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Abstract

We use the notion of structural approximation to represent the
Lorentz-invariant Minkowski space-time as a limit of finite cyclic lat-
tices with the action of finite quasi-Lorentz groups

1 Introduction

1.1 A physical theory is an approximation to reality. But what is an
approximation? In [1] we discussed this problem from the perspective
of model theory. This results in the definition of structural approx-
imation which we use here along with a more advanced recent paper
[2] which sets a general background for applications in Foundations of
Physics.

Unilke conventional approimations based on metrics, structural
approximation is designed to preserve the structure even when the
structure is given without a metric. E.g. a sequence of finite groups
can approximate a continuous group (or more often a “compactified”
version of a group).

In the paper we construct a sequence of finite groups acting on
finite lattices which approximates the Lorentz group acting on a com-
pactified Minkowski space.

We suggest this construction as a form of discretisation of space-
time with Lorentzian symmetry, a problem discussed in various pub-
lications, see e.g. [3]. In some sense our mathematical techniques
is not dissimilar to ones proposed in [4] and some other publications



relying on the p-adic and adelic number system: the pseudo-finite re-
sudue ring K underlying our construction, is quite similar to the ring
of adeles.

1.2 Structural approximation. A structure M is a set M with a
collection ¥ of n-ary relations S C M™ for some n, called the language
(or the vocabulary) of M = (M; X).

Suppose we are given a sequence {M,; : i € N}, M; = (M;,Y), of
structures in language Y. One can choose a Fréchet ultrafilter D on N
and construct the ultraproduct

*M:=[[M;/D
€N

which is a structure in language ¥ with the key property (the Los
theorem): given a first-order sentence o in the language X,

o is true in *M if and only if o is true in M; along D (1)

*M is often referred to as the model-theoretic limit of M, along D.

In case the M;’s are finite, *M is said to be a pseudo-finite
structure.

It is convenient to consider the system 7, of topologies on *M", all
n, the basic closed sets of which are realisations S(*M) of the n-ary
S € 3. Such a system is said to be quasi-compact (or complete) if
the projection maps pry, ;4 ,, ML *M"™ preserve closed subsets,
that is pr, 1, ,(S) closed, for S closed.

This definition makes sense for the M; and indeed for any M in
the language X.

A structural approximation of M by {M; : i € I} along D is a
surjective map

Im:*M —» M (2)

which has the property:
S C *M" closed = Im(S) € M" closed,

As it happens, below, most of the time M,;, M and *M are rings
in the language {r +y = 2z, © -y = z} or groups in the language
x+y = z and closed for S C M"™ means S is the set of solutions of
a system of algebraic equations in n-variables with parameters in M,
or equivalently, closed in Zariski topology.



Note that despite the coarse topology we still are able to use the
intuition of infinitesimals: two elements a,a’ € *M" are seen to be
“infinitesimally close” if Ima = Ima’.

Thus, in view of (1) and (2) structural approximation is a formal-
isation of the statement a very large structure M, looks like M from
afar.

1.3 Approximation and compactness. It was established in [1]
that M has to be quasi-compact (complete) in order for it to appear in
(2) for non-trivial sequences M. In particular, the field C is not quasi-
compact but its compactification C := C U {oc} = CP! is. Theorem
5.2(i) of [1] proves that for any zero-characteristic pseudo-finite field E
(in particular, for E = Fy,, p non-standard prime number) there exists
a structural approximation

Warning: such an approximation can not be explained in terms of
non-standard analysis.

The limit map in (3) is far of being unique but we can pick ones
with some specific and useful properties as in [2], which allows to
mimic complex analysis in the pseudo-finite field E.

On the other hand, the notion is quite restrictive in another sense:
it is proved in Theorem 5.2(ii) of [1] that C is the only locally compact
field for which an approximation by finite fields is possible.

