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Abstract: In this article we present a notion of “logical perfection”. We first describe through examples
a notion of logical perfection extracted from the contemporary logical concept of categoricity.
Categoricity (in power) has become in the past half century a main driver of ideas in model theory, both
mathematically (stability theory may be regarded as a way of approximating categoricity) and philosoph-
ically. In the past two decades, categoricity notions have started to overlap with more classical notions
of robustness and smoothness. These have been crucial in various parts of mathematics since the nine-
teenth century. We postulate and present the category of logical perfection. We draw on various notions
of perfection from mathematics of the 19th and 20th centuries and then trace the relation to the concept
of categoricity in power as a logical notion of what a “mathematically perfect” structure is.
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THIS ESSAY IS AN ATTEMPT to present the idea of logical perfection to a philosophical
audience. Although the expression is quite often used (informally) in mathematical
practice and even sometimes in more formal discussion around mathematics, we con-
strue it here for the first time as an independent philosophical notion. Informal use of
the expression often happens in the form of an (implicit) aesthetic criterion; it is argu-
ably one of the strongest drivers of mathematical activity, as one of the main tests for
its relevance. Since the advent of mathematical logic as an independent discipline, it
has become possible to investigate the formal notion of categoricity by mathematical
means. We use this notion as the main base of our notion of logical perfection.
A first, very rough, description of our idea may run as follows: a mathematical

object of a certain “size” is logically perfect if in a certain formal language it
allows a “concise” description fully determining the object.1

1 The essay has arisen from many conversations and collaboration the authors have had during the past few
years and it is originally based on two talks the first author gave, one in Paris and the other one in Bogotá,
about the work of the third author. The second author then brought some additional perspective. The first
author wants to mention in particular the talk given at Bogotá during the workshop Mapping traces: Represen-
tation from Categoricity to Definability organised by the second author and María Clara Cortés at Universidad
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This notion, in particular, is central in the third author’s paper (Zilber, 2014)
and has been implicitly present, mainly as a motivating factor, in a number of
other research papers in various branches of mathematics.
The French philosopher of mathematics Albert Lautman, blending a strong Hus-

serlian (and remotely Kantian) influence with a vivid and active dialogue with
mathematicians who were his contemporaries in the 1930s, opened the way to
understanding different metaphysical categories in both phenomenological and
epistemological ways when doing philosophy of mathematics. Lautman’s untimely
death in 1944 as a prisoner of the Germans during World War II left an enormous
gap in continental, non-analytic, philosophy of mathematics of the mid-twentieth
century. His colleague Jean Cavaillès was also executed in 1944 for his participa-
tion in the French résistance; in spite of their early deaths, they set a solid ground
of connections between phenomenology, epistemology and a rich dialogue with
their mathematical friends, many of whom would form the basis of Bourbaki (see
Pérez-Lora’s thesis (Pérez-Lora, 2020)). We are indebted to that tradition here. We
do not claim that our notion of logical perfection is necessarily a Lautmanian cate-
gory, but we do recognise his influence in the views we present here2 and the pres-
ence of his imprint, enhanced by Zalamea’s vivid dialogue with the three of us.
We only attempt to arrive at a definition of logical perfection at the end of our

paper, in the conclusions. Before reaching that point, we describe historical reasons
for the search of logical perfection through three examples from the 19th and 20th
century, in section 1. We then discuss logical perfection and the issue of uniqueness,
in section 2; and the role of geometry for logically perfect structures in section 3.
Section 4 is the first that goes away from mathematics: we describe some analogies
between our notion of logical perfection and some work of recent decades in phys-
ics. Finally, section 5 offers some concluding remarks, as well as a recapitulation of
the notion of logical perfection where we arrive at an attempt of a definition.
We try to gloss over many subtle mathematical details, in order to put in the

forefront the cluster notions of greater philosophical relevance. It may be worth
noting that many of the notions we mention are drawn from specific, more techni-
cal, discussions. In some cases, we refer the more mathematically-minded readers
(or those whose professional training or interest is closer to pure mathematical
notions) to some articles, mathematical or philosophical, where the issues are dis-
cussed in greater (technical) detail. There are however some definitions we do
provide, either as part of the text or, more often, as footnotes.

