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An efficient way to classify mathematical structures is through
answering the following questions:

I To what extent can a structure M be described by a formal
language L?

I What do we need to describe M uniquely up to
isomorphism?

Technical definition. A structure M in a language L is said to
have theory categorical in cardinality λ if there is exactly one,
up to isomorphism, structure of cardinality λ satisfying the
L-description [the theory Th(M)] of M.
Uncountable structures with categorical theories = logically
perfect structures.



An efficient way to classify mathematical structures is through
answering the following questions:

I To what extent can a structure M be described by a formal
language L?

I What do we need to describe M uniquely up to
isomorphism?

Technical definition. A structure M in a language L is said to
have theory categorical in cardinality λ if there is exactly one,
up to isomorphism, structure of cardinality λ satisfying the
L-description [the theory Th(M)] of M.
Uncountable structures with categorical theories = logically
perfect structures.



An efficient way to classify mathematical structures is through
answering the following questions:

I To what extent can a structure M be described by a formal
language L?

I What do we need to describe M uniquely up to
isomorphism?

Technical definition. A structure M in a language L is said to
have theory categorical in cardinality λ if there is exactly one,
up to isomorphism, structure of cardinality λ satisfying the
L-description [the theory Th(M)] of M.
Uncountable structures with categorical theories = logically
perfect structures.



An efficient way to classify mathematical structures is through
answering the following questions:

I To what extent can a structure M be described by a formal
language L?

I What do we need to describe M uniquely up to
isomorphism?

Technical definition. A structure M in a language L is said to
have theory categorical in cardinality λ if there is exactly one,
up to isomorphism, structure of cardinality λ satisfying the
L-description [the theory Th(M)] of M.

Uncountable structures with categorical theories = logically
perfect structures.



An efficient way to classify mathematical structures is through
answering the following questions:

I To what extent can a structure M be described by a formal
language L?

I What do we need to describe M uniquely up to
isomorphism?

Technical definition. A structure M in a language L is said to
have theory categorical in cardinality λ if there is exactly one,
up to isomorphism, structure of cardinality λ satisfying the
L-description [the theory Th(M)] of M.
Uncountable structures with categorical theories = logically
perfect structures.



Basic examples of ’perfect’ structures:

1. Trivial structures (the language allows the equality only
and naming of special points)

2. Linear structures:
I Abelian divisible torsion-free groups;
I Vector spaces over a given division rings;
I Commutative algebraic groups (with or without “complex

multiplication”)

3. Algebraically closed fields.

One can construct more complicated perfect structures over the
basic ones, e.g.

I Algebraic groups, such as GL(n,C),PGL(n,C), ...

I More generally, complex algebraic varieties V ⊆ Cn

equipped with polynomial relations;
I G-module, for a group G, insert one orbit in each point of a

trivial structure, orbits in nonspecial point must be free.
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Dimension notions and pregeometries on logically
perfect structures

for finite X ⊂ M :

1. Trivial pregeometry: the number of nonspecial points
in X ,

the number of free G-orbits intersecting X ,
2. Linear structures: the linear dimension lin.dim X of the

linear span of X (over a distinguished subspace);
3. Algebraically closed fields: the transcendence degree

tr.deg(X ) over a distingushed subfield.
Dual notion: the dimension of an algebraic variety V
over F

dim V = max{ tr.degF (x1, . . . , xn) | (x1, . . . , xn) ∈ V}.
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Trichotomy

Is it true that any ’logically perfect’ structure is reducible to
one of the 3 basic geometries:

1. Trivial geometry;
2. Linear geometry;
3. Algebraically geometry.

YES, for key ("algebraic") classes (1993-2000).
NO, in general (E.Hrushovski, 1989)
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Hrushovski’s construction of new structures
Hrushovski: it is possible to fuse the three types of geometries
and produce a "perfect" or "near-perfect" new geometry.

Given a class of structures M with two pregeometries
corresponding to dimension notions ∂1, and ∂2 we want to
consider a new function f on M.

On (M, f) introduce a predimension

δ(X ) = ∂1(X ∪ f(X ))− ∂2(X ).

