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The subject of the lecture is to present a model-theoretic
point of view at some more positive parts of mathematics and to
demonstrate some minor applications of this approcach to such
respected field of mathematics as algebraic geometry also

expressing hopes that more applications can be obtained along

these lines.

The starting point for the model - theoretic subject under
discussion is the study of uncountable structures C(algebraic
systems) which can be described uniquely up to isomorphism in the
first order language, provided the cardinality of the structure is
given. Such structures are called uncountably categorical Cu.c.D.
By the definition u.c. structures are ones which fit ideally into
the scheme of axiomatic mathematics,so not surprisingly many

classical structures satisfy the definition:

Cad algebraically closed fields K; the groups GL(n,K>; simple
algebraic groups over K;

(b> vector spaces \\ over any countable division ring R;
Grassmannian algebra of a bounded grade over V¥, provided R is
finite;

Cc) ultra-homogenecus irreflexive graphs of finite valency
Chere ultra-homogeneocus means that for any two finite isomorphic

subgraphs there is an antomorphism of the whole graph sending the
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first onto the second).

In fact the condition on the cardinality of the examples can
be omitted since any infinite structure of the type is first-order
equivalent to a structure of any given infinite cardinality of the

same type.

A fundamental step in the study of u.c. structures was made
by M.Morley in 1963. He discovered that for any u.c. structure M
Cwith universum M) there is a natural way to introduce a notion of
a rank for any set definable in M. The term *“definable" is basic
in this paper. By a definable set S we mean a quotient-set of
the form S = U/E where U< M, E < v are subsets of all
n-tuples and 2n-tuples in M satisfying first-order conditions
and E is also an equivalence relation on U. If in the
conditions parameters X € M are used we say S is X-definable. We
say that a structure IN is X-definable in M if the universum
Nof N and all basic relations and operations Cinterpreted as

subsets of N™ are X-definable sets in M.

In the examples cad definable sets in K are exactly
constructible sets (by a theorem of Tarski and Seidenberg) and the
Morley rank coincides with the dimension in the sense of algebraic
geometry. In the example (b)) the Morley rank of the set of
Crassmannians of grade »r is exactly r. Later it was proved that
Morley rank is finite for wu.c. structures and enjoys all
properties of a good notion of dimension. J.Baldwin and A.Lachlan
showed that in many respects the study of u.c. structures can be
reduced to the study of their substructures of rank 1, which

cannot be divided on two parts of rank 1 Cstrongly minimal sets).
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For example, algebraic groups in example Cad can be reduced to the
field [K; the CGrassmannian algebra in example (b)) can be reduced
to the vector space ¥, and the graph (cd is reducible to a
trivial structure, i.e. a set with no relations and operations

except the equality.

It was also introduced very nice and useful notion of a
closure of any set X <« M (dencted <¢clCXDD which in the case Cad
coincides with algebraic closure of X, in the case (b)) the linear
closure and in Ccd c¢lCXD is the set of all points connected to a

poeint in X.

In 1980 the present author noticed that the types in examples
Cad,Cbd,Ccd are characteristic in general and proved the
following

TRICHOTOMY THEOREM. Any u.c. structure M <{s either

Cid reducidble to a trivial structure

or

Ciid reducidble to a vector space over a division ring

or

Ciiid there is tin M a definable set P of rank 2 and a
definable family of rank 22 of subsets of P each having rank 1

and any two intersecting in a finite number of points.

Very essential was an associated result stating that case
Ciiid> does not hold under the condition that c¢1{X> is finite for
all finite X ¢ M. It was also conjectured that structures in

Ciiid are reducible to algebraically closed fields.

One should add also that the above trichotomy can be
considered in much more general context. All this, as we think,

has a universal mathematical meaning. First of all,the theoretical
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trichotomy confirms the natural division in mathematics: algebraic
geometry, linear algebra, combinatorics of finite graphs. From the
other hand we see explicitly common notions, ideas and techniques
in these three parts. This general approcach gave serious
applications at least in mathematics associated with cases (i> and
Ciid>. We mention here two results which gave solutions to open

problems.