Nacional de Colombia in 2014. This was very helpful since the audience consisting of philosophers, mathema-
ticians and artists made the idea of writing about logical perfection for a general audience possible.
2 We thank the philosopher of mathematics Fernando Zalamea for calling our attention to this aspect
of Lautman’s philosophy.
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Although the core application of our ideas is eminently mathematical, we do
provide some analogies with philosophical problems external to mathematics, and
in section 4 we discuss the relevance of our notion to contemporary fundamental
physics.
We leave open, at least here, the question whether logical perfection manifests

itself in other areas of human activity (such as art - the second author explores a
connection between categoricity and the possibility of representation in two works
by Caravaggio in Villaveces (2020a)); we may only hope it will raise the interest
of some of our readers.
Finally, we thank the two referees for many insightful comments that led to

serious improvements and clarifications of this paper.

1. Three Examples on the Way to Logical Perfection

The interest in looking for some kind of perfection in mathematical structures is
not new. We may read in the history of their discipline that mathematicians have
been driven in explicit or implicit ways to think about this kind of perfection,
albeit for different sorts of motivations, and have tried to capture this idea by
means of mathematical tools. Let us mention a few of these attempts in the work
of Galois, Riemann and Grothendieck and examine three examples for our dis-
cussion of logical perfection.
Galois made a bold switch from the classical perspective of looking directly

for solutions to algebraic equations to a study of the symmetry of possible solu-
tions: a move toward a completion of the set of possible solutions by means of
the study of the group of symmetries of all the solutions that could exist, and by
filtering out the interaction between enlarging the field where these solutions
could appear and the group of such symmetries. The resulting theory (aptly
named Galois Theory many decades later) goes way beyond the initial quest for
solutions to algebraic equations: it shifted the focus to an idea that is still essen-
tial to many ways of doing mathematics after two centuries, and whose scope
goes much beyond the wildest dreams Galois could have had: the new focus for
Galois was the symmetry of possible solutions in extensions of fields, and the
duality between those symmetries (groups) and the possible field extensions. This
is a first form of “perfection” for us: completeness of possible solutions, and a
register of emerging symmetry. More importantly even, underlying these two
aspects of perfection arising in Galois’ work, there is a strong notion of unique-
ness of the field with all the solutions, only reached once all possible solutions
(and their symmetries) are considered. This wholeness, this uniqueness, albeit
implicit in the work of Galois, is a component of the main tenets of the notion of
logical perfection we propose.

© 2021 Stifielsen Theoria
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Our second example is Riemann’s work on the foundations of geometry. In a
move parallel to Galois’, he went beyond understanding geometry in terms of
global axioms and laid the ground for a local approach, driven by a metric (a way
of measuring distances) that could change, twist, curve itself. Instead of placing
objects such as curves, planes, surfaces inside a “global space” (as had been done
for aeons in mathematics), Riemann put the twisting itself, so to speak, at
centerstage: instead of placing twisted, curved objects inside a space, the space
itself became the twisting. Here, the notion of logical perfection is of a different
kind from what we had in the Galois example. There, global symmetry (and the
connection between symmetry and extensions where solutions live) was the
expression of that perfection. Here the perfection is rather the new flexibility
Riemann’s construction offers us, when compared with earlier incarnations of the
notion of space, of geometry.3 All possible geometries, in a strong sense, are put
to play together, thereby going beyond older notions of having to make an “a
priori choice” between three geometries. Riemann’s flexibility and globality when
treating geometries ends up providing another notion of perfection—not quite
“logical” perfection on the face of it, although recent research has shown
categoricity of certain constructions connected to Riemann’s work.
Our third example, much more contemporary and of a different kind, is