Consider classMδ of structures (M, f) which satisfy the
Hrushovski inequality:

δ(X ) ≥ 0 for any finite X ⊂ M.

By a standard model-theoretic procedure one can find inMδ

an existentially-closed (=algebraically closed) structure (M̃, f).
This (M̃, f) is "near-perfect".
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Are Hrushovski structures mathematical pathologies?

Observation: If M is a field and we want f = ex to be a group
homomorphism

ex(x1 + x2) = ex(x1) · ex(x2)

Then the corresponding predimension must be

δ(X ) = tr.deg(X ∪ ex(X ))− lin.dim (X ) ≥ 0.

The Hrushovski inequality, in the case of the complex numbers
and ex = exp, is equivalent to

tr.deg(x1, . . . , xn,ex1 , . . . ,exn) ≥ n

assuming that x1, . . . , xn are linearly independent (the
Schanuel conjecture).



Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function
ex: Fex = (F,+, ·, ex) satisfying
EXP1: ex(x1 + x2) = ex(x1) · ex(x2)

EXP2: ker ex = ωZ
Consider the subclass satisfying the Schanuel condition

SCH : tr.deg(X ∪ ex(X ))− lin.dim (X ) ≥ 0.

Amalgamation process produces an algebraically-exponentially
closed field with pseudo-exponentiation, Fex(λ).
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Properties of pseudo-exponentiation

Fex(λ) satisfies:

SCH : Schanuel’s conjecture

EC: Existential closedness:
Every system of algebraic-exponential equations which does
not explicitly contradict SCH must have a solution.

CC: Countable closure property:
Analytic subsets of Fn of dimension 0 are countable.
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Uniqueness theorem

Theorem (2001) Given an uncountable cardinal λ, there is a
unique, up to isomorphism, algebraically closed field with
pseudo-exponentiation Fex of cardinality λ satisfying

ACF0+ EXP + SCH + EC + CC

Conjecture The field of complex numbers Cexp is isomorphic to
the unique field with exponentiation Fex of cardinality 2ℵ0 .
Equivalently, Cexp satisfies SCH + EC.

Model-theoretic geometry suggest a geometry of
exponentiation.

Remark. The conjecture would be proven if one shows that Fex
allows a locally compact topology with continuous ex.
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function (of one variable z)

P(τ, z)

without complex multiplication.

Partial work on exp on Abelian varieties.

Projects. j-invariant and P(τ, z) as a function of two variables.
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Structure of the proof

Two essential subproblems:
(1) Work out conditions sufficient for uniqueness (model

theory);
(2) Find algebraic and arithmetic arguments establishing the

required properties.
(1) results from the analysis of Hrushovski’s construction and
Shelah’s theory of non-elementary staility.In the semi-abelian
case one can deduce from Shelah’s theory sufficient and
necessary conditions in algebraic terms. They are

a Galois action on torsion points (versions of Serre’s
Theorem);

b impossibility of infinite descent for k -points for some fields
k : k = Q(tors), k = F1 ⊗ ...⊗ Fn(a1, . . . , an).
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Weaker forms of Schanuel’s conjecture

I tr.degX + tr.deg exp X −mult.rk exp X ≥ 0

This corresponds to the two-sorted structure

(C,+, ·)→exp−→ (C,+, ·)

fusion of two fields.
I lin.dim K X + tr.deg exp X + tr.deg K −mult.rk exp X ≥ 0

(K ⊂ C, tr.degK finite)
This corresponds to the two-sorted structure

(K -module on C)→exp−→ (C,+, ·)

fusion of a linear pregeometry with a field.

These generalise to covers of semi-abelian varieties.

Every form of Schanuel’s conjecture can be interpreted
as a statement on atypical (anomalous) intersection
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Nonstandard numbers

C ≺ ∗C, Z ≺ ∗Z, Q ≺ ∗Q, . . .

Sequences of standard numbers modulo an ultrafilter form a
structure (ring) with the same formal properties as the standard
ones.

