The geometry of model theory and Diophantine geometry London-Paris Number Theory Seminar

B. Zilber

University of Oxford

8 November 2010, Paris

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

► To what extent can a structure **M** be described by a formal language *L*?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► To what extent can a structure **M** be described by a formal language *L*?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What do we need to describe M uniquely up to isomorphism?

- ► To what extent can a structure **M** be described by a formal language *L*?
- What do we need to describe M uniquely up to isomorphism?

Technical definition. A structure **M** in a language *L* is said to have theory **categorical in cardinality** λ if there is exactly one, up to isomorphism, structure of cardinality λ satisfying the *L*-description [the theory Th(**M**)] of **M**.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- ► To what extent can a structure **M** be described by a formal language *L*?
- What do we need to describe M uniquely up to isomorphism?

Technical definition. A structure **M** in a language *L* is said to have theory **categorical in cardinality** λ if there is exactly one, up to isomorphism, structure of cardinality λ satisfying the *L*-description [the theory Th(**M**)] of **M**.

Uncountable structures with categorical theories = **logically** perfect structures.

1. **Trivial** structures (the language allows the equality only and naming of **special** points)

1. **Trivial** structures (the language allows the equality only and naming of **special** points)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2. Linear structures:

1. **Trivial** structures (the language allows the equality only and naming of **special** points)

(ロ) (同) (三) (三) (三) (三) (○) (○)

- 2. Linear structures:
 - Abelian divisible torsion-free groups;

1. **Trivial** structures (the language allows the equality only and naming of **special** points)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 2. Linear structures:
 - Abelian divisible torsion-free groups;
 - Vector spaces over a given division rings;

- 1. **Trivial** structures (the language allows the equality only and naming of **special** points)
- 2. Linear structures:
 - Abelian divisible torsion-free groups;
 - Vector spaces over a given division rings;
 - Commutative algebraic groups (with or without "complex multiplication")

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. **Trivial** structures (the language allows the equality only and naming of **special** points)
- 2. Linear structures:
 - Abelian divisible torsion-free groups;
 - Vector spaces over a given division rings;
 - Commutative algebraic groups (with or without "complex multiplication")

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

3. Algebraically closed fields.

- 1. **Trivial** structures (the language allows the equality only and naming of **special** points)
- 2. Linear structures:
 - Abelian divisible torsion-free groups;
 - Vector spaces over a given division rings;
 - Commutative algebraic groups (with or without "complex multiplication")

3. Algebraically closed fields.

One can construct more complicated perfect structures over the basic ones, e.g.

(日) (日) (日) (日) (日) (日) (日)

- 1. **Trivial** structures (the language allows the equality only and naming of **special** points)
- 2. Linear structures:
 - Abelian divisible torsion-free groups;
 - Vector spaces over a given division rings;
 - Commutative algebraic groups (with or without "complex multiplication")

3. Algebraically closed fields.

One can construct more complicated perfect structures over the basic ones, e.g.

(日) (日) (日) (日) (日) (日) (日)

▶ Algebraic groups, such as $GL(n, \mathbb{C})$, $PGL(n, \mathbb{C})$, ...

- 1. **Trivial** structures (the language allows the equality only and naming of **special** points)
- 2. Linear structures:
 - Abelian divisible torsion-free groups;
 - Vector spaces over a given division rings;
 - Commutative algebraic groups (with or without "complex multiplication")

3. Algebraically closed fields.

One can construct more complicated perfect structures over the basic ones, e.g.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- ▶ Algebraic groups, such as $GL(n, \mathbb{C})$, $PGL(n, \mathbb{C})$, ...
- More generally, complex algebraic varieties V ⊆ Cⁿ equipped with polynomial relations;

- 1. **Trivial** structures (the language allows the equality only and naming of **special** points)
- 2. Linear structures:
 - Abelian divisible torsion-free groups;
 - Vector spaces over a given division rings;
 - Commutative algebraic groups (with or without "complex multiplication")

3. Algebraically closed fields.

One can construct more complicated perfect structures over the basic ones, e.g.

