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1 Introduction

1.1 Our motivation for the work presented below comes from the realisation
of the rather paradoxical situation with the mathematics used by physicists
in the last 70 or so years. Physicists have always been ahead of mathe-
maticians in introducing and testing new methods of calculations, leaving to
mathematicians the task of putting the new methods and ideas on a solid
and rigorous foundation. But this time, with developments in quantum field
theory huge progress achieved by physicists in dealing with singularities and
non-convergent sums and integrals (famous Feynman path integrals) has not
been matched so far, after all these years, with an adequate mathematical
theory. A nice account of some of these methods with a demonstration of
challenging calculations can be found in [4].

One may suggest that the success in carrying out these calculations in ab-
sence of a rigorous mathematical theory is due to the fact that the physicist,
in fact, uses an implicit or explicit knowledge of the structure of his model
which is not yet available in explicit mathematical terms. (A beautiful exam-
ple of an honest attempt by a mathematician to decipher physicists’ jargon
provides the introductory section of [9].) In particular, many formulas which
to the mathematician’s eye are defined in terms of a metric or a measure are
not what they look. Typically, it is crucial that discrete approximations to
the continuous models have the same type of symmetries or other structural
properties, but the formula does not say this.

1.2 Model theory and logic in general has an obvious advantage over general
mathematics in this situation. The logician is not restricted by any conven-
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tional mathematics and is ready to deal with any type of structure at all.
Moreover, modern model theory has worked out, in fact, a very efficient hier-
archy of types of structures (stability theory and beyond), and has a crucial
experience in introducing new tailor-made structures to accommodate and
deal with specific mathematical problems. One particularly relevant class of
structures was discovered by Hrushovski and the author [3] in an attempt to
identify and characterise, essentially, “logically perfect” structures, or more
technically, the top of the stability hierarchy. These are Zariski structures (in
some variation called also Zariski geometries), defined in very general terms
of geometric flavour and modelled on algebraic varieties over algebraically
closed fields equipped with relations corresponding to Zariski closed sets.

The present author discovered that there is another important source of
Zariski geometries – quantum algebras satisfying certain assumptions give
rise to Zariski geometries in the same way as commutative affine algebras
correspond to affine algebraic varieties. One class of such geometric objects,
corresponding to quantum 2-tori T 2

q is studied in this paper. In particular
we are interested in the deformation of these structures as q varies.

1.3 The process of understanding the physical reality by working in an ideal
model Mideal can be interpreted as follows. We assume that the ideal model
Mideal is being chosen from a class of “nice” structures, which allows a good
theory. We suppose that the real structure Mreal is “very similar” to Mideal,
meaning by this that the description of Mideal (as a set of statements) has a
large intersection with the corresponding description of Mreal. The notion of
“large” is of course relative and can be formalised dynamically, by assuming
that Mideal is approximated by a sequence Mi of structures and Mreal is one
of these, Mi = Mreal, sufficiently close to Mideal. The notion of approxima-
tion must also contain both logical (qualitative) and topological ingredients.
Topology gives us a way to speak of “nearness” between points and events.
Naturally, the reason that we wouldn’t distinguish two points in the ideal
model Mideal is that the corresponding points are very close in the real world
Mreal, so that we do not see the difference (using the tools available). In the
limit of the Mi’s this sort of difference will manifest itself as an infinitesimal.
In other words, the limit passage from the sequence Mi to the ideal model
Mideal must happen by killing the infinitesimal differences. This corresponds
to taking a specialisation (“equations” preserving map) from an ultraproduct∏

D Mi to Mideal.

2



We formalise and study the notion of a structural approximation below.
We give a number of examples that demonstrate that this notion covers some
well-known notions of approximation such as:

• limit point in a topological space;

• Gromov-Hausdorff limit of metric spaces;

• deformation of algebraic varieties

We also consider carefully an example of approximation that we think is
a true version of a quantum deformation.

Note that the scheme is quite delicate regarding metric issues. In principle
we may have a well-defined metric, agreeing with the qualitative topology, on
the ideal structure only. Existence of a metric, especially the one that gives
rise to a structure of a differentiable manifold, is one of the key reasons of
why we regard some structures as ’nice’ or ’tame’. The problem of whether
and when a metric on M can be passed to approximating structures Mi

might be difficult, indeed we don’t know how to answer this problem in some
interesting cases.

2 Definitions

2.1 General scheme of structural approximation

Following [1] by a topological language we mean a relational language
C which will always be interpreted so that any n-ary P ∈ C (basic (primitive)
C-predicate) defines a closed subset P (M) of Mn in any C-structure M, in
the sense of a topology on Mn, all n ∈ N. Not every closed subset of the
topology in question is necessarily assumed to have the form P (M), so those
which are will be called C-closed.

We assume that the equality is closed and all structures in question satisfy
the C-theory which ascertains that

• if Si ∈ C, i = 1, 2, then S1&S2 ≡ P1, S1 ∨ S2 ≡ P2, for P1, P2 ∈ C;

• if S ∈ C, then ∀xS ≡ P, for some P ∈ C;
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We say that a C-structure M is complete if, for each S(x, y) ∈ C there is
P (y) ∈ C such that M � ∃xS ≡ P.

Note that we can always make M = (M, C) complete by extending C with
relations corresponding to ∃xS for all S in the original C. We will call such
an extension of the topology the trivial completion of M.

We say M is quasi-compact (often just compact) if M is complete,
every point in M is closed and for any filter of closed subsets of Mn the
intersection is nonempty.

