our construction, is quite similar to the ring of adeles.

1.2 Structural approximation. A structure **M** is a set M with a collection Σ of *n*-ary relations $S \subset M^n$ for some *n*, called the language (or the vocabulary) of $\mathbf{M} = (M; \Sigma)$.

Suppose we are given a sequence $\{\mathbf{M}_i : i \in \mathbb{N}\}, \mathbf{M}_i = (M_i, \Sigma)$, of structures in language Σ . One can choose a Fréchet ultrafilter D on \mathbb{N} and construct the ultraproduct

$$^*\mathbf{M} := \prod_{i \in \mathbb{N}} \mathbf{M}_i / D$$

which is a structure in language Σ with the key property (the *Loś* theorem): given a first-order sentence σ in the language Σ ,

 σ is true in ***M** if and only if σ is true in **M**_i along D (1)

***M** is often referred to as the model-theoretic limit of \mathbf{M}_i along D.

In case the \mathbf{M}_i 's are finite, ***M** is said to be a **pseudo-finite** structure.

It is convenient to consider the system \mathcal{T}_n of topologies on $*\mathbf{M}^n$, all n, the basic closed sets of which are realisations $S(*\mathbf{M})$ of the *n*-ary $S \in \Sigma$. Such a system is said to be quasi-compact (or complete) if the projection maps $\mathrm{pr}_{n+1,n} : *\mathbf{M}^{n+1} \to *\mathbf{M}^n$ preserve closed subsets, that is $\mathrm{pr}_{n+1,n}(S)$ closed, for S closed.

This definition makes sense for the \mathbf{M}_i and indeed for any \mathbf{M} in the language Σ .

A structural approximation of **M** by $\{\mathbf{M}_i : i \in I\}$ along *D* is a surjective map

$$\mathsf{Im}: {}^{*}\mathbf{M} \twoheadrightarrow \mathbf{M} \tag{2}$$

which has the property:

$$S \subset {}^*\mathbf{M}^n \text{ closed} \Rightarrow \mathsf{Im}(S) \subset \mathbf{M}^n \text{ closed},$$

As it happens, below, most of the time \mathbf{M}_i , \mathbf{M} and $^*\mathbf{M}$ are rings in the language $\{x + y = z, x \cdot y = z\}$ or groups in the language x * y = z and *closed* for $S \subset \mathbf{M}^n$ means S is the set of solutions of a system of algebraic equations in *n*-variables with parameters in \mathbf{M} , or equivalently, closed in **Zariski topology**. Note that despite the coarse topology we still are able to use the intuition of infinitesimals: two elements $a, a' \in {}^*\mathbf{M}^n$ are seen to be "infinitesimally close" if $\operatorname{Im} a = \operatorname{Im} a'$.

Thus, in view of (1) and (2) structural approximation is a formalisation of the statement *a very large structure* \mathbf{M}_i looks like \mathbf{M} from afar.

1.3 Approximation and compactness. It was established in [1] that **M** has to be quasi-compact (complete) in order for it to appear in (2) for non-trivial sequences \mathbf{M}_i . In particular, the field \mathbb{C} is not quasi-compact but its compactification $\overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\} = \mathbb{C}\mathbf{P}^1$ is. Theorem 5.2(i) of [1] proves that for any zero-characteristic pseudo-finite field E (in particular, for $\mathbf{E} = \mathbf{F}_{\mathfrak{p}}, \mathfrak{p}$ non-standard prime number) there exists a structural approximation

$$\mathsf{Im}_{\mathrm{E}}: \mathrm{E} \twoheadrightarrow \bar{\mathbb{C}}.$$
 (3)

Warning: such an approximation can not be explained in terms of non-standard analysis.

The limit map in (3) is far of being unique but we can pick ones with some specific and useful properties as in [2], which allows to mimic complex analysis in the pseudo-finite field E.

On the other hand, the notion is quite restrictive in another sense: it is proved in Theorem 5.2(ii) of [1] that \mathbb{C} is the only locally compact field for which an approximation by finite fields is possible.

1.4 Scales and scale-dependendence of approximation.

The interplay between the domain and the range of the approximation map Im_E as in (3) brings in some features not encountered in the limit construction with inherent metrics. By its nature field E is of pseudo-finite characteristic \mathfrak{p} (more generally we also consider pseudo-finite residue rings $E = {}^*\mathbb{Z}/\mathcal{N}$) while \mathbb{C} is characteristic zero field with a natural metric.