- ► Algebraic groups, such as $GL(n, \mathbb{C}), PGL(n, \mathbb{C}), ...$
- ► *G*-module, for a group *G*, insert one orbit in each point of a trivial structure, orbits in nonspecial point must be free.

for finite $X \subset \mathbf{M}$:

1. Trivial pregeometry: the number of nonspecial points in *X*,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for finite $X \subset \mathbf{M}$:

 Trivial pregeometry: the number of nonspecial points in X, the number of free *G*-orbits intersecting X,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

for finite $X \subset \mathbf{M}$:

- Trivial pregeometry: the number of nonspecial points in X, the number of free *G*-orbits intersecting X,
- 2. Linear structures: **the linear dimension** lin.dim *X* of the linear span of *X*

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

for finite $X \subset \mathbf{M}$:

- Trivial pregeometry: the number of nonspecial points in X, the number of free *G*-orbits intersecting X,
- 2. Linear structures: **the linear dimension** lin.dim *X* of the linear span of *X* (over a distinguished subspace);

(日) (日) (日) (日) (日) (日) (日)

for finite $X \subset \mathbf{M}$:

- Trivial pregeometry: the number of nonspecial points in X, the number of free *G*-orbits intersecting X,
- 2. Linear structures: **the linear dimension** lin.dim *X* of the linear span of *X* (over a distinguished subspace);
- Algebraically closed fields: the transcendence degree tr.deg(X) over a distingushed subfield.

(日) (日) (日) (日) (日) (日) (日)

for finite $X \subset \mathbf{M}$:

- Trivial pregeometry: the number of nonspecial points in X, the number of free *G*-orbits intersecting X,
- 2. Linear structures: **the linear dimension** lin.dim *X* of the linear span of *X* (over a distinguished subspace);
- Algebraically closed fields: the transcendence degree tr.deg(X) over a distingushed subfield.
 Dual notion: the dimension of an algebraic variety V over F

$$\dim V = \max\{ \operatorname{tr.deg}_F(x_1, \ldots, x_n) \mid (x_1, \ldots, x_n) \in V \}.$$

Is it true that any 'logically perfect' structure is reducible to one of the 3 basic geometries:

Is it true that any 'logically perfect' structure is reducible to one of the 3 basic geometries:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1. Trivial geometry;

Is it true that any 'logically perfect' structure is reducible to one of the 3 basic geometries:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 1. Trivial geometry;
- 2. Linear geometry;

Is it true that any 'logically perfect' structure is reducible to one of the 3 basic geometries:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 1. Trivial geometry;
- 2. Linear geometry;
- 3. Algebraically geometry.

Is it true that any 'logically perfect' structure is reducible to one of the 3 basic geometries:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 1. Trivial geometry;
- 2. Linear geometry;
- 3. Algebraically geometry.

YES, for key ("algebraic") classes (1993-2000).

Is it true that any 'logically perfect' structure is reducible to one of the 3 basic geometries:

- 1. Trivial geometry;
- 2. Linear geometry;
- 3. Algebraically geometry.

YES, for key ("algebraic") classes (1993-2000). NO, in general (E.Hrushovski, 1989)

Hrushovski: it is possible to fuse the three types of geometries and produce a "perfect" or "near-perfect" new geometry.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hrushovski: it is possible to fuse the three types of geometries and produce a "perfect" or "near-perfect" new geometry. Given a class of structures **M** with two pregeometries corresponding to dimension notions ∂_1 , and ∂_2 we want to consider a *new function* **f** on **M**.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Hrushovski: it is possible to fuse the three types of geometries and produce a "perfect" or "near-perfect" new geometry. Given a class of structures **M** with two pregeometries corresponding to dimension notions ∂_1 , and ∂_2 we want to consider a *new function* **f** on **M**.

On (\mathbf{M}, \mathbf{f}) introduce a predimension

$$\delta(X) = \partial_1(X \cup \mathbf{f}(X)) - \partial_2(X).$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Hrushovski: it is possible to fuse the three types of geometries and produce a "perfect" or "near-perfect" new geometry. Given a class of structures **M** with two pregeometries corresponding to dimension notions ∂_1 , and ∂_2 we want to consider a *new function* **f** on **M**.

On (\mathbf{M}, \mathbf{f}) introduce a predimension

$$\delta(X) = \partial_1(X \cup \mathbf{f}(X)) - \partial_2(X).$$

Consider class \mathcal{M}_{δ} of structures (**M**, **f**) which satisfy the **Hrushovski inequality**:

 $\delta(X) \geq 0$ for any finite $X \subset \mathbf{M}$.