Remark The family of C-closed sets forms a basis of a topology, the closed
sets of which are just the infinite interestions of filters of C-closed sets (the
topology generated by C).

If the topology generated by C is Noetherian then its closed sets are
exactly the ones which are C-closed.
Definition Given a structure M in a topological language C and structures
Mi in the same language we say that M is approximated by Mi along an
ultrafilter D if for some MD <

∏
D Mi there is a surjective homomorphism

lim : MD →M.

2.2 Proposition. Suppose every point of M is closed and M is approx-
imated by the sequence {Mi = M : i ∈ I} for some I along an ultrafilter
D on I, such that MD is saturated. Then the trivial completion of M is
quasi-compact.

Proof Consider the Mi and M trivially completed, that is in the extended
toplogy. Note that the given lim : MD →M is still a homomorphism in this
language, since a homomorphism preserves positive formulas.

Closedness of points means that for every a ∈ M there is a positive
one-variable C-formula Pa with the only realisation a in M. Under the as-
sumptions for ∗M �M, setting for a ∈M, i(a) to be the unique realisation
â ∈ ∗M of Pa we get an elementary embedding i : M ≺ ∗M. Now lim be-
comes a specialisation onto M. This implies by [5] (see also a proof in [1])
that M is quasi-compact. �

Corollary – Assumption According to the proposition we will normally
consider only approximations to quasi-compact structures.
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2.3 Proposition Suppose M is a quasi-compact topological C-structure and
N is an |M |-saturated C-structure such that N is complete and for every
positive C-sentence σ

N � σ ⇒M � σ.

Then there is a surjective homomorphism lim : N→M.
Proof Given A ⊆ N, a partial strong homomorphism limA : A → M is

a map defined on A such that for every a ∈ Ak, â = limA a and S(x, y) ∈ C
such that N � ∃yS(a, y), we have M � ∃y S(â, y).

When A = ∅ the map is assumed empty but the condition still holds, for
any sentence of the form ∃y S(y). So it follows from our assumptions that
lim∅ does exist.

Claim 1. Suppose for some A ⊆ N there is a partial strong homomor-
phism limA : A → M, and b ∈ N. Then limA can be extended to a partial
strong homomorphism limAb : Ab→M.

Proof of Claim. Let N � ∃z S(a, b, z), for S(x, y, z) a positive formula
and a a tuple in N. Then N � ∃yz S(a, y, z)) and hence M � ∃yzS(â, y, z)).

It follows that the family of closed sets in M defined by {∃zS(â, y, z) :
N � ∃z S(a, b, z)} is a filter. By quasi-compactness of M there is a point,
say b̂ in the intersection. Clearly, letting limAb : b→ b̂, we preserve formulas
of the form ∃z S(x, y, z). Claim proved.

Claim 2. For A ⊂ N, |A| ≤ |M |, assume limA exists and let b̂ ∈ M \ A.
Then there is a b ∈ N and an extension limAb : b 7→ b̂.

Proof. Consider the type over A,

p = {¬∃z S(a, y, z) : M � ¬∃z S(â, b̂, z) : â = lim
A
a, a ⊂ A, S ∈ C}.

This is consistent in N since otherwise

N � ∀y
k∨
i=1

∃zi Si(a, y, zi)

for some finite subset of the type. The formula on the right is equivalent to
P (a), some P ∈ C, so

M � ∀y
k∨
i=1

∃zi Si(â, y, zi)

M �
k∨
i=1

∃zi Si(â, b̂, zi),

5



the contradiction. Claim proved.
In order to prove the proposition consider a maximal partial strong ho-

momorphism lim = limA : A→M. By Claim 1 A = N, so lim is a total map
on N. By Claim 2 lim is surjective.�

2.4 Proposition Suppose every point of M is closed and M is approximated
by Mi along D, MD ≡

∏
D Mi is |M |+-saturated, lim : MD → M and for

every P ∈ C and every c ∈Mm

M � P (c)⇒ ∃c′ lim c′ = c and MD � P (c′).

Then there is an inverse embedding

colim : M→MD, lim colim = id.

Proof Consider the set of variables {xa : a ∈ M} and the collection of
atomic formulas

Φ = {P (xa1 , . . . , xan) : a1, . . . , an ∈M, M � P (a1, . . . , an), P atomic}.

We claim that Φ is consistent in MD. Indeed, by the assumption of the
Proposition we can interpret xa1 , . . . , xan in MD as some a′1, . . . , a

′
n such that

lim a′i = ai, i = 1, . . . , n.
Now, by saturation, we can realise Φ in MD, say by elements {â : a ∈M}.

Then MD � Pa(â) and so lim â = a.
Now, for any atom P

MD � P (â1, . . . , ân)⇔M � P (a1, . . . , an).

Indeed, the left arrow follows from Φ and the right one from the fact that
lim â = a.

Hence the map colim : a 7→ â is an embedding M→MD.�

2.5 The assumptions in the Proposition above are quite strong. In practice
we may be interested in a weaker condition which motivates the following.
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Definition Given a structure M in a topological language and structures
Mi in the same language we say that M is strongly approximated by Mi

along an ultrafilter D if M is approximated in the topological language C,

lim : MD →M,

and there is an C-embedding

colim : M→MD, lim ◦ colim = id.