The first one concerns combinatorial geometries and in the
final analysis fits case (ii). Combinatorial geometry is a set S
with a closure operator ¢l satisfying the replacement axiom:

2 € clCXU{y>D—clCX) implies y € cl{XWK2>D. It is also assumed that
the closure of any point is a point. The closure of two distinct
points is called a line. A subset {xf....x;> is said to be
independent if X = chx&,....xR for any iKn. So we have a
notion of dimension. A geometry is called homogeneocus if any two
independent n-tuples of elements are conjugated by an

automorphism of the geometry.

THEOREM. 4ny finite homogeneous geometry of dimension greater
than 7 with at least three points on any line is a projective or

affine geometry over a finite fileld Cpossibly truncated).

The proof does not depend on classification of finite simple
groups. The infinite version of the thecrem is in [Z1]1, [Z22] and
in [E]l] . Then D.Evans proved it for dim223 Cunpublished> the

final version belongs to Zilber [Z4].

The second result can not be stated so directly. In short, it
was found that the techniques used in the study of case (i) is

crucial in understanding finite ultra-homogeneous structures, in
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particular, graphs. This is shown by A.Lachlan, G.Cherlin and
others, see survey [L1].

So the applications given above show that the model -theoretic
approach is rather powerful at least in cases (i2> and Ciid. One
may hope that some applications would also be possible in case
Ciiid, more precisely, in algebraic geometry. This is exactly what
we are concerned with in the rest of the paper. But before going
to discuss the applications in details we state precisely the

conjectures concerning case (iiid and comment it.

The MAIN CONJECTURE in a precise form consisted of two parts:

CA In any u.c. structure (iy] satisfying Ciiid an
algedbratcally closed field K tis definable;

(BY If M in CA is of rank 1 then M <is definable in K.

Unfortunately the real world is not so nice. E.Hrushovski
constructed series of very interesting counterexamples to CA). So
the condition (iiid) is too weak to be adequate to algebraic
geometry. There is a hope that under the additional assumption
that MM can be equipped with a good Zariski-kind topology CAdand
CB> will prove correct. Hrushovski announced he has a proof of

this recently.

However a restricted form of the conjecture above is of some
interest.

RESTRICTED CONJECTURE: Suppose M s a structure definable
in an algebraically closed field K oand satisfies Ciiid then a
fleld-structure [K’ tsomorphic to K ts definable tn M.

Notice that part CB) of MAIN CONJECTURE is already in

the hypothesis of the RESTRICTED CONJECTURE. We also need not
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assume M to be uncountably categorical. In fact, we have a
slighter assertion: the Morley rank of M is finite. This follows
from the hypothesis that M is definable in K, which is a finite

Morley rank structure.

It is important to notice also that it is generally an easy
exercise for a given structure M to verify whether it satisfies
Ciiid>. In fact, structures not satisfying (iiid are described by
Cid and C(iid> almost explicitly <dCthough we have not presented the
exact meaning of "reducible'" hered. On the other hand to pass from
Ciiid to defining a field in M is a difficult problem which, we
guess, is related to synthetic algebraic geometry. A very special
case of the problem is the celebrated theorem of projective
geometry stating that in a projective desarguesian plane
given the collineation relation one can define the

coordinatization field.

1. Rich structures

From now on by a structure we mean a structure definable in a

fixed algebraically closed field K.

We will call a structure M rich if M satisfies the

conclusion of RESTRICTED CONJECTURE.

We present now some results concerning special cases of the

conjecture which also give series of examples of rich structures.

The first published result was by G.Martin ([M]l, which for

simplicity we cite assuming charK=0.