Grothendieck’s new foundations of algebraic geometry. Very roughly, the concept
of a general notion of space (as in Riemann) is again at stake. But here
Grothendieck essentially first “disassembles” the surfaces or curves (called more
generally varieties by mathematicians) by putting all the weight of the analysis
into one single aspect (localisation) of the space and then finding a system for
placing these localisations in a coherent way. By doing this, Grothendieck creates
a notion of spatiality called affine scheme that embodies two movements: first,
the localisation (and the possibility of treating only one aspect of the space) and
second, the coherence. This highlights yet a different aspect of logical perfection:
the possibility of regarding space as a coherent way of pasting localised versions
of itself.
These three examples reveal different phenomena, but a common feature

emerges from them: the greater perfection of a notion of wholesomeness, of com-
pleteness, and ultimately of categoricity. In Galois, the specific search for solu-
tions to algebraic equations is replaced by a much more global quest for

3 Suffice it to say that half a century later, Einstein would base his General Relativity Theory on
Riemann’s work: the mathematical content of Einstein’s theory is essentially present in Riemann’s
approach to geometry. Here, the perfection aspect has more the flavour of a way to construct many possi-
ble geometries, one for each Riemann metric—one for each way to “twist” space, so to speak—and a
global treatment of all of these geometries (and moreover, mathematical ways of classifying and compar-
ing them).
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symmetries of all possible solutions, and a control of how these symmetries
appear (through groups). The global picture that emerges is ultimately uniquely
determined and gives a duality between extensions and symmetries. In Riemann,
specific geometries are replaced by arbitrary metrics and the resulting objects, the
Riemannian manifolds, end up capturing all possible ways of twisting space. Again,
a global aim and in some sense, a uniqueness (especially of ways of covering some
of these manifolds by others exhibiting more symmetries). In Grothendieck, there is
an apparently different element (localisations, and then the construction of sheaves,
that is, of ways of building spaces where the localisations may be glued in a coher-
ent way). These sheaves are also much more complete mathematical objects than
the corresponding objects from where the construction started.
Looking beyond the specifics of these constructions, the cluster notions that

emerge are uniqueness, completeness, wholesomeness. It is these notions that
we claim mathematical logic (and especially its branch called model theory and
its subbranch called stability theory) from the last half century provides us with
sharp tools to study and claim a refined, acute, keen and at the same time power-
ful notion of perfection.
In the next section we explore this connection in more detail.

2. Logical Perfection and the Issue of Uniqueness

In the previous section we described why we may regard a notion of uniqueness,
of completeness and wholesomeness as our main aim.
One can confidently claim that the central concept of present-day model theory

is that of stability of formal theories and one key notion of stability theory (from
which it started in the 1960s) is that of uncountably categorical theories.
Through the efforts of many people, and most prominently by contributions of
S. Shelah (see Shelah, 1990), we now have a rather comprehensive classification
theory which establishes an effective hierarchy in the universe of mathematical
structures (or their theories).4 The hierarchy is effectively based on the complex-
ity of the system of invariants which ultimately describe a given structure, a
model of a formal theory.5 The highest level of the hierarchy corresponds to the
simplest system of invariants. This corresponds, in some sense, to a highest level
of perfection.

4 An interesting interactive visualisation of a “map of the universe” can be seen online at http://www.
forkinganddividing.com.
5 Shelah also uses (super-)stability as a first criterion of whether the given first-order theory has a
structure theorem, that is if the isomorphism types of models of the theory can be classified in terms of a
simple combinatorial structure.
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The previous emphasis on the stability hierarchy, and in particular the region
near what we regard here as its pinnacle (namely, uncountably categorical theo-
ries) describes a mathematically rigorous (and completely abstract) approach to a
notion relevant to a working definition of logical perfection. We still have to
address the issue of how adequate and useful this notion is, which dividing lines
it draws and which important mathematical structures satisfy the criteria.
An interesting observation from the cumulated experience of the past half century

with the study of the stability hierarchy would establish (very roughly) that the higher a
structure is in the hierarchy, the closer it seems to be to mathematical structures that
have been central to the work of mathematicians throughout many centuries. This
defines a kind of focal point of the mathematical universe - in our case, algebraic geom-
etry in the broadest sense.6 In some (limited) sense we may define the most general
form of geometry to be the structures populating the top levels of stability hierarchy.7