Hrushovski: it is possible to fuse the three types of geometries and produce a "perfect" or "near-perfect" new geometry. Given a class of structures **M** with two pregeometries corresponding to dimension notions ∂_1 , and ∂_2 we want to consider a *new function* **f** on **M**.

On (\mathbf{M}, \mathbf{f}) introduce a predimension

$$\delta(X) = \partial_1(X \cup \mathbf{f}(X)) - \partial_2(X).$$

Consider class \mathcal{M}_{δ} of structures (**M**, **f**) which satisfy the **Hrushovski inequality**:

 $\delta(X) \geq 0$ for any finite $X \subset \mathbf{M}$.

By a standard model-theoretic procedure one can find in \mathcal{M}_{δ} an **existentially-closed** (=algebraically closed) structure (\tilde{M}, f).

Hrushovski: it is possible to fuse the three types of geometries and produce a "perfect" or "near-perfect" new geometry. Given a class of structures **M** with two pregeometries corresponding to dimension notions ∂_1 , and ∂_2 we want to consider a *new function* **f** on **M**.

On (\mathbf{M}, \mathbf{f}) introduce a predimension

$$\delta(X) = \partial_1(X \cup \mathbf{f}(X)) - \partial_2(X).$$

Consider class \mathcal{M}_{δ} of structures (**M**, **f**) which satisfy the **Hrushovski inequality**:

 $\delta(X) \geq 0$ for any finite $X \subset \mathbf{M}$.

By a standard model-theoretic procedure one can find in \mathcal{M}_{δ} an **existentially-closed** (=algebraically closed) structure ($\tilde{\mathbf{M}}, \mathbf{f}$). This ($\tilde{\mathbf{M}}, \mathbf{f}$) is "near-perfect".

Are Hrushovski structures mathematical pathologies?

Observation: If $\boldsymbol{\mathsf{M}}$ is a field and we want $\boldsymbol{\mathsf{f}}=\mathsf{ex}$ to be a group homomorphism

$$\operatorname{ex}(x_1+x_2)=\operatorname{ex}(x_1)\cdot\operatorname{ex}(x_2)$$

Then the corresponding predimension must be

$$\delta(X) = \operatorname{tr.deg}(X \cup \operatorname{ex}(X)) - \operatorname{lin.dim}(X) \ge 0.$$

The Hrushovski inequality, in the case of the complex numbers and ex = exp, is equivalent to

$$\operatorname{tr.deg}(x_1,\ldots,x_n,e^{x_1},\ldots,e^{x_n}) \geq n$$

assuming that x_1, \ldots, x_n are linearly independent (the Schanuel conjecture).

Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function ex: $F_{ex} = (F, +, \cdot, ex)$ satisfying EXP1: $ex(x_1 + x_2) = ex(x_1) \cdot ex(x_2)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@
Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function ex: $F_{ex} = (F, +, \cdot, ex)$ satisfying EXP1: $ex(x_1 + x_2) = ex(x_1) \cdot ex(x_2)$ EXP2: ker $ex = \omega \mathbb{Z}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function ex: $F_{ex} = (F, +, \cdot, ex)$ satisfying EXP1: $ex(x_1 + x_2) = ex(x_1) \cdot ex(x_2)$ EXP2: ker $ex = \omega \mathbb{Z}$ Consider the subclass satisfying the Schanuel condition

SCH: tr.deg $(X \cup ex(X))$ - lin.dim $(X) \ge 0$.

(日) (日) (日) (日) (日) (日) (日)

Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function ex: $F_{ex} = (F, +, \cdot, ex)$ satisfying EXP1: $ex(x_1 + x_2) = ex(x_1) \cdot ex(x_2)$ EXP2: ker $ex = \omega \mathbb{Z}$ Consider the subclass satisfying the Schanuel condition

SCH:
$$\operatorname{tr.deg}(X \cup \operatorname{ex}(X)) - \operatorname{lin.dim}(X) \ge 0.$$

Amalgamation process produces an *algebraically-exponentially closed* field with pseudo-exponentiation, $F_{ex}(\lambda)$.