THEOREM. Suppose M=<K,+,g> or M=<K,-,f> where K is the

universum of the field K; +,- 1its operations, g,f rational one
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variable functions on K, g is nonlinear, f tits not of the form

ax™. Then M is rich.

The proof of the theorem was obtained by witty manipulations
with algebraic terms constructing the multiplication and addition
in the two cases correspondently. It is hardly plausible these

arguments could work in the general situation.

In a joint work of E.D.Rabinowich and the author [RZ] another
approach was proposed.

THEOREM. Suppose M=<K,+,R>, where K is as above and RCx,y>
is a binary relation on K meaning <x,y>€C for an irreducible
curve C of degree at least 2. Then M s rich.

To prove the theorem we considered curves on the affine plane
K as binary relations on K. Then giving two curves S‘,S2 obtained
by shifting € using + one may construct a new curve Si-S2 as
the composition Ey(51Cx,yD & SZCy.z)). From assumptions one can
deduce that if Cxo,yo) is a generic point of S1 and Sz then
Cxo,XOD is a nonsingular point on the curve Sl-S:. What is more
the set F of curves obtained in this way and going through Cxo,x°)
behaves well with respect to the composition: "almost always" the
composition of two such curves gives a curve with Cxo,xo)

nonsingular on it.

Under these conditions intersections of these curves is

studied. Combining the Bezout Theorem with properties of the family

F we showed that the relation E between curves: "S1 is tangent to
Sz in Cxo,xo) * 1s expressible in terms of the numbers of points
in set-thecretic intersections of Si,S2 and some other curves

from the family, and so is definable in the language of M Cusing

some parameters).
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Since the relation E is an equivalence relation on F one
gets the definable set F/E which is birationally ejuivalent to K.
The composition on F induces a multiplication on F/E which is
isomorphic to the field-multiplication. In the final analysis we

define a field - structure in M, which is isomorphic to K.

A.Pillay and D.Marker showed that these considerations could
be essentially simplified by using a combinatorial criterion, so
called field-configuration discovered by E. Hrushovski in
connection with MAIN CONJECTURE. Hrushovski’s very nontrivial
construction makes it possible to find a field under very weak

assumptions.

The strongest result to the moment covering the theorems
above is obtained by E.D.Rabinovich.

THEOREM. Suppose M s a u.c. structure satisfying (iiid and
a rational curve is definable in M. Then M ts rich.

Since the rational curve can be identified with K the ideas
from the previocus proof can be used. Dealing with singularities
can not be avoided this time. Though the intersection theory on
projective plane is clear, 1> takes rather complicated
combinatorial Arguments to see that the relation: "there is a
branch of Si and a branch of S; with the multiplicity of
intersection in Cxo.x°) at least n" is definable for every n.
Then the field can be reconstructed from the group of n-jets of

all definable curves for some n.

Let us illustrate the result with the following application.
Let € be a smooth projective curve of genus g2>2. Consider 2g-ary

relation Engi....xg.y ..yg) on the set C meaning that

-
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divisors x1+. 5 .+xg and y1+. 5 .+yg are linearly equivalent. Then
the structure C=<C‘.,Eg> is rich. To see this from the Rabinovich
theorem first note that C is wuncountably categorical and
satisfies (iiid>. The first fact follows from a general statement
that any structure whose universum is strongly minimal is u.c.,
(& satisfies this condition. The second fact follows from
TRICHOTOMY THEOREM after we note that in € the Jacobian group
JCCO is definable together with an embedding G e Jco&. I
structures of type (i) no infinite group is definable at all and
in structures of type Ciid any definable subset of a group
almost contains a coset of an infinite subgroup. This is not so
with C. At last,to satisfy the third assumption of the Rabinovich
theocrem, note that we can define any fixed class of divisors in C.
Fixing a very ample class we get all cuts by hyperplanes in the
corresponding embedding of C into a projective space. Then it is

easy to single out a set of cuts isomorphic to a protective line.