It is clear by algebraic considerations that

$$\mathsf{Im}_{\mathrm{E}}: \{1, 2, 3, \ldots\}_{\mathrm{E}} \mapsto \{1, 2, 3, \ldots\}_{\mathbb{C}}$$

where $\{1, 2, 3, \ldots\}_{E} \subset E$, $\{1, 2, 3, \ldots\}_{\mathbb{C}} \subset \mathbb{C}$ include all usual (standard) integers. Moreover,

$$\mathsf{Im}_{\rm E}: \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}_{\rm E} \mapsto \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots\}_{\mathbb C}$$

and in the limit we can see approximate reals emerging in E. In other words, an observer which has only access to small scale elements of E can think of E as being \mathbb{R} . Define

$$\mathcal{E}_{\text{real}} = \{ x \in \mathcal{E} : \mathsf{Im}_{\mathcal{E}}(x) \in \mathbb{R} \}.$$

So the remark we made is that small-scale elements of E are in E_{real} .

However, as we continue along the natural cyclic order 1, 2, 3, ... of E, inevitably, we will encounter an element $\mathbf{i} \in \mathbf{E}$ such that

$$\mathsf{Im}_{\mathrm{E}}: \mathbf{i} \mapsto \imath = \sqrt{-1}; \quad \mathbf{i} \cdot \mathrm{E}_{\mathrm{real}} \to \imath \mathbb{R}$$

and so with other complex numbers.

Again by (3), we will also have a non-empty domain

$$\mathcal{E}_{\infty} = \{ x \in \mathcal{E} : \mathsf{Im}_{\mathcal{E}}(x) = \infty \}.$$

So, an observer which has tools to explore the global characteristics of E has to think of E as a Riemann sphere $\overline{\mathbb{C}}$. We say that E **locally** looks like \mathbb{R} while **globally** looks like $\overline{\mathbb{C}}$.

It is clear that E_{real} , iE_{real} and E_{∞} should be considered of "different scales", perhaps in some context related to "low energy – high energy" philosophy. In [2], section 3, we introduce a formal notion which allows us to speak about scales and use it in constructing approximations with prescribed properties.

1.5 The main result of the paper is a construction of a structural approximation of the Minkowski space \mathcal{M} by finite 4-dim lattices along with an approximation of the Lorentz group SO⁺(1,3) by finite groups acting on the lattices respectively and preserving the Minkowski metric.

Note that unlike other approximations of Lorentz action, we have actual groups G_i acting on the discrete spaces $\mathcal{M}(\mathbf{K}_i)$ so that the groups G_i approximate, locally, the Lorentz group and the space $\mathcal{M}(\mathbf{K}_i)$ approximates locally the Minkowski space $\mathcal{M}(\mathbb{R})$ with Minkowski metric, see 2.9 and (10) therein. Globally, the same lattices approximate the complexified and compactified model of Minkowski spacetime $\overline{\mathcal{M}}(\mathbb{C})$ along with a complexified and compactified version of the group which acts on $\overline{\mathcal{M}}(\mathbb{C})$.

Note that, for the reasons explained above, the discrete (pseudofinite) Minkowski space-time in its limit continuous version presents itself as compactified and complexified, agreeing with Penrose's approach.

2 Pseudo-finite rings and groups and their limits

2.1 As in [2] let ${}^*\mathbb{Z}$ be an \aleph_0 -saturated model of arithmetic, $\mathcal{N} \in {}^*\mathbb{Z}$ divisible by all standard integers and $K = K_{\mathcal{N}} := {}^*\mathbb{Z}/\mathcal{N}$ be the (non-standard) residue ring.¹

2.2 It is well-known that $SL(2, \mathbb{C})$ is a double cover of the Lorentz group $SO^+(1,3)$ and it acts in agreement with this on the Minkowski space.