It is in this precise sense that we regard categoricity (in uncountable cardinals)
as a pinnacle of classification theory: the observation that many important mathe-
matical structures (those from algebraic geometry or those corresponding to lin-
ear phenomena) seem to hover close to that region8 or, if not quite in that region,
may be regarded as good approximations of categorical structures.9

The notion of categoricity concretises the meaning of uniqueness. One says
that a collection of statements in a formal language (set of axioms) is categorical
if it has just one model, up to isomorphism.10

6 Definining exactly what algebraic geometry “in the broadest sense” means is necessarily vague and
outside the aim of this paper; for the record, we mention Grothendieck’s work on affine schemes as a
good possibility.
7 Working on this presumption one arrives at a meaningful notion of non-classical geometric spaces
(see Zilber, 2008; Cruz Morales and Zilber, 2015; Zilber, 2016 and the discussion in section 3) which in
a more conventional mathematical setting are treated via the formalism of non-commutative
(or quantum) geometry. The latter approach is essentially a syntactic algebraic analysis avoiding geomet-
ric semantics.
8 There are important exceptions to this reason. The first one is obvious: real numbers are far from
being categorical yet are also clearly central mathematical structures in many senses. However, aside
from the infinite order that is the reason for their non-categoricity, the exhibit a rather simple structure of
definable sets: each one of them is really a finite union of intervals. This notion, called o-minimality,
provides reasons to place them in a region where some of the good properties of uncountably categorical
structures still work, albeit in a different way. The role of interactions between complex analysis and real
analysis is mimicked by this correspondence. The second exception is subtler: classification theory pro-
vides many other regions that, while not corresponding to the “supremely perfect” uncountably categori-
cal region, they exhibit very strong regularity and smoothness properties.
9 One theory of such approximations is the recent work of Abdolahzadi and the third author of this
paper: categorical structures are obtained as limits of certain constructions dealing with structures in a
slightly lower stratum in the stability hierarchy, for the area of geometry known as anabelian geometry;
see Abdolahzadi and Zilber (2019).
10 The expression up to isomorphism means that we do not want to distinguish two structures if they
differ only by the way their elements are presented.
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The choice of the formal language is essential. Usually it is meant to be a first-
order language.11 However, as the research in the last three decades has shown, much
of what will be said below about categoricity in the first-order context holds in a
more general setting (see, in this volume, Väänänen’s paper (Väänänen, 2020)).
The notion of categoricity has existed for as long as logic has been formalised.

But in the context of first order languages one realises very quickly, from basic
facts of the theory, that the above absolute categoricity can only hold for descrip-
tions of finite structures. For infinite structures M it is possible to have unique-
ness in some cases if we add to the first order description the (non-first-order)
statement fixing the cardinality κ of the structure M. This relative categoricity is
called categoricity in cardinality (in power) κ or just κ-categoricity.
Furthermore, there are only two kinds of cardinality really relevant when one is

interested in studying categoricity in power: countable and uncountable. Here, we
are interested in uncountable categorically describable structures (this entails that
the structure is much bigger than the size of its description). A remarkable fact
was proved by Michael Morley in 1964, namely, that categoricity in one
uncountable cardinality implies the categoricity in all uncountable cardinalities:
the actual value of the uncountable cardinal is irrelevant.12

The study of this kind of structures has been in the focus of research in model the-
ory for at least 60 years. The amazing conclusion derived from the research is that
among the huge diversity of mathematical structures there are very few which satisfy
the (slightly narrower) definition of categoricity, and those can be classified. These
certainly seem to corresponding to an ideal of logical perfection, in the following
sense: categorical structures M determine a first order theory Th(M) (the set of all
sentences that are true in M) and then comes the reason why we call them “logically
perfect”: all other structures that satisfy the theory Th(M) and are of the same
cardinality as M are isomorphic to M. In other words, uncountably categorical
structures are inextricably linked to their logical description; the description T = Th
(M) completely determines the structure M (with the usual caveat of “up to isomor-
phism” and because of limitations in the expressive power of first order logic13

provided also one considers only structure of the same cardinality as M).