2. Very rich structures

The fact that a structure ] is rich gives you the
ground-field K reconstructed by means of the structure M but
in general it does not let one to reconstruct the way ™ is
defined in K and so to reconstruct M as an algebro-gecmetric
object. So we introduce a stronger notion of a very rich
structure. To do this one should know a model-thecretic notion of
a definable closure. let a‘....an.b be elements of a set N
which is g-definable in M. We say b is in the definable

closure of (a1,...an} if there 1is a first order formula

pri,...xn,y) in the language of M and free variables Xopeo X 5y
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and it is true in M p(a.1,...an,b) & 3!yp(a1,...an.y).

A structure M is very rich if an infinite field K-’ 1S

definable in M and there are €re--C € M such that any element
of M is in the definable closure of <c1,. oo .ck}UK’.

Proposition 1. For any structure ™ the following are
eguivalent:

Cad M tis wvery rich;

Cb) there is a unigue way of reconstructing the family of all
constructible subsets of M assuning that all the relations of
M are constructidble;

Ccd any abstract automorphism o of M is a composition of
an aqutomorphism v induced by an automorphism of the field K

and a constructible automorphism po of M.

Recall that constructible set is by definition a union of
differences of 2Zariski-closed subsets. Constructible automorphism

is one whose graph is a constructible subset of M X M.

The proof of Proposition 1 is rather easy modulo known

model —theoretic facts and constructions exposed in [PI].

Cb> follows from Cad since under the assumption M can be
presented as the image of a constructible mapping of a
constructible subset of K’™. Note also that [’ is definable in
K and hence there is a constructible isomorphism t:K—K’, which
is ©-definable. (We will call i canonical; it is unique up to
Frobenius automorphisms. Then definable subsets of M are exactly

all the constructible subsets of M.

To see (cd from Cad we proved first two LEMMAS:

1. There exists the minimal subfield DefCMd of K such
that M is DefCMd -definable in K and if M is also
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X-definable then DefCMD is a subfield of one generated by X.

De fCMD is the set of all elements of K fixed wunder all
automorphisms of K inducing automorphisms of M. Any relation on
M which is definable in M and is DeflMd-definable in K s
O-definable in M.

2. In the definition of a very rich structure we nay assume
K’ s ©O-definable.

Now to get Ccd consider the automorphism &’ induced by «a
on K’. Then «&’'i=i{v for some automorphism v of K. For any
a € DefCMD by Lemma 1 iCad) is fixed by o', so wvlad=a. Thus v
induces an automorphism Cdenoted by the same letterd of M. If we
considered from the very start automorphism =val * then the
corresponding automorphism @3’ of K’ would become the identity.
Such a mapping ', as is easily seen, provided M is in definable
closure of <c1....ck}UK', can be defined by a first order formula

in M and so in K. Thus p=ﬁ_1 is constructible.

It is important to find verifiable conditions under which a
rich structure M is always very rich. It is easy to point out a
necessary model-theocretical condition: M is "almost strongly
minimal®”. We have found also an useful condition which is

sufficient in the presence of the previous one:
There ts a definable group structure on M and this group
has no proper subgroups of finite index.

EXAMPLE. The structure <€ from section 1 is very rich. To
see this we use the fact that C is equivalent to the
group-structure JCC) with the embedding C < JCC) in respect of

the problem. Any JCC) 1is a divisible group.

Groups have an advantage in respect to another problem, too.
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PROPOSITION 2. Suppose M is very rich and there is a definadble
in M operation on M vwhich makes M an algebraic group. Then
there is a unigue way of reconstruction of the Zariski topology on
M for all m.

So this is the case were really "algebra defines the
geometry”. We conjecture that in the proposition the assumption of

the existence of the group-structure is superflucus, it could be

replaced by: all basic relations of M are Zariski-closed.