(日) (日) (日) (日) (日) (日) (日)

・ロト・四ト・モート ヨー うへの

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $F_{ex}(\lambda)$ satisfies:

SCH : Schanuel's conjecture

$F_{ex}(\lambda)$ satisfies:

SCH : Schanuel's conjecture

EC: Existential closedness:

Every system of algebraic-exponential equations which does not explicitly contradict SCH must have a solution.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$F_{ex}(\lambda)$ satisfies:

SCH : Schanuel's conjecture

EC: Existential closedness:

Every system of algebraic-exponential equations which does not explicitly contradict SCH must have a solution.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

CC: Countable closure property:

Analytic subsets of F^n of dimension 0 are countable.

Theorem (2001) Given an uncountable cardinal λ , there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation F_{ex} of cardinality λ satisfying

 $ACF_0 + EXP + SCH + EC + CC$

Theorem (2001) Given an uncountable cardinal λ , there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation F_{ex} of cardinality λ satisfying

 $ACF_0 + EXP + SCH + EC + CC$

Conjecture The field of complex numbers \mathbb{C}_{exp} is isomorphic to the unique field with exponentiation F_{ex} of cardinality 2^{\aleph_0} .

Theorem (2001) Given an uncountable cardinal λ , there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation F_{ex} of cardinality λ satisfying

 $ACF_0 + EXP + SCH + EC + CC$

Conjecture The field of complex numbers \mathbb{C}_{exp} is isomorphic to the unique field with exponentiation F_{ex} of cardinality 2^{\aleph_0} . Equivalently, \mathbb{C}_{exp} satisfies SCH + EC.

Theorem (2001) Given an uncountable cardinal λ , there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation F_{ex} of cardinality λ satisfying

 $ACF_0 + EXP + SCH + EC + CC$

Conjecture The field of complex numbers \mathbb{C}_{exp} is isomorphic to the unique field with exponentiation F_{ex} of cardinality 2^{\aleph_0} . Equivalently, \mathbb{C}_{exp} satisfies SCH + EC.

・ロト・ 日本・ 日本・ 日本・ 日本・ つくぐ

Model-theoretic geometry suggest a geometry of exponentiation.

Theorem (2001) Given an uncountable cardinal λ , there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation F_{ex} of cardinality λ satisfying

 $ACF_0 + EXP + SCH + EC + CC$

Conjecture The field of complex numbers \mathbb{C}_{exp} is isomorphic to the unique field with exponentiation F_{ex} of cardinality 2^{\aleph_0} . Equivalently, \mathbb{C}_{exp} satisfies SCH + EC.

Model-theoretic geometry suggest a geometry of exponentiation.

Remark. The conjecture would be proven if one shows that F_{ex} allows a locally compact topology with continuous ex.

 $\mathfrak{P}(\tau, Z)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\mathfrak{P}(\tau, Z)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

without complex multiplication.

 $\mathfrak{P}(\tau, Z)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

without complex multiplication.

Partial work on exp on Abelian varieties.

$$\mathfrak{P}(\tau, \mathbf{Z})$$

without complex multiplication.

Partial work on exp on Abelian varieties.

Projects. *j*-invariant and $\mathfrak{P}(\tau, z)$ as a function of two variables.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Two essential subproblems:

Two essential subproblems:

Work out conditions sufficient for uniqueness (model theory);

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Two essential subproblems:

- Work out conditions sufficient for uniqueness (model theory);
- (2) Find algebraic and arithmetic arguments establishing the required properties.

Two essential subproblems:

- Work out conditions sufficient for uniqueness (model theory);
- (2) Find algebraic and arithmetic arguments establishing the required properties.
- (1) results from the analysis of Hrushovski's construction and Shelah's theory of *non-elementary staility*.

Two essential subproblems:

- Work out conditions sufficient for uniqueness (model theory);
- (2) Find algebraic and arithmetic arguments establishing the required properties.

(1) results from the analysis of Hrushovski's construction and Shelah's theory of *non-elementary staility*. In the semi-abelian case one can deduce from Shelah's theory **sufficient and necessary conditions** in algebraic terms. They are

Two essential subproblems:

- Work out conditions sufficient for uniqueness (model theory);
- (2) Find algebraic and arithmetic arguments establishing the required properties.

(1) results from the analysis of Hrushovski's construction and Shelah's theory of *non-elementary staility*.In the semi-abelian case one can deduce from Shelah's theory **sufficient and necessary conditions** in algebraic terms. They are

(ロ) (同) (三) (三) (三) (○) (○)

a Galois action on torsion points (versions of Serre's Theorem);

Two essential subproblems:

- Work out conditions sufficient for uniqueness (model theory);
- (2) Find algebraic and arithmetic arguments establishing the required properties.