More precisely (see e.g. [5]): represent a vector with components $(t, x, y, z) \in \mathbb{R}^4$ (Minkowski space) as a 2 × 2 matrix

$$X := \left(\begin{array}{cc} t+z & x-iy\\ x+iy & t-z \end{array}\right)$$

with $X^{\dagger} = X$ and $\det(X) = t^2 - x^2 - y^2 - z^2$, consider

 $X \mapsto MXM^{\dagger} \text{ with } M \in \mathrm{SL}(2,\mathbb{C}).$ (4)

This preserves det X and thus the Minkowski metric, which leads to the proof that (4) is a Lorentz transformation and all Lorentz transformations can be expressed in this way. The fact that $\pm M$ both give the same transformation of X corresponds to the fact that $SL(2, \mathbb{C})$ is the double cover of the Lorentz group, that is

$$SO^+(1,3) \cong SL(2,\mathbb{C})/\mathbb{Z}_2 \tag{5}$$

We denote

$$(\mathcal{M}(\mathbb{R}), \mathrm{SL}(2,\mathbb{C})/\mathbb{Z}_2)$$

the structure which consists of \mathbb{R} -linear Minkowski space $\mathcal{M}(\mathbb{R})$ with metric given by $X \mapsto \det X$ along with the group $\mathrm{SL}(2,\mathbb{C})/\mathbb{Z}_2$ acting on the space as describe in (4).

We note that the isomorphism of groups induces the isomorphism of structures

$$\left(\mathcal{M}(\mathbb{R}), \operatorname{SL}(2, \mathbb{C})/\mathbb{Z}_2\right) \cong \left(\mathcal{M}(\mathbb{R}), \operatorname{SO}^+(1, 3)\right) \tag{6}$$

¹Note that

$$\mathbf{K} \cong \prod_{p \mid \mathcal{N} \text{ primes}} {}^* \mathbb{Z} / p^{\eta_p}$$

where $\eta_p \in {}^*\mathbb{Z}$ positive, and so, for all standard primes $\eta_p >> 1$. It follows that in the limit ${}^*\mathbb{Z}/p^{\eta_p}$ will be seen as the ring \mathbb{Z}_p of *p*-adic integers (see [1]) and the whole K as the ring $\mathcal{A}_{\mathbb{Z},\text{fin}}$ of finite integral adeles.

Let $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ which we will treat as a Zariski structure, that is the set with Zariski closed relations $R \subset \overline{\mathbb{C}}^n$ on it.

2.3 There is a surjective homomorphism $Im_{\rm K}$ of Zariski structures

 $\mathsf{Im}_{\mathrm{K}}: \ \mathrm{K} \to \bar{\mathbb{C}}.$

In particular,

 $lm_{\rm K}(x+y) = lm_{\rm K} x + lm_{\rm K} y$, if $lm x \neq \infty$ and $lm y \neq \infty$

 $\mathsf{Im}_{\mathrm{K}}(x \cdot y) = \mathsf{Im}_{\mathrm{K}} \, x \cdot \mathsf{Im}_{\mathrm{K}} \, y, \ \textit{if} \ \mathsf{Im}_{\mathrm{K}} \, x \neq \infty \ \textit{and} \ \mathsf{Im}_{\mathrm{K}} \, y \neq \infty$

 Im_K is the composition of two Zariski homomorphisms

 $\operatorname{pr}_{K,E}: K \twoheadrightarrow E \text{ and } \operatorname{Im}_{E}: E \twoheadrightarrow \overline{\mathbb{C}}$

where E is a pseudo-finite field.

 $The \ subsets$

 $\mathbf{K}_{\mathrm{fin}} = \{ x \in \mathbf{K} : \ \mathsf{Im} \, x \neq \infty \} \ and \ \mathbf{K}_{\mathrm{real}} = \{ x \in \mathbf{K} : \ \mathsf{Im} \, x \in \mathbb{R} \}$

are subrings of K.

For every positive $n \in \mathbb{N}$

 $nx=0\Rightarrow {\rm Im}\, x=0$

Proof. Since \mathcal{N} , the order of K, is divisible by every standard prime q, there is a ring-homomorphism pr : K \rightarrow $\mathbb{E}_{\mathbf{q}}$, for an infinite non-standard \mathbf{q} . It follows that, if a polynomial P(X) over \mathbb{Z} has a zero in K then it has a zero in $\mathbb{E}_{\mathbf{q}}$, a field of characteristic 0, and so in \mathbb{C} . Now one constructs Im by the same back-and-forth procedure as in the proof of Proposition 5.2(i) of [1] using the fact that the cardinality of K is not smaller than that of \mathbb{C} .