1.4 Scales and scale-dependendence of approximation.

The interplay between the domain and the range of the approx-
imation map Img as in (3) brings in some features not encountered
in the limit construction with inherent metrics. By its nature field
E is of pseudo-finite characteristic p (more generally we also consider
pseudo-finite residue rings E = *Z/N ) while C is characteristic zero
field with a natural metric.

It is clear by algebraic considerations that

Img : {1,2,3,.. )5 — {1,2,3,.. )¢

where {1,2,3,...}g C E, {1,2,3,...}¢ C C include all usual (stan-
dard) integers. Moreover,
}c
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and in the limit we can see approximate reals emerging in E. In other
words, an observer which has only access to small scale elements of E
can think of E as being R. Define

Eieal = {$ cE: ImE(:c) € R}.

So the remark we made is that small-scale elements of E are in E,¢,1.
However, as we continue along the natural cyclic order 1,2,3,...
of E, inevitably, we will encounter an element i € E such that

Img:i—1=+v—1; i-Eiaq—1R

and so with other complex numbers.
Again by (3), we will also have a non-empty domain

Ew ={z € E: Img(z) = co}.

So, an observer which has tools to explore the global characteristics
of E has to think of E as a Riemann sphere C. We say that E locally
looks like R while globally looks like C.

It is clear that E,eal, iErea and Eo should be considered of “dif-
ferent scales”, perhaps in some context related to “low energy — high
energy” philosophy. In [2], section 3, we introduce a formal notion
which allows us to speak about scales and use it in constructing ap-
proximations with prescribed properties.

1.5 The main result of the paper is a construction of a structural ap-
proximation of the Minkowski space M by finite 4-dim lattices along
with an approximation of the Lorentz group SO (1, 3) by finite groups
acting on the lattices respectively and preserving the Minkowski met-
ric.

Note that unlike other approximations of Lorentz action, we have
actual groups G; acting on the discrete spaces M(K;) so that the
groups G; approximate, locally, the Lorentz group and the space
M(K;) approximates locally the Minkowski space M (R) with Minkowski
metric, see 2.9 and (10) therein. Globally, the same lattices approx-
imate the complexified and compactified model of Minkowski space-
time M (C) along with a complexified and compactified version of the
group which acts on M(C).

Note that, for the reasons explained above, the discrete (pseudo-
finite) Minkowski space-time in its limit continuous version presents
itself as compactified and complexified, agreeing with Penrose’s ap-
proach.



2 Pseudo-finite rings and groups and
their limits

2.1 Asin [2] let *Z be an Ngp-saturated model of arithmetic, N € *Z
divisible by all standard integers and K = Ky := *Z/N be the (non-
standard) residue ring.!

2.2 It is well-known that SL(2,C) is a double cover of the Lorentz
group SO (1,3) and it acts in agreement with this on the Minkowski
space .

More precisely (see e.g. [5]): represent a vector with components

(t,z,y,2) € R* (Minkowski space) as a 2 x 2 matrix

X ( t+; T — iy )
rTH+iy t—=z
with XT = X and det(X) = t> — 22 — y% — 22, consider
X — MXMT with M € SL(2,C). (4)

This preserves det X and thus the Minkowski metric, which leads to
the proof that (4) is a Lorentz transformation and all Lorentz trans-
formations can be expressed in this way. The fact that =M both give
the same transformation of X corresponds to the fact that SL(2,C) is
the double cover of the Lorentz group, that is

SO™(1,3) = SL(2,C)/Zs (5)
We denote
(M(R)v SL(27 C)/ZQ)

the structure which consists of R-linear Minkowski space M(R) with
metric given by X — det X along with the group SL(2,C)/Zs acting
on the space as describe in (4).

We note that the isomorphism of groups induces the isomorphism
of structures

(M(R),SL(2,C)/Zs) = (M(R),SO0™(1,3)) (6)

!Note that
K = H *Z/pr
p|N primes
where 7, € *Z positive, and so, for all standard primes 7, >> 1. It follows that in the
limit *Z/p" will be seen as the ring Z,, of p-adic integers (see [1]) and the whole K as the
ring Az s, of finite integral adeles.