(1) results from the analysis of Hrushovski's construction and Shelah's theory of *non-elementary staility*.In the semi-abelian case one can deduce from Shelah's theory **sufficient and necessary conditions** in algebraic terms. They are

- a Galois action on torsion points (versions of Serre's Theorem);
- b impossibility of infinite descent for *k*-points for some fields *k* :

Two essential subproblems:

- Work out conditions sufficient for uniqueness (model theory);
- (2) Find algebraic and arithmetic arguments establishing the required properties.

(1) results from the analysis of Hrushovski's construction and Shelah's theory of *non-elementary staility*.In the semi-abelian case one can deduce from Shelah's theory **sufficient and necessary conditions** in algebraic terms. They are

- a Galois action on torsion points (versions of Serre's Theorem);
- **b** impossibility of infinite descent for *k*-points for some fields

 $k: k = \mathbb{Q}(\text{tors}), \ k = F_1 \otimes ... \otimes F_n(a_1, ..., a_n).$

• tr.deg X + tr.deg exp X - mult.rk exp $X \ge 0$

► tr.degX + tr.deg expX - mult.rk expX ≥ 0 This corresponds to the *two-sorted structure*

$$(\mathbb{C},+,\cdot) \rightarrow^{\text{exp}} \longrightarrow (\mathbb{C},+,\cdot)$$

fusion of two fields.

► tr.degX + tr.deg expX - mult.rk expX ≥ 0 This corresponds to the *two-sorted structure*

$$(\mathbb{C},+,\cdot) \rightarrow^{\text{exp}} \longrightarrow (\mathbb{C},+,\cdot)$$

fusion of two fields.

 lin.dim _KX + tr.deg exp X + tr.deg K - mult.rk exp X ≥ 0 (K ⊂ C, tr.degK finite) This corresponds to the *two-sorted structure*

$$(\textit{K}\text{-module on }\mathbb{C}) \rightarrow^{exp} \longrightarrow (\mathbb{C},+,\cdot)$$

(日) (日) (日) (日) (日) (日) (日)

fusion of a linear pregeometry with a field.

► tr.degX + tr.deg expX - mult.rk expX ≥ 0 This corresponds to the *two-sorted structure*

$$(\mathbb{C},+,\cdot) \rightarrow^{\text{exp}} \longrightarrow (\mathbb{C},+,\cdot)$$

fusion of two fields.

 lin.dim _KX + tr.deg exp X + tr.deg K - mult.rk exp X ≥ 0 (K ⊂ C, tr.degK finite) This corresponds to the *two-sorted structure*

$$(\textit{K}\text{-module on } \mathbb{C}) \rightarrow^{exp} \longrightarrow (\mathbb{C}, +, \cdot)$$

fusion of a linear pregeometry with a field.

These generalise to covers of semi-abelian varieties.

Every form of Schanuel's conjecture can be interpreted as a statement on atypical (anomalous) intersection

$$\mathbb{C} \prec {}^*\mathbb{C}, \quad \mathbb{Z} \prec {}^*\mathbb{Z}, \quad \mathbb{Q} \prec {}^*\mathbb{Q}, \dots$$

Sequences of standard numbers modulo an ultrafilter form a structure (ring) with the same formal properties as the standard ones.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\mathbb{C}\prec {}^*\mathbb{C}, \quad \mathbb{Z}\prec {}^*\mathbb{Z}, \quad \mathbb{Q}\prec {}^*\mathbb{Q}, \ldots$

Sequences of standard numbers modulo an ultrafilter form a structure (ring) with the same formal properties as the standard ones.

Correspondingly, it makes sense in ${}^*\mathbb{C}$ to 'raise' to nonstandard integer powers and have the predimension for $X \subseteq {}^*\mathbb{C}$,

 $\delta(X) = \operatorname{lin.dim}_{\mathbb{Q}} X + \operatorname{tr.deg} \exp X - \operatorname{mult.rk} \exp X.$

 $\mathbb{C}\prec {}^*\mathbb{C}, \quad \mathbb{Z}\prec {}^*\mathbb{Z}, \quad \mathbb{Q}\prec {}^*\mathbb{Q}, \ldots$

Sequences of standard numbers modulo an ultrafilter form a structure (ring) with the same formal properties as the standard ones.