The statements about $K_{\rm fin}$ and $K_{\rm real}$ follow from the fact that ${\sf Im}$ preserves + and \cdot of K.

Finally, assume that nx = 0 for $x \in K$. Note that since Im is surjective $\operatorname{Im} 0 = 0$ and $\operatorname{Im} n \cdot 1 = n$ for $1 \in K$. Clearly, if $\operatorname{Im} x \neq \infty$ then $0 = \operatorname{Im} nx = n \operatorname{Im} x$ and so $\operatorname{Im} x = 0$. But if $\operatorname{Im} x = \infty$ then by the law on multiplication $\operatorname{Im} (n \cdot 1 \cdot x) = \infty$ which contradicts the fact that $n \cdot 1 \cdot x = 0$.

2.4 Complexification of a ring. Let *A* be a commutative unitary ring. Define

 $A^{(2)}$ be the unitary ring obtained from the ring A as follows:

$$A^{(2)} := \{(a,b) \in A \times A\}$$

 $(a_1, b_1) + (a_2, b_2) := (a_1 + a_2, b_1 + b_2), \ (a_1, b_1) \cdot (a_2, b_2) := (a_1 a_2 - b_1 b_2, a_1 b_2 + a_2 b_1).$

Clearly, $a\mapsto (a,0)$ is an embedding of A into $A^{(2)}$ as a subring (A,0) and

$$(a,b)\mapsto (a,-b)$$
 an automorphism of $A^{(2)}$.

2.5 Let $M(2, A^{(2)})$ be the set of 2×2 matrices over $A^{(2)}$ which we treat as an 8-dim A-module and let $SL(2, A^{(2)})$ be the group of matrices of determinant 1.

A **Minkowski** A-lattice is the A-submodule $\mathcal{M}(A)$ of $M(2, A^{(2)})$ consisting of matrices $X_{t,x,y,z}$ over $A^{(2)}$ of the form

$$X_{t,x,y,z} = X := \begin{pmatrix} (t+z,0) & (x,-y) \\ (x,y) & (t-z,0) \end{pmatrix}, \quad t,x,y,z \in A.$$

We have

$$\det(X) = (t^2 - x^2 - y^2 - z^2, 0) \in A \times \{0\}$$

and this defines Minkowski A-metric length of (t, x, y, z).

For the general $A^{(2)}$ -matrix

$$Y = \begin{pmatrix} (a_1, a_2) & (b_1, b_2) \\ (c_1, c_2) & (d_1, d_2) \end{pmatrix}$$

define the adjoint matrix

$$Y^{\dagger} := \begin{pmatrix} (a_1, -a_2) & (c_1, -c_2) \\ (b_1, -b_2) & (d_1, -d_2) \end{pmatrix}$$

Clearly, $X^{\dagger} = X$ for $X \in \mathcal{M}(A)$. In general

$$(YZ)^{\dagger} = Z^{\dagger}Y^{\dagger}$$

In particular, Y is self-adjoint $(Y = Y^{\dagger})$ iff $a_2 = 0 = d_2$ and $b_1 = c_1$, $b_2 = -c_2$.

It follows that for any $M \in SL(2, A^{(2)}), X \in \mathcal{M}(A)$

$$MXM^{\dagger} \in \mathcal{M}(A) \text{ and } \det X = \det MXM^{\dagger}$$
 (7)

Let

$$C = \{ M \in \mathcal{M}(A) : MXM^{\dagger} = X \text{ for all } X \in \mathcal{M}(A). \}$$

Let $M_0 \in C$. In particular, $M_0 M_0^{\dagger} = I$. It is equivalent to $M_0^{\dagger} = M_0^{-1}$ and thus $M_0 X M_0^{-1} = X$ for all $X \in \mathcal{M}(A)$. This readily implies that M_0 is diagonal, in the centre of $SL(2, A^{(2)})$ and so

$$C = \{ M = \begin{pmatrix} (a_1, a_2) & 0\\ 0 & (a_1, a_2) \end{pmatrix}; \quad a_1^2 - a_2^2 = 1 \& a_1 a_2 = 0 \}$$
(8)

Thus we have established:

2.6 Proposition. The 2-sorted structure

$$\left(\mathcal{M}(A), \operatorname{SL}(2, A^{(2)})/C\right)$$

is interpretable in the ring A along with the group action $X \mapsto MXM^{\dagger}$ and A-Minkowski metric.