Suppose M is strongly approximated by Mi and we are given maps ψi on
Mi. Extending the language by the relation symbol P (x, y) corresponding to
the graph of ψi in Mi we get a function ψ : MD → MD given by ψ(x) =
y ↔ P (x, y). Now we can define for w ∈M, the ’limit’

ψ(w) := lim(ψ(colimw)) ∈M

This defines a new map ψ : M 7→M. Obviously we have

P (M) ⊆ limP (MD).

Note that ψ does not depend on the sequence and on lim in case P ∈ C.

2.6 Definition Perfect approximation: This is stronger than strong
approximation by requiring that

colim : M ≺−→ MD

is an elementary embedding.

Remark The cited above theorem of Weglorz implies that any quasi-
compact M is perfectly approximated by any sequence {Mi = M : i ∈ I}.

3 Examples

In this section we assume for simplicity that MD =
∏

Mi/D.
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3.1 Metric spaces
Let M and Mi be metric spaces in the language of binary predicates

d≤r (x, y) and d≥r (x, y), all r ∈ Q, r ≥ 0, with the interpretation dist(x, y) ≤ r
and dist(x, y) ≥ r correspondingly. The sets given by positive existential
formulas in this language form our class C.

Proposition. Assume M is compact and

M = GH-limDMi,

the Gromov-Hausdorff limit of metric spaces along a non-principal ultrafilter
D on I. Then

M = lim
D

Mi

Proof By definition, for any n there is an Xn ∈ D such that dist(Mi,M) ≤ 1
n
,

in a space containing both all the Mi for i ∈ Xn and M. For any α ∈
∏

iMi

define α̂ to be an element of M I such that α̂(i) is an element of M at a
minimal distance from α(i) (choose one if there is more than one at the
minimal distance). Let aα be the limit point of the sequence {α̂(i) : i ∈ I}
along D in M. We define

lim
D
α := aα.

It follows from the construction that, for α, β ∈
∏

iMi,

{i ∈ I : Mi � dr(α(i), β(i))} ∈ D ⇒M � dr(lim
D
α, lim

D
β).

We are not aware of any existing direct analogue of the Gromov-Hausdorff
limit for topological spaces but the examples below demonstrate that the
structural approximation surves this purpose well.

3.2 Cyclic groups in the profinite topology

Consider the coset-topology on Z and Z/nZ. The compactification of Z
is then Ẑ, the profinite completion. Choose a non-principal ultrafilter D on
N so that mN ∈ D for every positive integer m (a profinite ultrafilter).

Claim.∏
D

Z/nZ ∼= Ẑ+̇Qκ+̇T, some cardinal κ and the torsion subgroup T.
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Proof Follows from the Eklof-Fisher classification of saturated models of
Abelian groups.

Now define lim : Ẑ+̇Qκ+̇T → Ẑ to be the projection (with kernel Qκ+̇T )
and colim the obvious embedding Ẑ→ Ẑ+̇Qκ+̇T, so

Proposition 1 Ẑ is strongly approximated by Z/nZ in the profinite topology.

As an example, consider the element (sequence) γ(n) such that γ(n) =
n
2

modn, all n ∈ 2N. Then 2γ = 0 in
∏

D Z/nZ, a torsion element, so lim γ =
0.

3.3 Cyclic groups in metric topology
The compactification of Z in the standard metric topology is obviously

Z̄ = Z ∪ {∞}, with m +∞ = ∞ and ∞ +∞ equal to any element of Z̄
(the relation). We use the same language as in 3.1 plus the language of
semigroups having x+ y = z as the basic relation (strictly speaking Z̄ is not
a semigroup).

Define a metric on Z/nZ as the metric of the regular n-gon with side 1
on the plane.

We identify elements of
∏

D Z/nZ with sequences a = {a(n) ∈ Z/nZ :
n ∈ N} modulo D, any given non-principal ultrafilter.

For m ∈ Z set colim(m)(n) = m + nZ, colim : Z →
∏

D Z/nZ, which is
obviously an injective homomorphism into

∏
Mn. Define

lim a =

{
m, if {n ∈ N : a(n) = m+ nZ} ∈ D
∞, otherwise

In other words, all bounded elements of
∏

D Z/nZ, which have to be
eventually constant, specialise to their eventual value, and the rest go into
∞.

This is a surjective homomorphism onto Z̄ in the language of semigroups
and the language for metric. Here we also assume that the symbol m̂ for each
integer m is in the language, and m̂ in Z/nZ defines the residue class of m
modulo n. Note that positive ∃-formulas are preserved by a homomorphism
so we may assume that the sets defined by such formulas are also in our class
C of closed sets.

Proposition 2 Z̄ = Z∪{∞} is strongly approximated by Z/nZ in the topol-
ogy based on the closed sets given by the positive ∃-formulas.
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The two approximations of cyclic groups discussed above are clearly dif-
ferent since the above element γ converges to∞ in the metric approximation.

3.4 q-approximation of cyclic groups.
Consider a cyclic multiplicative subgroup Γq := qZ of C∗ with the gener-

ator q = e2πih, h ∈ R. We compactify Γq

Γ̄q =

{
Γq ∪ {0,∞}, if q is root of unity
Γq ∪ {0,∞}, otherwise

with the interpretation of the multiplication relation on the extra elements:

• x · 0 = 0, for all x 6=∞;

• x · ∞ =∞, for all x 6= 0;

• ∞ · 0 = x, for any x.

We define the distance predicates only to hold between 1 and q, so

d≤r (1, q) iff h ≤ r, d≥r (1, q) iff h ≥ r

and
¬d≤r (qn, qm) for all r ∈ R, n 6= 0,m 6= 1.