Correspondingly, it makes sense in ${}^*\mathbb{C}$ to 'raise' to nonstandard integer powers and have the predimension for $X \subseteq {}^*\mathbb{C}$,

 $\delta(X) = \operatorname{lin.dim}_{\mathbb{Q}} X + \operatorname{tr.deg} \exp X - \operatorname{mult.rk} \exp X.$

(Think of elements of $*\mathbb{Q}$ as irrational "algebraic numbers".)

 $\mathbb{C}\prec {}^*\mathbb{C}, \quad \mathbb{Z}\prec {}^*\mathbb{Z}, \quad \mathbb{Q}\prec {}^*\mathbb{Q}, \ldots$

Sequences of standard numbers modulo an ultrafilter form a structure (ring) with the same formal properties as the standard ones.

Correspondingly, it makes sense in ${}^*\mathbb{C}$ to 'raise' to nonstandard integer powers and have the predimension for $X \subseteq {}^*\mathbb{C}$,

 $\delta(X) = \operatorname{lin.dim}_{\mathbb{Q}} X + \operatorname{tr.deg} \exp X - \operatorname{mult.rk} \exp X.$

(Think of elements of ${}^*\mathbb{Q}$ as irrational "algebraic numbers".)

The relative predimension with respect to \mathbb{C} :

$$\delta(X/\mathbb{C}) = \min\{\delta(X \cup A) - \delta(A) : A \subseteq_{\text{fin}} \mathbb{C}\}.$$

 $\mathbb{C}\prec {}^*\mathbb{C}, \quad \mathbb{Z}\prec {}^*\mathbb{Z}, \quad \mathbb{Q}\prec {}^*\mathbb{Q}, \ldots$

Sequences of standard numbers modulo an ultrafilter form a structure (ring) with the same formal properties as the standard ones.

Correspondingly, it makes sense in ${}^*\mathbb{C}$ to 'raise' to nonstandard integer powers and have the predimension for $X \subseteq {}^*\mathbb{C}$,

 $\delta(X) = \operatorname{lin.dim}_{*\mathbb{Q}} X + \operatorname{tr.deg} \exp X - \operatorname{mult.rk} \exp X.$

(Think of elements of ${}^*\mathbb{Q}$ as irrational "algebraic numbers".)

The relative predimension with respect to \mathbb{C} :

$$\delta(X/\mathbb{C}) = \min\{\delta(X \cup A) - \delta(A) : A \subseteq_{\operatorname{fin}} \mathbb{C}\}.$$

This form of "Schanuel" arises when one attempts to introduce a coarse "locally compact" topology on F_{ex} .

Theorem (with M.Bays, 2002-2006) TFAE:

1. (CIT) Given $W \subseteq \mathbb{C}^n$, an irreducible algebraic variety over \mathbb{Q} , there is finite collection $\tau(W)$ of torsion cosets in \mathbb{C}^n such that for any torus $T \subseteq \mathbb{C}^n$ and an atypical irreducible component $A \subseteq W \cap T$ there is $\mathbf{T} \in \tau(W)$ such that $A \subseteq W \cap \mathbf{T}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (with M.Bays, 2002-2006) TFAE:

 (CIT) Given W ⊆ Cⁿ, an irreducible algebraic variety over Q, there is finite collection τ(W) of torsion cosets in Cⁿ such that for any torus T ⊆ Cⁿ and an atypical irreducible component A ⊆ W ∩ T there is T ∈ τ(W) such that A ⊆ W ∩ T.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2. for all $X \subset_{\operatorname{fin}} {}^*\mathbb{C} : \quad \delta(X/\mathbb{C}) \ge 0$, for

 $\delta(X) = \operatorname{lin.dim}_{*\mathbb{Q}} X + \operatorname{tr.deg} \exp X - \operatorname{mult.rk} \exp X.$
Theorem (with M.Bays, 2002-2006) TFAE:

- (CIT) Given W ⊆ Cⁿ, an irreducible algebraic variety over Q, there is finite collection τ(W) of torsion cosets in Cⁿ such that for any torus T ⊆ Cⁿ and an atypical irreducible component A ⊆ W ∩ T there is T ∈ τ(W) such that A ⊆ W ∩ T.
- 2. for all $X \subset_{\operatorname{fin}} {}^*\mathbb{C} : \quad \delta(X/\mathbb{C}) \ge 0$, for