11 That is, one which allows only finite length formulas and quantifiers “for all” and “there exists”
which refer to elements of the structure in question (but not to relations or functions).
12 This is in sharp contrast with countable categoricity. Countably categorical structures might also in
some sense be candidates to a kind of perfection, probably - but all the geometric features of uncountably
categorical structures are lost in that case. This dependence on the cardinality might be regarded as non-
logical in some sense, but the case of uncountable categoricity has strong logical properties as well as
strong geometric properties.
13 Namely, the Löwenheim-Skolem theorem.
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It is not that surprising that a remarkable example of such theory is the theory
of the field of complex numbers C in the language based on algebraic operations
+ and ×. Note that this is the language where algebraic geometry is naturally
done14 but we can not, e.g. distinguish the real part of a complex number, so we
can not speak about the real numbers when working over C. Recall that the the-
ory of the field R of real numbers is not categorical.15

Complex numbers are present everywhere in mathematics as are the reals.
However, there is a significant difference between the theory of the reals and that
of the complex numbers; in fact complex geometry and the geometry of real
manifolds are two different areas of specialisation within mathematics. Classifica-
tion theory sharply detects and explains the difference; it places complex geome-
try at the top of the hierarchy, and real geometry in an interesting region sharing
just some of the good properties of categorical theories.
Of course, for a mathematician the choice of an area of research is a personal

matter and is usually made on either historic or aesthetic grounds. Both complex
and real geometry are equally respected fields of mathematical research although,
arguably, the first is fundamental while the second is auxiliary. We stress again
the fact that it was Riemann who (building on Cauchy’s work) first understood
how real and complex geometries interact with one another and how the study of
the latter introduces a whole new range of powerful methods of algebraic geome-
try into the field.
The mathematical model of Newtonian physics is based on real analytic geom-

etry. This tradition continued into quantum mechanics with the model enriched
by more and more uses of complex numbers, seen rather as convenient auxiliary
tools. One of the first who pointed to the importance of reversing this perspective
was Roger Penrose in his 1978 address at the International Congress of Mathe-
maticians under the title The complex geometry of the natural world
(Penrose, 1980). In more recent decades, with the arrival of string theory, the pri-
ority or at least the centrality of complex geometry is undeniable.
To summarise the logicality of our notion of perfection: we started with various

notions of perfection as in Section 1, coming from three examples in the history
of mathematics; we then narrowed our focus to a notion of uniqueness and its
logical expression, (uncountable) categoricity. We then remarked that a whole
classification theory that encompasses all first order theories16 on the one hand
grew up out of the attempts to prove the Morley theorem and its generalisations

14 In algebraic geometry classical objects are solution sets of algebraic expressions, that is, polyno-
mials written with + and �.
15 And is not even stable!
16 And in more recent decades many more kinds of theories.
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and on the other hand ended up providing ways of callibrating exactly how far
from categoricity one is, in terms of smoothness/regularity properties that slowly
vanish as we go further and further away from categoricity. It is in this very sense
that categoricity has been playing the role of a logical form of perfection. A
posteriori we realise that a major part (although not all) of historically central
mathematics actually happens to be one of the theories that are uncountably
categorical.

3. Logically Perfect Structures: The Role of Geometry

Perhaps the most remarkable feature of model-theoretic classification theory is
that it exposes a geometric nature of some “perfect” structures. The geometric
features of those structures arise from their logical definition, albeit in a highly
non-trivial and initially unforeseen way. These were discovered in the course of
proving the original ground-breaking categoricity theorem of Michael Morley,
described in the previous section.17 It took a while to realise the geometric char-
acter of the technical definitions and to develop a new geometric intuition around
the notions. In particular, the notion of a Morley rank is a very good analogue of
dimension in algebraic and analytic geometry and we thus have basic tools to
think of abstract versions of curves and surfaces in any mathematical theory that
turns out to be uncountably categorical. This stage of the theory is summarised in
the monograph (Pillay, 1996) by A. Pillay.
In the 1980s the third author formulated a Trichotomy Conjecture (see