Let C = C U {oo} which we will treat as a Zariski structure, that
is the set with Zariski closed relations R C C" on it.

2.3 There is a surjective homomorphism Img of Zariski structures
Img : K— C.
In particular,
Img(z +y) =Imgz + Imgy, if Imz # 0o and Imy # oo

Img(z-y) =Imgx - Imgy, if Imgx #oco and Imgy # oo

Img is the composition of two Zariski homomorphisms
prggp: K—>E and Img : E — C

where E is a pseudo-finite field.
The subsets

Kin={z €K: Imz # oo} and Kyea = {z € K: Imz € R}

are subrings of K.
For every positive n € N

nt=0=Imx =0

Proof. Since N, the order of K, is divisible by every standard
prime ¢, there is a ring-homomorphism pr : K — Eq, for an infinite
non-standard q. It follows that, if a polynomial P(X) over Z has a
zero in K then it has a zero in Eq, a field of characteristic 0, and so in
C. Now one constructs Im by the same back-and-forth procedure as in
the proof of Proposition 5.2(i) of [1] using the fact that the cardinality
of K is not smaller than that of C.

The statements about Kg, and K., follow from the fact that Im
preserves + and - of K.

Finally, assume that nz = 0 for z € K. Note that since Im is
surjective Im0 = 0 and Imn -1 = n for 1 € K. Clearly, if Imz # oo
then 0 = Imnz = nlm 2 and so Imz = 0. But if Imz = oo then by the
law on multiplication Im (n-1-x) = oo which contradicts the fact that
n-1l-xz=0.

O



2.4 Complexification of a ring. Let A be a commutative unitary
ring. Define
A®@ be the unitary ring obtained from the ring A as follows:

A® = {(a,b) € A x A};

(al, b1)+(a2, bg) = ((L1+CL2, bl—i-bg), (al, bl)-(az, b2) = (a1a2—b152, a1b2—|—a2b1).
Clearly, a — (a,0) is an embedding of A into A®) as a subring
(A,0) and

(a,b) — (a, —b) an automorphism of A®.

2.5 Let M(2, A®)) be the set of 2x2 matrices over A?) which we treat
as an 8-dim A-module and let SL(2, A®) be the group of matrices of
determinant 1.

A Minkowski A-lattice is the A-submodule M (A) of M(2, A?)
consisting of matrices Xy, , . over A®) of the form

(t+20) (z,-y)

Xt,:v,y,z =X = < (%y) (t - Z,O)

), t,x,y,z € A.

We have
det(X) = (2 — 2% — > — 2%,0) € A x {0}

and this defines Minkowski A-metric length of (¢, z,y, 2).
For the general A®)-matrix

_( (a1,a2)  (b1,b2)
Y= ( (cr,e2)  (di,d2) )

define the adjoint matrix

_ [ (a1,—a2) (c1,—c2)
V= < (b1, =b2)  (d1,—d2) >

Clearly, XT = X for X € M(A). In general
(Y2)' = ZTyT.

In particular, Y is self-adjoint (Y = YT) iff ap =0 =ds and b1 = ¢,
b2 = —C9.



It follows that for any M € SL(2, A®), X € M(A)
MXM'" e M(A) and det X = det MXMT (7)
Let
C={MeM(A): MXM' = X for all X € M(A).}

Let My € C. In particular, MoM] = 1. It is equivalent to M] = M
and thus MyX M, "' = X for all X € M(A). This readily implies that
My is diagonal, in the centre of SL(2, A®)) and so

C = {M = ( éaw(tzi,a;)) ); @ —a2=1&ajaz =0} (8)

Thus we have established:

2.6 Proposition. The 2-sorted structure
(M(A), SL(2, A®) /C)

is interpretable in the ring A along with the group action X — MX M1
and A-Minkowski metric.

The action and Minkowski metric are defined by systems of poly-
nomial equations over 7.

In particular, SL(2,K®)/C' is the group of K-linear transforma-
tions of M(K) preserving Minkowski K-valued metric.