The action and Minkowski metric are defined by systems of polynomial equations over \mathbb{Z} .

In particular, $SL(2, K^{(2)})/C$ is the group of K-linear transformations of $\mathcal{M}(K)$ preserving Minkowski K-valued metric.

2.7 Lemma.

$$\operatorname{SL}(2, \mathbb{C}^{(2)})/C \cong \operatorname{SO}(4, \mathbb{C})$$

where C is the centre of $SL(2, \mathbb{C}^{(2)})$ and

$$C \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$$

Proof. By the Proposition $SL(2, \mathbb{C}^{(2)})/C$ is the group of transformations of $\mathcal{M}(\mathbb{C})$ preserving Minkowski \mathbb{C} -valued metric, that is the form $x_0^2 + x_1^2 + x_2^2 + x_3^2$. But this is also the definition of group $SO(4, \mathbb{C})$.

The form of C is determined by (8). \Box

2.8 Compactification of \mathbb{C} -structures. Consider $\mathcal{M}(\mathbb{C})$ and SO(4, \mathbb{C}) as complex quasi-projective algebraic varieties, in particular we have

$$\mathcal{M}(\mathbb{C}) \times \mathrm{SO}(4,\mathbb{C}) \subset \mathbf{F}$$

where \mathbf{P} is a projective variety (not uniquely determined, to be chosen later). Note that

$$\mathcal{M}(\mathbb{C}) \times \mathrm{SO}(4,\mathbb{C}) \times \mathcal{M}(\mathbb{C}) \hookrightarrow \mathbf{P} \times \mathbf{P}$$

and so the graph of the action of $SO(4, \mathbb{C})$ on $\mathcal{M}(\mathbb{C})$ is also a quasiprojective subvariety of $\mathbf{P} \times \mathbf{P}$.

Define the **compactification of the structure** $(\mathcal{M}(\mathbb{C}), \mathrm{SO}(4, \mathbb{C}))$,

$$(\mathcal{M}(\mathbb{C}), \mathrm{SO}(4, \mathbb{C}))^{\mathbf{P}} \supseteq (\mathcal{M}(\mathbb{C}), \mathrm{SO}(4, \mathbb{C}))$$

to be the structure defined by the relevant Zariski closed subsets and relations in cartesian powers of \mathbf{P} .

2.9 Theorem. There is a Zariski homomorphism of structures

Lm :
$$\left(\mathcal{M}(\mathbf{K}), \mathrm{SL}(2, \mathbf{K}^{(2)})/C)\right) \twoheadrightarrow \left(\mathcal{M}(\mathbb{C}), \mathrm{SO}(4, \mathbb{C})\right)^{\mathbf{P}}$$
 (9)

Its restriction to the structure over $\mathrm{K}_{\mathrm{real}}$ is a Zariski homomorphism

$$\operatorname{Lm}: \left(\mathcal{M}(\mathrm{K}_{\mathrm{real}}), \operatorname{SL}(2, \mathrm{K}_{\mathrm{real}}^{(2)})/C\right) \twoheadrightarrow \left(\mathcal{M}(\mathbb{R}), \operatorname{SO}^{+}(1, 3)\right)$$
(10)

Proof. By 2.3 we have an induced Zariski homomorphism

$$lm_{K}: \left(\mathcal{M}(K), SL(2, K^{(2)})/C\right) \twoheadrightarrow \left(\mathcal{M}(\mathbb{C}), SL(2, \mathbb{C}^{(2)})/C\right)^{F}$$

which by 2.7 is the same as (9).

The restriction of limit maps to the structure over K_{real} by construction has the form

$$\left(\mathcal{M}(K_{real}), SL(2, K_{real}^{(2)})/C\right) \twoheadrightarrow \left(\mathcal{M}(\mathbb{R}), SL(2, \mathbb{C})/C\right)$$

which becomes (10) when one takes into account (5). \Box

2.10 Commentary.

The statement in (10) can be interpreted as the statement that *at* low scale the pseudo-finite space looks like the canonical Minkowski space $\mathcal{M}(\mathbb{R})$ with the action of the Lorentz group SO⁺(1, 3).