In other words we are only interested in the size of the generator, and assume
it equal to h.

The language C includes:

• the ternary relation x · y = z;

• the symbol q for the generator of qZ;

• the distance predicates dr(x, y) interpreted as above;

• all relations defined from the above by positive ∃-formulas.

Note that among the latter relations there are unary predicates, for all
n > 0,

Pn(x) ≡ ∃y yn = x.

Note that, for n > 1, ¬Pn(q) holds.
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The corresponding predicates are also present in the language of Z̄, in the
additive form ∃y y + . . . + y = x (n-multiple sum), but these predicates are
trivial in Z̄, since every x ∈ Z̄ satisfies ∞+ . . .+∞ = x.

Now we investigate when a sequence of (compactified) Γ̄qi , i ∈ N, approx-
imates the compactification of a Γ̄q along an ultrafilter D. That is when

lim
D

Γ̄qi = Γ̄q. (1)

We distinguish two cases.
Case A. Neither of the qi is a root of unity.
Case B. All the qi are roots of unity.

Note that using the fact that D is an ultrafilter we may assume without
loss of generality that these are the only alternatives.

3.5 Proposition. (i) Suppose q is not a root of unity.
In case A, (1) holds if and only if
(a) limD qi = q in the metric on the unit circle.
In case B, we may assume

qi = exp 2πi
Mi

Ni

, (Mi, Ni) = 1, 0 < Mi < Ni integers

Then (1) holds if and only if conditions (a) is satisfied along with the condi-
tion

(b) for any natural number m,

{i ∈ N : m|Ni} ∈ D.

(ii) For q = 1, the condition (1) holds if and only if limD qi = 1 in the
metric on the unit circle.

Proof (i) Case A. Assuming (1) we will have for the limit point q̃ =
limD qi, dist(q̃, 1) = r, for r = limD dist(qi, 1). Since, by definition, distance
predicates are preserved under lim, dist(q, 1), so (a) holds.

Conversely, if (a) holds, then in the ultraproduct the element γ corre-
sponding to the generator (that is γ(i) = qi for all i ∈ X ∈ D) is of infinite
order and, since each qi generates an infinite cyclic group, we can identify
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the ultraproduct of the compactified groups with γ
∗Z ∪ {0,∞}. We consider

here ∗Z as an ordered additive group. Define

lim γη =


∞ if η > Z
0 if η < Z
qn if η = n ∈ Z

This clearly is a homomorphism onto qZ ∪ {0,∞} = Γ̄q with respect to all
the relations in the language. Observe, that in a special case we may take
γ = q.

Now we consider the case B. As above, condition (a) is necessary for (1)
to hold.

Now we claim that (b) is also necessary. Indeed, assuming thatm does not
divide Ni along the ultrafilter, let m = m1m2 such that m1|Ni and (m2, Ni) =
1 for all i ∈ X, some X ∈ D, m2 6= 1. We may assume m = m2. For all i ∈ X,
let ui, vi be the integers such that uim+ viNi = 1. Correspondingly,

uim ≡ 1 modNi.

It follows that
(quii )m = qi,

that is Pm(γ) holds, in contrast with ¬Pm(q). So there is no homomorphism
taking γ to q.

It remains to prove that, assuming (a) and (b), there is a homomorphism
lim satisfying (1).

Note that (a) also implies that γ is of infinite order. Now condition (b)
tells us that the ultraproduct of groups qZ

i is isomorphic to the ultraproduct∏
D Z/NZ along a profinite ultrafilter, as in 3.2. By 3.2, factoring by the

torsion subgroup we get a surjective group homomorphism

φ :
∏
D

qZ
i → q

∗Z.

This can be trivially extended to include 0 and∞. Now we use the surjective
homomorphism

lim : q
∗Z → qZ ∪ {0,∞}

constructed above and finally the composition lim ◦φ is the limit map that
proves that the sequence qZ

i approximates qZ ∪ {0,∞}.
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4 Noncommutative example

4.1 Let Sq = Sq(C) be the structure on C̄ = P1(C) = C ∪ {∞} with
the standard Zariski language extended to include the predicate Γ̄ and the
constant symbol q, interpreted as Γ̄q and q, correspondingly.

We need to clarify the interpretation of multiplication on C̄. We consider
the graph P ⊆ C3 of multiplication on C (P (x, y, z) ≡ x · y = z) and extend
it to P̄ ⊆ (C̄)3, its Zariski (and metric) closure. Clearly, P̄ is not the graph
of a function anymore, namely

� P̄ (0,∞, z) for every z ∈ C̄.

We write this fact equivalently in the form 0 · ∞ = C̄.
Note, that we also have Γ̄ ⊂ C̄ and the multiplication on Γ̄ (see 3.4 which

we consider to be given by the restriction P̄ ∩ Γ̄3. We use correspondingly
the notation

0 ·Γ∞ = Γ̄, 0 ·C∞ = C̄

to express, when necessary, the fact that multiplication is carried out in terms
of the substructure or the whole structure.

Remarks. 1. In this topological language the relation

Eq(x1, x2) :≡ ∃γ ∈ Γ̄qx2 = γx1

is closed and defines on C∗ an equavalence relation (Γ-orbits).
2. In case q = 1, the above relation on C∗ is trivial.

Proposition Suppose the assumptions of 3.5 are satisfied, that is

lim
D

Γ̄qi = Γ̄q.