2.7 Lemma.
SL(2,C?)/C =2 S0(4,C)

where C' is the centre of SL(2,C(?)) and
C = ZQ X ZQ.

Proof. By the Proposition SL(2,C?))/C is the group of transfor-
mations of M(C) preserving Minkowski C-valued metric, that is the
form a3 +22 +x3+23. But this is also the definition of group SO(4, C).

The form of C' is determined by (8). O



2.8 Compactification of C-structures. Consider M(C) and SO(4, C)
as complex quasi-projective algebraic varieties, in particular we have

M(C) x SO(4,C) C P

where P is a projective variety (not uniquely determined, to be chosen
later). Note that

M(C) x SO(4,C) x M(C) =P x P

and so the graph of the action of SO(4,C) on M(C) is also a quasi-
projective subvariety of P x P.
Define the compactification of the structure (M(C),SO(4,C)),

(M(C),S0(4,C))¥ 2 (M(C),S0(4,C))

to be the structure defined by the relevant Zariski closed subsets and
relations in cartesian powers of P.

2.9 Theorem. There is a Zariski homomorphism of structures
L : (M(K),SL(2 K®)/C)) = (M(C),S0(4,C)F  (9)

Its restriction to the structure over Kiea s a Zariski homomorphism
L (M(Kreat), SL(2.K(5))/C) = (M(R),S07(1,3))  (10)

Proof. By 2.3 we have an induced Zariski homomorphism
Img (M(K), SL(2, K®) /C) » (M(@) SL(2,C®) /0)

which by 2.7 is the same as (9).
The restriction of limit maps to the structure over K,e, by con-
struction has the form

(M(Krear), S K2)/C) = (M(R), SL(2, C)/C)
which becomes (10) when one takes into account (5). O

2.10 Commentary.

The statement in (10) can be interpreted as the statement that at
low scale the pseudo-finite space looks like the canonical Minkowski
space M(R) with the action of the Lorentz group SO*(1,3).
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3 Addendum

3.1 Relation between the discrete Minkowski space M (K)
and the discrete universe U of [2].

Recall that the 1-dimensional universe U of [2] is defined as the
additive group of the residue ring

K ="Z/N, where N = (p — 1),

p non-standard prime and [ a highly divisible non-standard integer.
Thus U can also be considered a 1-dimensional K-module, where we
can now identify K with the one from previous sections, introduced in
2.2.

Thus, for the Minkowski K-space M(K) one establishes an iso-
momrphism

M(K) = U

as K-modules, and the constructions above define the action of the
quasi-Lorentz group SL(2,K®)/C on U* along with the Minkowski
K-valued metric invariant under SL(2,K(®))/C.

In [2] we identified in the universe U and its cartesian powers U™
subdomains which correspond to the scales of quantum mechanics
and statistical mechanics and developed elements of these theories in
the model on U which unified the two theories. The current work
demonstrates that the same model can incorporate special relativity.

3.2 Klein-Gordon wave-functions

B(7,t) := exp(ik - 7 — iwt)

where
=3
];Z - r = Z ]Cj?“j.
j=1
Thus 9 9
b =ikid: —b =73
8rj ¢ ? j¢7 at(b Zw¢
and Klein-Gordon is satisfied:

—h26—2¢) = (—h3c? Z éi +m2c) e
ot? or3

10



In operator terms

T:=hk; E=hw

and Klein-Gordon
B¢ = (P*¢ + m*c*)¢

SO
(P2 + m?ct) = H?

Recall that solutions to the Dirac equation is a combination
of two solutions of the Klein-Gordon equation.

3.3 Lorentz invariance: (7,t) — g(7,t) implies ¢ — ¢9 such that
¢Y(g(7,t)) = o(7,1).
That is, for X e M

#7(9X) = ¢(X) = exp(iK - X)

where
j=3
KeM, K-X= Z kjx; — koxo, Minkowski scalar product.
j=1
It follows
¢I(Y) = exp(iK - g~'-Y)
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