The proposition follows from the following easy
considerations. Suppose there are two ways of defining variety
structure on M. Than we have two algebraic groups and the
identity mapping M—M is a constructible isomorphism p between
them.On some open subset of M fel coincides with a rational
bi jection spoiled by Frobenins automorphisms on some coordinates.
Then © should coincide with this bijection on the whole M.
This bijection preserves Zariski topology on M.

COROLLARY. There is a unigue way of defining the Zariski
topology on c" for every m agreeing with the relation Eg on

a smooth projective curve C of genus 22 t{.e. with the structure

C from section 1.
3. Moduli of very rich structures

Now we will present a more detailed analysis of point (cd in
Proposition 1 and it will led to a construction giving something

which is similar to moduli.

Suppose for simplicity that <C1""ck} jin the definition of
a very rich structure M is empty. Then it is easy to see from

the definition IM is definable also in K’.
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So we may consider the subfield De fCM> of K’ as defined
in Lemma 1. In this special case it is easy to see that
DefCM) = declC@nNK’'. Let m’ denote any l-tuple of generators Cas
a subfield) of dcl(@nK’, Il=length(m’d. Since m’ is a tuple of
constants it can be defined by a formula ¢ of Th(M> which has

m’ as the only solution. The canonical isomorphism ©:K’—K sends

m’ to some l-tuple in K and this tuple we denote mCM,pd.

For characteristic O mCM, 2 does not depend on i, we
restrict oursetves to this case and call mCM, > an invariant.
Observe that if M and N are two very rich structures in K
and they are isomorphic by a definable in K isomorphism f then
mCM, o>=mCN,pd). Indeed, f takes m’'=pC(MD to some n’=pCIND which is
a tuple from a field O-definable in [N in the same way as K’
is definable in M. The canonical isomorphisms together with f
compose a definable automorphism of K which sends mCM, o2 to
mCIN, 3. Since for characteristic [¢) there is only one

constructible isomorphism of (K hence mCM,pd=mCN,D.

From the other hand, under some conditions mCM, > =mCIN, >
implies [M is definably isomorphic to IN. These conditions can be
expressed by elementary sentences. Suppose the language L of M
is finite. Let 'I"‘7 be a finite set of sentences in L valid in M
which fix a formula interpreting a field K’ in any model N,
state that the field is infinite and that ¢ is a formula with an
only solution n in K’ for some n and the structure [N is
n-definable in K’ by given formulas. The considerations above
show that for any two models [N and [N’ of Tp. provided they

are structures definable in K and are constructibly isomorphic,
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mCN,p>=mCIN’ ,p> holds. On the contrary if mCIN,pd=mCN’,pd then
the canonical isomorphism between the corresponding fields sends
n to n’ where n,n’ are the corresponding solutions of ¢ in
the fields. This isomorphism can be extended to an isomorphism
from IN to IN° since the both are interpretable in the
corresponding fields by the same formulas fixed in Tp. So we have
proved

THEOREM 2. For any structure ™ of finilte language L
definable in an algebraically closed field K of characteristic
O there are a formula ¢ in L, a finite set of sentences T in

L depending also on the way M is interpreted itn K and a set
m, < K' definable in K such that

C1d> for any structure N in language L definable in K
which is a model of TP there is an element mCN,pd € ﬂtp , any nemp

is of the form mCIN,pd for some model N of Tp;
&=h) mC[N1.¢)=mCINz.p) Lff [N1 is constructibly itsomorphic to lNz;

(3 If N is X-definable in K then mN,pd) is an X-definable
element, what is more if INCVD is a definablefamily of structures
which for any X from a definable set gives NIXD a model of TP
then the mapping mdNCVD,pd ts definable.

The only thing we didn’t explain before is mP. To define it
recall that in any model N of Tp is O-definable
field-structure K’ and IN is n-definable in K’ by some fixed
formulas. Let mP be the set of all l-tuples n in K for which
there is a structure NN satisfying Tp and which is n-definable

in K by the formulas mentioned above. Obviously Tltp is O-definable

in K and 'mp satisfies C1).
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