Then
(i) There exists a specialisation

π :
∏
i

Sqi/D → Sq

realising an approximation of Sq by Sqi along D.
(ii) In particular, Sq is quasi-compact.
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(iii) Moreover, in case when Γq is infinite, one can choose π so that for
every x ∈

∏
i Sqi/D,

π(x ·
∏
i

Γqi/D) = cΓ̄q, for some c ∈ C∗.

Proof We construct a specialisation π using limD . Note that the universe of∏
i Sqi/D is ∗C̄. We fix from now on the notation

∗Γ :=
∏
i

Γqi/D.

First set
π0(γ) = limD(γ), for γ ∈ ∗Γ,
π0(u) = u, for u ∈ C̄

We claim that π0 preserves Zariski predicates on ∗C̄. Recall the following.

Fact ([8]) Γ satisfies the Lang property and so, for any algebraic variety
V ⊆ C̄n, Γn ∩ V is a finite union of cosets of definable (in the language of
groups) subgroups of Γn. Moreover, if V is C-definable, then so are the cosets.

It follows that V (∗C̄)∩∗Γ is preserved by limD, so π0 is a Zariski topology
preserving map on ∗Γ.

Clearly, π0 also preserves the predicate Γ. Now extend π0 to a total spe-
cialisation π : ∗C̄→ C̄, for Zariski (algebraic) predicates. Since π0 preserves
Γ, so does π. This proves (i).

The statement (ii) of the proposition follows when one considers qi = q
for all i, as in 2.2.

(iii) We do this by extending π0 to π in a more elaborate way, constracting
extensions πα, α < 2ℵ0 (assuming CH). Let πα be constracted, with domain
A = Aα, invariant by multiplication by ∗Γ by assumption. We may assume
that A is a multiplicative subgroup. We need to extend it to a new element
x ∈ ∗C.

The case when x is transcendental over A is easy, so we assume x is
algebraic over A and satisfies

xn + a1x
n−1 + . . .+ an = 0, ai ∈ A (2)

In case πα(ai) ∈ C for all i, clearly π(x) is forced to be finite (that is in C).
So we assume that at least for one positive j ≤ n, πα(aj) =∞. Among such
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aj we choose one that satisfies the maximality property:

πα

a 1
i
i

a
1
j

j

 ∈ C, for all i

equivalently

πα

(
aji
aij

)
∈ C, for all i. (3)

Now, by induction hypothesis, there exists γ0 ∈ ∗Γ such that πα(ajγ0) ∈ C∗.
For some integer 0 ≤ k < j, there is γ1 ∈ ∗Γ such that qkγ0 = γj1. In other
words, the order of aj in the corresponding valuation is equal to that of γ−j1 .

Set y := xγ1. Then (2) is equivalent to

yn + a1γ1y
n−1 + . . .+ ajγ

j
1y

j + . . .+ anγ
n = 0.

Note that by our choices, for the new coefficients,

πα(aiγ
i
1) ∈ C iff πα(ajiγ

ij
1 ) ∈ C iff πα(ajia

−i
j ) ∈ C

and each is true by (3). It follows that we can extend πα to πα+1 so that
πα+1(y) = c ∈ C∗, so (iii) is satisfied in the end of the inductive process. �

4.2 Noncommutative 2-tori. Consider a C-algebra Aq generated by “op-
erators” U,U−1, V, V −1 satisfying the relation

V U = qUV,

for some q as above. We continue with the rest of notation as above.
Fix a pair (u, v) ∈ C∗×C∗. We will construct two Aq-modules M|u,v> and

M<v,u|.
The module M|u,v> generated by elements labeled {u(γu, v) : γ ∈ Γ}

satisfying
U : u(γu, v) 7→ γuu(γu, v)
V : u(γu, v) 7→ v u(q−1γu, v)

(4)

Define also the module M<v,u| generated by {v(γv, u) : γ ∈ Γ} satisfying

U : v(γv, u) 7→ uv(qγv, u)
V : v(γv, u) 7→ γv v(γv, u)

(5)
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Eventually we would like to see the both modules as submodules of an
ambient module, which in case q is a root of unity will coincide with each of
the modules, that is M|u,v> = M<v,u| in this case.

Now let φ : C∗/Γ → C∗ be a (non-definable) “choice function” which
chooses an element in every class uΓ and Φ = rangeφ, a set of representatives
of C∗/Γ. We will work with Φ2 = Φ × Φ, a set of representatives of C∗/Γ ×
C∗/Γ.

Let
Uφ := {γ1 · u(γ2u, v) : 〈u, v〉 ∈ Φ2, γ1, γ2 ∈ Γ}

a subset of ⋃
u,v

M|u,v>

and
Vφ := {γ1 · v(γ2v, u) : 〈u, v〉 ∈ Φ2, γ1, γ2 ∈ Γ},

a subset of ⋃
v,u

M<v,u|

Our language for the structure will have unary predicates U and V for the
sorts Uφ and Vφ.

We will also consider the definable sets

C∗Uφ := {x · u(γu, v) : 〈u, v〉 ∈ Φ2, x ∈ C∗, γ ∈ Γ}

C∗Vφ := {y · v(γv, u) : 〈u, v〉 ∈ Φ2, y ∈ C∗, γ ∈ Γ},
which can be defined as sets of pairs factored by an equivalence relation E
that identifies γ ∈ Γ as an element of C∗ :

C∗Uφ = (C×Uφ)/E, C∗Vφ = (C×Vφ)/E.