(Zil’ber, 1984)) which, based on the above intuition, suggested that any
uncountably categorical structure is in some sense reducible18 to either an object
of algebraic geometry, or linear algebra, or to a simple combinatorial structure.
Although in many special classes the conjecture has been confirmed, the general
case was refuted by Ehud Hrushovski who found remarkable counter-examples
opening fascinating new perspectives on the nature of model theory (its interac-
tions with geometry) and its links with the world of structures important in the
area of Mathematical Analysis.
Around the same time, a way to fix the original Trichotomy Conjecture was

found. This required narrowing the class of structures subject to the conjecture
—in some sense, this amounted to refining the notion of logical perfection. This
was done by being more careful in choosing the logic involved in the description

17 Geometric features of those structures were discovered as the key technical instruments of the proof:
Morley rank, homogeneity and, added in later versions of the proof, dimension (Baldwin and Lachlan),
and associated combinatorial geometries (Marsh, the third author).
18 Technically, bi-interpretable.
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of the relevant structures. Namely, our logical language must be able to distin-
guish positively formulated statements from their negations. The axioms of a
good (perfect) theory must be equational just like laws of physics and objects of
geometry are given by equations (and not by negating equations!). But this is pre-
cisely the principle on which algebraic geometry is built! It studies curves, sur-
faces, shapes given as solution sets for systems of algebraic equations; treats such
sets as closed in an important topology in algebraic geometry called “Zariski
topology”. The corresponding generalisation of this notion in the context of cate-
gorical and stable structures led to the notion of a Zariski structure (or Zariski
geometry) introduced by Hrushovski and the third author.
This improvement in the notion led to a desired Classification Theorem

(Hrushovski, Zilber 1993, see Zilber 2010). Precisely, the class of Zariski geome-
tries satisfies the Trichotomy Principle and therefore Zariski geometries are
reducible to19 classical structures such as the field of complex numbers and vec-
tor spaces.
There was therefore a reduction of scope (trichotomy only valid for Zariski

structures, a special subclass of our perfect structures) but a sharper understand-
ing of the necessary tools for this trichotomy to happen.
While it may be hard to describe what exactly the subject of geometry as prac-

tised by mathematicians is, describing non-commutative geometry is a much
more daunting task. It is best identified as the study of algebraic structures, in
many cases called non-commutative coordinate rings, supposed to correspond to
hypothetical geometric spaces which are not necessarily visualisable. Historically,
it was some physicists who, starting from the famous “magic paper” of Heisen-
berg of 1925 (Heisenberg, 1925), had given up on the attempts to describe the
physics of micro-world in classical terms and were instead using a purely formal
algebraic calculus (algebraic quantum mechanics) to explain the behaviour of ele-
mentary particles. Strangely perhaps, their move to these purely formal algebraic
structures met enormous success. One can say that the physics of the micro-world
lives in an unusual, previously unknown, sort of geometric space, only describ-
able by means of a non-commutative algebra. A curious parallelism has started to

19 Here “reducible to” can be taken in a first reading as a technical nuisance not requiring much expla-
nation. The typical example of Zariski geometry is a (complex) algebraic variety (glued from affine
charts) with possibly a vector bundle over it, a description of which can require quite a lot of technical
detail. Such a description eventually reduces to the structure of the complex field itself. However, the
constructions described by the theorem can go beyond the technicalities of this example, so beyond alge-
braic and complex geometry. Ten years after the classification theorem, a closer analysis of what “reduc-
ible to” could mean led to the discovery that a huge source of new Zariski structures is non-commutative
(or quantum) algebraic geometry, see Zilber (2008).
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emerge: the top of the stability hierarchy is occupied by structures which mathe-
matically stem from the same source.
The fusion of geometry with other branches of mathematics, such as number