 $\delta(X) = \operatorname{lin.dim}_{*\mathbb{Q}} X + \operatorname{tr.deg} \exp X - \operatorname{mult.rk} \exp X.$

 (Bombieri - Masser - Zanier's Conjecture) As 1. above with C in place of Q.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (with M.Bays, 2002-2006) TFAE:

- (CIT) Given W ⊆ Cⁿ, an irreducible algebraic variety over Q, there is finite collection τ(W) of torsion cosets in Cⁿ such that for any torus T ⊆ Cⁿ and an atypical irreducible component A ⊆ W ∩ T there is T ∈ τ(W) such that A ⊆ W ∩ T.
- 2. for all $X \subset_{\operatorname{fin}} {}^*\mathbb{C} : \quad \delta(X/\mathbb{C}) \ge 0$, for

 $\delta(X) = \operatorname{lin.dim}_{*\mathbb{Q}} X + \operatorname{tr.deg} \exp X - \operatorname{mult.rk} \exp X.$

3. (Bombieri - Masser - Zanier's Conjecture) As 1. above with \mathbb{C} in place of \mathbb{Q} .

(日) (日) (日) (日) (日) (日) (日)

Easily generalises to semi-abelian varieties.

Theorem (with M.Bays, 2002-2006) TFAE:

- (CIT) Given W ⊆ Cⁿ, an irreducible algebraic variety over Q, there is finite collection τ(W) of torsion cosets in Cⁿ such that for any torus T ⊆ Cⁿ and an atypical irreducible component A ⊆ W ∩ T there is T ∈ τ(W) such that A ⊆ W ∩ T.
- 2. for all $X \subset_{\operatorname{fin}} {}^*\mathbb{C} : \quad \delta(X/\mathbb{C}) \ge 0$, for

 $\delta(X) = \operatorname{lin.dim}_{*\mathbb{Q}} X + \operatorname{tr.deg} \exp X - \operatorname{mult.rk} \exp X.$

- 3. (Bombieri Masser Zanier's Conjecture) As 1. above with \mathbb{C} in place of \mathbb{Q} .
- Easily generalises to semi-abelian varieties.

Implies the Mordell-Lang conjecture.

The Weierstrass function of two variables

The Weierstrass function $\mathfrak{P}(\tau, x)$ as a function of two variables For every $\tau \in \mathcal{H}$ define the field k_{τ} as \mathbb{Q} or $\mathbb{Q}(i_{\tau})$, if the corresponding elliptic curve has complex multiplication i_{τ} .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The corresponding 'Schanuel conjecture' must take into account the "trivial" geometry on \mathcal{H} (with the action of $\mathrm{GL}_2^+(\mathbb{Q})$) and the linear geometry along each elliptic curve. Thus it takes the form:

given $\tau_1, \ldots, \tau_m \in \mathcal{H}$ and $x_1, \ldots, x_n \in \mathbb{C}$, tr.deg $(\{\tau_i\}, \{x_j\}, \{j(\tau_i)\}, \{\mathfrak{P}(\tau_i, x_j)\}) \ge$ $|(\{\tau_i\} - \operatorname{acl}_{\operatorname{trivial}}(\emptyset)) / \operatorname{GL}_2^+(\mathbb{Q})| + \sum_{\{\tau_i\}/\operatorname{GL}_2^+(\mathbb{Q})} \operatorname{lin.dim}_{k_{\tau_i}}\{x_j\}$

The right-hand side is mod.dim($\{\tau_i\}, \{x_j\}$), the "modular dimension" on $\mathcal{H}^m \times \mathbb{C}^n$. By definition $\operatorname{acl}_{\operatorname{trivial}}(\emptyset)$, the set of "algebraic" elements of the "trivial" pregeometry on \mathcal{H} , are the fixpoints under elements of $\operatorname{GL}_2^+(\mathbb{Q})$, i.e. **special points**. (See also Cristiana Bertolin, J. Number Theory, 2002)