3 Addendum

3.1 Relation between the discrete Minkowski space $\mathcal{M}(K)$ and the discrete universe U of [2].

Recall that the 1-dimensional universe \mathbb{U} of [2] is defined as the additive group of the residue ring

$$\mathbf{K} = {}^*\mathbb{Z}/\mathcal{N}, \text{ where } \mathcal{N} = (\mathfrak{p} - 1)\mathfrak{l},$$

 \mathfrak{p} non-standard prime and \mathfrak{l} a highly divisible non-standard integer. Thus \mathbb{U} can also be considered a 1-dimensional K-module, where we can now identify K with the one from previous sections, introduced in 2.2.

Thus, for the Minkowski K-space $\mathcal{M}(K)$ one establishes an isomomrphism

 $\mathcal{M}(K) \cong \mathbb{U}^4$

as K-modules, and the constructions above define the action of the quasi-Lorentz group $SL(2, K^{(2)})/C$ on \mathbb{U}^4 along with the Minkowski K-valued metric invariant under $SL(2, K^{(2)})/C$.

In [2] we identified in the universe \mathbb{U} and its cartesian powers \mathbb{U}^n subdomains which correspond to the scales of quantum mechanics and statistical mechanics and developed elements of these theories in the model on \mathbb{U} which unified the two theories. The current work demonstrates that the same model can incorporate special relativity.

3.2 Klein-Gordon wave-functions

$$\phi(\bar{r},t) := \exp(i\bar{k}\cdot\bar{r} - i\omega t)$$

where

$$\bar{k} \cdot \bar{r} = \sum_{j=1}^{j=3} k_j r_j.$$

Thus

$$\frac{\partial}{\partial r_j}\phi = ik_j\phi; \quad \frac{\partial}{\partial t}\phi = i\omega\phi$$

and Klein-Gordon is satisfied:

$$-\hbar^2 \frac{\partial^2}{\partial t^2} \phi = (-\hbar^2 c^2 \sum \frac{\partial^2}{\partial r_j^2} + m^2 c^4) \phi$$

In operator terms

$$\mathbf{T} := \hbar \bar{k}; \quad \mathbf{E} = \hbar \omega$$

and Klein-Gordon

$$\mathbf{E}^2\phi = (\mathbf{P}^2c^2 + m^2c^4)\phi$$

 \mathbf{SO}

$$(P^2c^2 + m^2c^4) = H^2$$

Recall that **solutions to the Dirac equation** is a combination of two solutions of the Klein-Gordon equation.

3.3 Lorentz invariance: $(\bar{r}, t) \mapsto g(\bar{r}, t)$ implies $\phi \mapsto \phi^g$ such that

$$\phi^g(g(\bar{r},t)) = \phi(\bar{r},t).$$

That is, for $X \in \mathcal{M}$

$$\phi^g(gX) = \phi(X) = \exp(iK \cdot X)$$

where

 $K \in \mathcal{M}, \quad K \cdot X = \sum_{j=1}^{j=3} k_j x_j - k_0 x_0,$ Minkowski scalar product.

It follows

$$\phi^g(Y) = \exp(iK \cdot g^{-1} \cdot Y)$$

References

- B.Zilber, Perfect infinities and finite approximation. In: Infinity and Truth. IMS Lecture Notes Series, V.25, 2014 (also on author's web-page)
- [2] B.Zilber, On the logical structure of physics, arxiv 2410.01846
- [3] G.t'Hooft, How quantization of gravity leads to a discrete space-time 2016 J. Phys.: Conf. Ser. 701 012014
- [4] T.Palmer, The Invariant Set Postulate: a new geometric framework for the foundations of quantum theory and the role played by gravity, Proc. R. Soc. A (2009) 465, 3165 -3185

- [5] F.Klinker, An explicit description of SL(2, C) in terms of SO⁺(3, 1) and vice versa, Intern. Electronc J. of Geometry, v.8, no 1, pp.94-104 (2015)
- [6] T. Adamo, Lectures on twistor theory, Proceedings of Science, vol. 323 (2018)
- [7] B.Zilber, *Physics over a finite field and Wick rotation*, arxiv: 2306.15698