theory and representation theory, was one of the biggest programs in the mathe-
matics of the 20th century.20 We would like to believe that the fusion of logic
(model theory) with other branches of mathematics is one of the biggest and most
ambitious programs of the mathematical research for the 21st century. In particu-
lar, the new geometry arising from model theoretical considerations has the poten-
tial to become an important area of research in mathematics and beyond. And the
study of logically perfect structures gives a crucial insight.
Summarising, the search of logically perfect structures leads to consider geometric/

topological ingredients in logic which has as a consequence that a refinement of the
idea of logical perfection is obtained. During this process the idea of Zariski structures
arises from purely logical considerations but with a geometrical flavour and motiva-
tion. So far, our discussion has not left mathematics but now, based on our previous
discussions, we want to go beyond mathematics, entering what some may call the
“real world” for lack of a better term. A question arises: Are logically perfect struc-
tures helpful for understanding the world outside of mathematics? We next attempt a
positive answer to this question and provide some possible directions of research.

4. Logical Perfection and Physics

We now focus on a different kind of problem: programs for new foundations of
quantum gravity, and the issue of tackling an appropriate notion of geometric
space for physics. This problem would seem a priori quite remote from our
notion of logical perfection. There is however a deep link, as we will describe.
Roger Penrose said in his 1978 ICM address (Penrose, 1980, p. 189):

“Even at the most elementary level, there are still severe conceptual problems in providing a satis-
factory interpretation of quantum mechanical observations in a way compatible with the tenets of
special relativity. And quantum field theory, which represents the fully special-relativistic version
of quantum theory, though it has had some very remarkable and significant successes, remains
beset with inconsistencies and divergent integrals whose ill effects have been only partially cir-
cumvented. Moreover, the present status of the unification of general relativity with quantum
mechanics remains merely a collection of hopes, ingenious ideas and massive but inconclusive
calculations. In view of this situation it is perhaps not unreasonable to search for a different view-
point concerning the role of geometry in basic physics. Broadly speaking, "geometry", after all,
means any branch of mathematics in which pictorial representations provide powerful aids to
one’s mathematical intuition. It is by no means necessary that these "pictures" should refer just to
a spatio-temporal ordering of physical events in the familiar way…”

20 The figure of Grothendieck was essential in formulating and developing this program in the broad-
est generality.
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Penrose continues to discuss structures of complex geometry as new geometric
tools in quantum physics. However, today this seems to be far from enough.
From a similar reasoning the physicist C. Isham and the philosopher of physics

J. Butterfield reached a bold program for building a new foundation of quantum
gravity physics, based on Grothendieck toposes as the most general form of geo-
metric space (see Isham and Butterfield, 2000).
Naturally, the Isham-Butterfield program is not the only one to tackle the prob-

lem (see e.g. the non-commutative geometry approach (Connes and
Marcolli, 2008) by A. Connes and M. Marcolli; they, however, do not quite reveal
a geometric space per se); however, the Isham-Butterfield program seems to be the
most ambitious and general21 attempt so far.
The third author has suggested, and started in Zilber (2016), a project in some

sense comparable in spirit to Isham-Butterfield; together with the first author, they
have developed a further stage of this project (Cruz Morales and Zilber, 2015).
Like in other such programs, the key is the respective notion of the geometric
space for physics. Our suggestion is based on the philosophy of logical perfec-
tion; after all it is reasonable to expect that the geometric structure of the uni-
verse should be as perfect as it goes. Correspondingly, the geometric space of
quantum mechanics as suggested in Zilber (2016, 2018) emerges from a Zariski
structure (see section 3) or rather, from a sheaf of Zariski structures.22

It is equally important to note that the logical analysis explicitly underlying the
method we describe clarifies the correspondence between (possibly noncommutative)
algebras as they emerge in physics and geometry and the respective geometric
spaces. In essence the algebras present us with syntactic tools allowing to check
in calculations what can be seen graphically and dealt with geometrically. The
geometric space is therefore a semantic interpretation of the syntactically given data.23

21 Maybe too general as to the best of our knowledge there is no interesting calculation produced
out of it.
22 The following three facts clarify the connection between Zariski structures and the Isham-Butterfield
topos:

(1) The sheaf of Zariski structures, the model of quantum mechanics, can be interpreted as a concrete
realisation of an Isham-Butterfield topos.