Correspondingly, it makes sense in ∗C to ’raise’ to nonstandard
integer powers and have the predimension for X ⊆ ∗C,

δ(X ) = lin.dim∗QX + tr.deg exp X −mult.rk exp X.

(Think of elements of ∗Q as irrational "algebraic numbers". )

The relative predimension with respect to C :

δ(X/C) = min{δ(X ∪ A)− δ(A) : A ⊆fin C}.

This form of "Schanuel" arises when one attempts to introduce
a coarse "locally compact" topology on Fex.
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Theorem (with M.Bays, 2002-2006)
TFAE:

1. (CIT) Given W ⊆ Cn, an irreducible algebraic variety over
Q, there is finite collection τ(W ) of torsion cosets in Cn

such that for any torus T ⊆ Cn and an atypical irreducible
component A ⊆W ∩ T there is T ∈ τ(W ) such that
A ⊆W ∩ T.

2. for all X ⊂fin
∗C : δ(X/C) ≥ 0, for

δ(X ) = lin.dim ∗QX + tr.deg exp X −mult.rk exp X.

3. (Bombieri - Masser - Zanier’s Conjecture) As 1. above with C
in place of Q.

Easily generalises to semi-abelian varieties.

Implies the Mordell-Lang conjecture.
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The Weierstrass function of two variables

The Weierstrass function P(τ, x) as a function of two variables
For every τ ∈ H define the field kτ as Q or Q(iτ ), if the
corresponding elliptic curve has complex multiplication iτ .



The corresponding ’Schanuel conjecture’ must take into
account the "trivial" geometry on H (with the action of GL+

2 (Q))
and the linear geometry along each elliptic curve. Thus it takes
the form:
given τ1, . . . , τm ∈ H and x1, . . . , xn ∈ C,

tr.deg({τi}, {xj}, {j(τi)}, {P(τi , xj)}) ≥

| ({τi} − acltrivial(∅)) /GL+
2 (Q)|+

∑
{τi}/GL+

2 (Q)

lin.dim kτi
{xj}

The right-hand side is mod.dim({τi}, {xj}), the "modular
dimension" on Hm × Cn. By definition acltrivial(∅), the set of
"algebraic" elements of the "trivial" pregeometry on H, are the
fixpoints under elements of GL+

2 (Q), i.e. special points.
(See also Cristiana Bertolin, J. Number Theory, 2002)



Weaker form of "Schanuel" for P

Let K be a subfield of C, Kτi = kτi ⊗ K . Then given
τ1, . . . , τm ∈ H and x1, . . . , xn ∈ C,

|
(
{τi} − aclKtrivial(∅)

)
/GL+

2 (K )|+
∑

{τi}/GL+
2 (K )

lin.dim Kτi
{xj}

+tr.deg(K ) + tr.deg({j(τi)}, {P(τi , xj)}) ≥

| ({τi} − acltrivial(∅)) /GL+
2 (Q)|+

∑
{τi}/GL+

2 (Q)

lin.dim kτi
{xj}.

This corresponds to the fusion of a "trivial"
GL+

2 (K )-pregeometry on H, linear pregeometry on elliptic
curves and the pregeomtery of the field C.
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Analogue of CIT
An analogue of CIT will be equivalent to the above "Schanuel"
conjecture with K = ∗Q and ∗C in place of C.

This is routinely translated into the following (cf. Pink Conj.):
Let S be a mixed Shimura variety, the image of Hn × Cn under
(j ,P), the product of moduli spaces for elliptic curves.
Given an algebraic subvariety W ⊂ S over C, there is a finite
family σW of mixed Shimura subvarieties of S such that any
atypical irreducible component of an intersection W ∩ T , for T a
Shimura subvariety is contained in some T for T ∈ σW .

Here and elsewhere atypical means :
dim W ∩ T > dim W − codim T . A mixed Shimura subvariety T
of S is the image of a submanifold of Hn × Cn defined by
equations of the form xi = gxj , xi = a and
m1z1 + . . .+ mnzn = b for variables x1, . . . xn and constants a
ranging in H and variables z1, . . . zn and constants b ranging in
C, and some g ∈ GL+(Q), m1, . . . ,mn ∈ Z.
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