Weaker form of "Schanuel" for \mathfrak{P}

Let *K* be a subfield of \mathbb{C} , $K_{\tau_i} = k_{\tau_i} \otimes K$. Then given $\tau_1, \ldots, \tau_m \in \mathcal{H}$ and $x_1, \ldots, x_n \in \mathbb{C}$,

$$|\left(\{\tau_i\} - \operatorname{acl}_{\operatorname{trivial}}^{\mathsf{K}}(\emptyset)\right) / \operatorname{GL}_2^+(\mathsf{K})| + \sum_{\{\tau_i\}/\operatorname{GL}_2^+(\mathsf{K})} \operatorname{lin.dim}_{\mathsf{K}_{\tau_i}}\{\mathsf{X}_j\}$$

 $+\mathrm{tr.deg}(\mathcal{K})+\mathrm{tr.deg}(\{j(\tau_i)\},\{\mathfrak{P}(\tau_i,\mathbf{x}_j)\}) \geq$

$$|(\{\tau_i\} - \operatorname{acl}_{\operatorname{trivial}}(\emptyset))/\operatorname{GL}_2^+(\mathbb{Q})| + \sum_{\{\tau_i\}/\operatorname{GL}_2^+(\mathbb{Q})} \operatorname{lin.dim}_{\kappa_{\tau_i}}\{x_j\}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Weaker form of "Schanuel" for \mathfrak{P}

Let *K* be a subfield of \mathbb{C} , $K_{\tau_i} = k_{\tau_i} \otimes K$. Then given $\tau_1, \ldots, \tau_m \in \mathcal{H}$ and $x_1, \ldots, x_n \in \mathbb{C}$,

$$|\left(\{\tau_i\} - \operatorname{acl}_{\operatorname{trivial}}^{\mathsf{K}}(\emptyset)\right) / \operatorname{GL}_2^+(\mathsf{K})| + \sum_{\{\tau_i\}/\operatorname{GL}_2^+(\mathsf{K})} \operatorname{lin.dim}_{\mathsf{K}_{\tau_i}}\{x_j\}$$

 $+\mathrm{tr.deg}(\mathcal{K})+\mathrm{tr.deg}(\{j(\tau_i)\},\{\mathfrak{P}(\tau_i,\mathbf{x}_j)\}) \geq$

$$|(\{\tau_i\} - \operatorname{acl}_{\operatorname{trivial}}(\emptyset))/\operatorname{GL}_2^+(\mathbb{Q})| + \sum_{\{\tau_i\}/\operatorname{GL}_2^+(\mathbb{Q})} \operatorname{lin.dim}_{k_{\tau_i}}\{x_j\}.$$

This corresponds to the fusion of a "trivial" $\operatorname{GL}_2^+(K)$ -pregeometry on \mathcal{H} , linear pregeometry on elliptic curves and the pregeometry of the field \mathbb{C} .

Analogue of CIT

An analogue of CIT will be equivalent to the above "Schanuel" conjecture with $K = {}^*\mathbb{Q}$ and ${}^*\mathbb{C}$ in place of \mathbb{C} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Analogue of CIT

An analogue of CIT will be equivalent to the above "Schanuel" conjecture with $K = {}^*\mathbb{Q}$ and ${}^*\mathbb{C}$ in place of \mathbb{C} .

This is routinely translated into the following (**cf. Pink Conj.**): Let *S* be a mixed Shimura variety, the image of $\mathcal{H}^n \times \mathbb{C}^n$ under (j, \mathfrak{P}) , the product of moduli spaces for elliptic curves. Given an algebraic subvariety $W \subset S$ over \mathbb{C} , there is a finite family σ_W of mixed Shimura subvarieties of *S* such that any atypical irreducible component of an intersection $W \cap T$, for *T* a Shimura subvariety is contained in some **T** for $\mathbf{T} \in \sigma_W$.

Here and elsewhere atypical means :

dim $W \cap T >$ dim W - codim T. A mixed Shimura subvariety T of S is the image of a submanifold of $\mathcal{H}^n \times \mathbb{C}^n$ defined by equations of the form $x_i = gx_j$, $x_i = a$ and $m_1z_1 + \ldots + m_nz_n = b$ for variables $x_1, \ldots x_n$ and constants a ranging in \mathcal{H} and variables $z_1, \ldots z_n$ and constants b ranging in \mathbb{C} , and some $g \in \mathrm{GL}^+(\mathbb{Q}), m_1, \ldots, m_n \in \mathbb{Z}$.