(2) The construction essentially generalises (Zilber, 2008) building a Zariski structure corresponding to
the non-commutative algebra represented by the canonical commutation relation QP − PQ = iℏ.

(3) The analysis of the language and definability issues in the structure draws a clear line between
notions which are observable (in the sense of physics) and which are not.

23 In classical cases, such as commutative finitely generated algebras, this corresponds to the well-
known duality at the foundation of algebraic geometry. For commutative C*-algebras we have the
Gel’fand-Naimark duality linking those to locally compact Hausdorff spaces. In non-commutative cases
the situation becomes much more complex but model theory is in the best position to deal with the
challenge.
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Another, different, intersection area between categoricity and physics has been
explored by D. Howard and I. Toader in the past two decades (see Howard, 2018;
Toader, 2018). Their take on categoricity is more akin to the original Veblen for-
mulation (independent of cardinality) than to the role categoricity has acquired in
contemporary model theory.
We finish this section with the conclusion that the principle of logical perfec-

tion, as unconventional as it may sound to some, does not disagree with other
modern approaches to the mathematical foundations of physics.

5. Concluding Remarks

Our concept of logically perfect structures emerges as a side result of a 50 year
classification project in logic. We may now, well-equipped with our examples and
discussions, attempt a definition!
(It is worth stressing that our theory relies on technical aspects outside the

scope and aim of this article; the interested reader may consult (Cruz Morales
and Zilber, 2015; Zilber, 2016; Väänänen, 2020; Villaveces, 2020a)).
The defining property of logical perfection is uniqueness, or technically

uncountable categoricity. This property implies certain internal harmony: homo-
geneity and the presence of a notion of dimension. This harmony is a manifesta-
tion of a certain kind of geometricity, which itself is a consequence of the
infusion of geometric/topological ingredients in logic that brings forth the flexi-
bility and generality of logically perfect structures. Finally, since logical structures
are at the top of the classification hierarchy, they are suitable as background struc-
tures for physics and represent a good idea of geometric space in a very broad
sense.
An additional feature to support our notion of logically perfect structures is the

“filtration” of perfection provided by classification theory. As mentioned above,
classification theory not only places all first order theories in a sort of map with
respect to categorical theories but provides a kind of measure of going away from
perfection. It provides technical ways to measure, for arbitrary theories, what fea-
tures of perfection might have been lost and which ones remain. The second
author’s forthcoming interview with Saharon Shelah explores further several
peculiarities of this connection (see the relevant excerpt of the interview in this
volume (Villaveces, 2020b)).
A recent take on incomplete structures and their “lego-like building blocks”,

due to Neil Barton (Barton, 2020) is being written at the time of press. We note
the connection to our notion of perfection (and his way of measuring imperfec-
tion). On the other hand, John Baldwin’s analysis of the role of stability theory in
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Baldwin (2018) and the paradigm shift in model theory with the arrival of stabil-
ity theory has a rather different role for categoricity.
The features described above (uniqueness, geometricity, representability) have

concrete mathematical formulations, as we have briefly mentioned. In addition,
they help us to understand the role of those structures in the wider program of
studying the syntax/semantics duality. As we have tried to show, logically perfect
structures can be seen as located in the geometric/semantical side of the men-
tioned duality, giving a new approach to the notion of noncommutative
(or quantum) geometric space, which traditionally has been treated by means of
syntactic/algebraic tools. Pursuing this program of interpreting the duality
between algebraic and geometric objects as an extension of the duality between
syntax and semantics appears to us as one of the most interesting lines of
research for the future, not only in mathematics. The idea of representing one
object by another (in this case its dual) can certainly be extrapolated beyond
mathematics. This idea deserves more investigation.
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