We also consider the pairing

〈· | ·〉 : Vφ ×Uφ → Γ

(as a ternary relation on V×U×C) defined as follows. For qs v(qmv, u) ∈ Vφ

and qr u(qku, v) ∈ Uφ set

〈qs v(qmv, u)|qr u(qku, v)〉 = qr−s−km (6)
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And let 〈qs v(v′, u)|qr u(u′, v)〉 not defined (the ternary relation does not
hold) if v′ /∈ Γ · v ∨ u′ /∈ Γ · u.

We also agree to consider the pairing on Uφ ×Vφ setting

〈qr u(qku, v)|qs v(qmv, u)〉 = qkm+s−r = 〈qs v(qmv, u)|qr u(qku, v)〉−1

which corresponds to taking the complex conjugate of (6).

Remark 1. The definable relations on U (and an analogous on V)

∃γ1, γ2 ∈ Γ∃b ∈ V (〈b|a1〉 = γ1 & 〈b|a2〉 = γ2)

is an equivalence relation. An equivalence class defined by this relation has
the form

{γ′u(γ′′u, v) : γ′, γ′′ ∈ Γ}

for some u, v ∈ Φ. Consequently, the pairing uniquely determines the mod-
ules M|u,v> and M<v,u| once any of u(γu, v) or v(γv, u) is known.

We will call the 3-sorted structure (Uφ,Vφ,C∗) with the action of U and
V satisfying (4), (5) and a pairing a (complexified) quantum 2-torus
T 2
q (C).

Remark 2. For q root of unity T 2
q (C) was, in fact, constructed in [6],

in a different language.

Remark 3. It is possible and crucial for applications to consider exten-
sions of Aq by other operators and corresponding expansion of this structure
by other sorts, that can be interpreted as eigenvectors of the new operators,
with the pairing extended to the new sorts. We do some of this in [7].

Remark 4. It is useful to also use another equivalent system of notation
and write symbolically, for a vector a :

a =
∑
γ∈Γ

cγu(γu, v),

if
〈a|u(γu, v)〉 = cγ
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and the pairing with all other u-elements is 0. Analogously, with respect to
v-elements.

In particular,

v(qmv, u) =
∑
m

qkmu(qku, v),

u(qku, v) =
∑
p

q−kpv(qpv, u).

4.3 The ∗-conditions and the case q = 1. In noncommutaive geometry
an important role is played by the extra ∗-conditions. In case of the non-
commutative tori it is the assumption that U and V must be considered as
unitary operators. This will have the consequence that the eigenvalues of U
and V are on the unit circle S (complex numbers of modulus 1) and so we
will be forced to consider just the substructure of (Uφ,Vφ,C) with u, v ∈ S.

In case q = 1 (without ∗-assumptions) Φ = C∗ and every element of Uφ

as well as Vφ is determined just by (u, v) ∈ C∗×C∗. So, in fact, each of these
sorts can be simply identified with the algebraic 2-torus C∗×C∗ (we can say
that the bundles are trivial) and the actions of U and V are definable in the
usual algebraic (Zariski) structure on C∗.

Under the assumption that U and V are unitary we will get the corre-
sponding classical structure on S2.

4.4 Proposition. Given q ∈ C any two structures of the form T 2
q (C) are

isomorphic over C. In other words, the isomorphism type of T 2
q (C) does not

depend on the system of representatives Φ.
Proof Let π : (U,V)φ → (U,V)ψ be a partial elementary monomor-

phism such that if 〈u, v〉 ∈ D = domπ then 〈uqk, vqm〉 ∈ domπ, for all
k,m ∈ Z. We want to extend π to a new coset ueq

Z × veqZ.
We may assume that 〈ue, ve〉 ∈ Φ2. Let 〈u0, v0〉 ∈ F2 satisfy

〈ue, ve〉_D ≡ 〈u0, v0〉_π(D).

Consider the bases {u(qkue, ve) : k ∈ Z} and {v(qkve, u) : k ∈ Z} satisfying
(4),(5) and (6). Let 〈ug, vg〉 the Φ point of the coset u0q

Z × v0q
Z.

We want to find a subset of Uψ, {qn(k).u(qkug, vg) : k ∈ Z}, and a subset
of Vψ, {qm(k).v(qkvg, ug) : k ∈ Z}, satisfying (4), (5) and (6) for u0, v0 when
we set

u(qku0, v0) := qn(k).u(qkug, vg), v(qkv0, u0) := qm(k).v(qkvg, ug), all k ∈ Z.
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By assumptions u0 = qsug, v0 = qtvg, for some s, t ∈ Z. Set

u(u0, v0) := qstu(qsug, vg) and u(qku0, v0) := vk0V
−ku(u0, v0), for k ∈ Z.

This satisfies (4) by construction. Moreover,

u(qku0, v0) = qkt+st.u(qk+sug, vg) (7)

Define

v(v0, u0) := v(qtvg, ug) and v(qkv0, u0) := u−k0 Ukv(v0, u0), for k ∈ Z,

which satisfies (5), and we also have

v(qmv0, u0) = q−sm · v(qm+tvg, ug) (8)

One can now see that by definition

〈v(u0, v0)|u(v0, u0)〉 = 〈v(qtvg, ug)|qst · u(qsug, vg)〉 = 1,

〈v(qmv0, u0)|u(qku0, v0)〉 = 〈q−sm · v(qm+tvg, ug) | qst+kt · u(qsug, vg)〉 =
= q−sm−st−kt.〈v(qm+tvg, ug) | u(qk+sug, vg)〉 = qkm

.

So, the two (U, V )-systems are isomorphic.

4.5 Compactification of T 2
q . We introduce a topological structure T̄ 2

q (C)
such that T 2

q (C) is open in the former. This is a 3-sorted structure (Ūφ, V̄φ, C̄),
with C̄ as in 4.1.

We extend the sort U to Ū.
Set

Ūφ := {γ1 · u(γ2u, v) : 〈u, v〉 ∈ Φ2, γ1, γ2 ∈ Γ̄}

and
V̄φ := {γ1 · v(γ2v, u) : 〈u, v〉 ∈ Φ2, γ1, γ2 ∈ Γ̄}.

These is extended naturally to C̄Ūφ and C̄V̄φ as before.

With the new elements the action is defined as the binary relation C̄Ū→
C̄Ū, so multivalued at some points.

• U : x · u(0 · u, v) 7→ 0 ·C x · u(0 · u, v),

• U : x · u(∞ · u, v) 7→ ∞ ·C x · u(∞ · u, v),
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• U−1 : x · u(0 · u, v) 7→ ∞ ·C x · u(0 · u, v),

• U−1 : x · u(∞ · u, v) 7→ 0 ·C x · u(∞ · u, v),

• V : x · u(0 · u, v) 7→ vΓ̄ · u(0 · u, v),

• V : γ · e(∞ · u, v) 7→ vΓ̄ · u(∞ · u, v).

Similarly the action of U and V on V̄.
We also extend the pairing to the extra elements

〈γ′v(0 · v, u)|γ′′u(γu, v)〉 = Γ̄, 〈γ′v(∞ · v, u)|γ′′u(γu, v)〉 = Γ̄
〈γ′v(γv, u)|γ′′u(0 · u, v)〉 = Γ̄, 〈γ′v(γv, u)|γ′′u(∞ · u, v)〉 = Γ̄

for every γ, γ′, γ′′ ∈ Γ̄.
This completes the description of T̄ 2

q (C).

Remark The structure T̄ 2
q (C) is definable in the structure T 2

q (C).

4.6 Topology on T̄ 2
q . We assume closed:

• any point in sorts Ū, V̄ and C̄;

• all Zariski closed subsets of C̄n;

• Ū, V̄, C̄Ūφ and C̄V̄φ;

• the graphs of the actions of C̄ on C̄Ūφ and C̄V̄φ;

• the graphs of the actions of U and V on C̄Ūφ and C̄V̄φ;

• the subset Γ̄ of C̄;

• the graph of the pairing 〈 · | · 〉;

• all sets positive type-definable from the above.

4.7 Theorem Suppose the assumptions of 3.5 are satisfied, that is

lim
D

Γ̄qi = Γ̄q.

Then there exists a specialisation

σ :
∏
i

T̄ 2
qi
/D → T̄ 2

q
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realising an approximation of T̄ 2
q by T̄ 2

qi
along D.

In particular, T̄ 2
q is quasi-compact.

For q = 1 T̄ 2
qi

converge to the classical 2-torus compactified by 0 and ∞
and the ∗-version of T 2

qi
converge to S2.

Proof We use the Proposition of 4.1 and the specialisation π constructed
therein.

We define σ(z) := π(z), for z ∈ ∗C̄ (so in sort C̄). This preserves Zariski
topology on C̄ and preserves Γ̄.

For each Γ-coset π(u∗Γ) we can choose, by 4.1(iii) a representative c from
C∗, denote this representative ψ(u). In case π(u) is already in C∗ we set
ψ(u) = π(u). Note that by our definition π(u)ψ(u)−1 ∈ Γ̄.

Now we want to define σ on Ūφ and V̄φ.
First we introduce, for v ∈ ∗C̄ and γ ∈ ∗Γ̄, functions t(v) and a(γ),

t(v) =


0 if π(v) ∈ C∗,
+∞ if π(v) = 0,
−∞ if π(v) =∞.

a(γ) =


n if π(γ) = γn ∈ Γ,
+∞ if π(γ) =∞,
−∞ if π(γ) = 0.

We are going to use the expression a(γ) · t(v), which we define to be 0 if one
of the factors is 0, and otherwise calculate it by natural rule as a product of
∞ with a finite number or ∞ taking the signs into account. So, a(γ) · t(v) is
always 0, +∞ or −∞. Now we interpret the expression

qa(γ)·t(v) =


1 if a(γ) · t(v) = 0,
∞ if a(γ) · t(v) = +∞,
0 if a(γ) · t(v) = −∞.

Denote also δ(γ, u) := π(γu)ψ(u)−1. Note that for u ∈ ∗Φ and γ ∈ ∗Γ, we
get δ(γ, u) ∈ Γ̄.

We set for x ∈ ∗C̄, γ ∈ ∗Γ̄ and u, v ∈ ∗Φ :

σ :

{
x · u(γ · u, v) 7→ π(x) ·C qa(γ)·t(v) · u(δ(γ, u) · ψ(u), ψ(v))
x · v(γ · v, u) 7→ π(x) ·C qa(γ)·t(u) · v(δ(γ, v) · ψ(v), ψ(u))

So, σ preserves Ū, V̄ and C̄Ū, C̄V̄.
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Also, clearly

σ :

{
Uu(γu, v) 7→ σ[Uu(γu), v)]
V v(γv, u) 7→ σ[V v(γv, u)]

that is preserves the action of U on C̄Ū and the action of V on C̄V̄.

Claim σ respects the action of V on C̄Ū as well as the action of U on C̄V̄.
Proof We check it for V. We have

x · u(γ · u, v) 7→σ π(x) ·C qa(γ)·t(v) · u(δ(γ, u) · ψ(u), ψ(v)) 7→V

7→V π(v) ·C π(x) ·C qa(γ)·t(v) · u(q−1δ(γ, u) · ψ(u), ψ(v))

and

x·u(γ·u, v) 7→V v·Cx·u(q−1γ·u, v) 7→σ π(xv)·Cqa(q−1γ)·t(v)u(δ(q−1γ, u)ψ(u), ψ(v)) =

= π(x) ·C π(v) ·C qa(q−1γ)·t(v)u(q−1δ(γ, u)ψ(u), ψ(v)).

Recall that V is in general a multivalued operation (relation) and so is the
multiplication on C̄ and Γ̄. So it is enough to check that

π(v) · qa(γ)·t(v) = C̄ (9)

or
π(v) · qa(γ)·t(v) = π(v) · qa(q−1γ)·t(v), both sides singletons. (10)

The latter happens if t(v) = 0, so we assume this is not the case. Then

t(v) = +∞ or t(v) = −∞, (11)

respectively π(v) = 0 or π(v) =∞. It is also clear that under the assumptions
(10) holds unless

a(γ) = 1 or a(γ) = 0. (12)

So we may assume (11) and (12), which splits into four cases:

(i) t(v) = +∞, π(v) = 0, a(γ) = 1

(ii) t(v) = −∞, π(v) =∞, a(γ) = 1

(iii) t(v) = +∞, π(v) = 0, a(γ) = 0

(iv) t(v) = −∞, π(v) =∞, a(γ) = 1
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In case (i) qa(γ)·t(v) = q+∞ =∞ and we have (9).
In case (ii) qa(γ)·t(v) = q−∞ = 0 and we have again (9).
In case (iii) qa(γ)·t(v) = q0 = 1 and π(v) · qa(γ)·t(v) = 0. At the same time

a(q−1γ) = −1, qa(q−1γ)·t(v) = q−∞ = 0, so π(v) · qa(q−1γ)·t(v) = 0, which gives
(10).

In case (iv), similarly, π(v) · qa(γ)·t(v) =∞ = π(v) · qa(q−1γ)·t(v).
So σ preserves V. Same argument proves that it preserves U. Claim proved.

Claim σ respects the pairing.
Proof Suppose 〈v(γ1 · v, u) | u(γ2 ·u, v)〉 = γ, for γ1, γ2, γ ∈ ∗Γ̄, or rather

the corresponding ternary relation holds between v(γ1v, u), u(γ2u, v) and γ.
We want to prove that the triple σv(γ1v, u), σu(γ2u, v) and σγ satisfy the
same relation.

We may assume that γ1 and γ2 are not in {0,∞}, since otherwise the
statement is trivial. We have then

〈σv(γ1 · v, u) | σu(γ2 · u, v)〉 =

= 〈qa(γ1)·t(u)v(δ(γ1, v) · ψ(v), ψ(u)) | qa(γ2)·t(v)u(δ(γ2, u) · ψ(u), ψ(v))〉 =

= qa(γ1)·t(u) · q−a(γ2)·t(v)〈v(δ(γ1, v) · ψ(v), ψ(u)) | u(δ(γ2, u) · ψ(u), ψ(v))〉.
We are done if δ(γ1, v) or δ(γ2, u) is in {0,∞}, so we assume that neither
holds. This implies that π(γ1v), π(γ2u) ∈ C∗.

Furthermore, if both π(v) and π(u) are in C∗, then so are π(γ1) and π(γ2),
which by definition implies γ1 and γ2 are standard, that is of the form qm,
m ∈ Z. In this case also π(v) = ψ(v), π(u) = ψ(u) and the statement of the
claim holds.

So we may assume that one of these, say π(u) is 0 or ∞. Respectively,
we will then have π(γ2) is ∞ or 0, t(u) is equal to +∞ or −∞ and a(γ2) is
equal to +∞ or −∞.

Consider now the case π(v) ∈ {0,∞}, so t(v) ∈ {+∞,−∞} and a(γ1) ∈
{+∞,−∞}. We can see from the above that both a(γ2) · t(v) and a(γ1) · t(u)
are equal to +∞, so 〈σv(γ1 · v, u) | σu(γ2 · u, v)〉 = Γ̄ and we are done.

In the case π(v) ∈ C∗, t(v) = 0, ψ(v) = π(v) and qa(γ2)·t(v) = 1. Also,
π(γ1) ∈ C∗, π(γ1) = qm, a(γ1) = m ∈ Z. Hence,

〈σv(γ1 · v, u) | σu(γ2 · u, v)〉 = qm·t(u)

Note that by definition γ1, γ2 and γ can be identified in
∏

Γqi/D with qm,
qκ and qmκ correspondigly, for m as above and κ nonstandard. Now one
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checks that since π(qκu) ∈ C∗, a(qκ) = t(u). Also, it follows from definitions,
π(qκ) = qa(qκ) = qt(u) and π(qmκ) = qmt(u). That is π(γ) = qmt(u). This proves
the claim.

The main statement of the theorem follows. The q = 1 statement follows
from 4.3. �

5 Approximation by finite structures

5.1 Approximation by finite fields. According to 2.1 we discuss the
approximation of a compactification K̄ = K∪{∞} = P1(K), when speaking
of an approximation of a field K. The standard topology that we will assume
for K̄ is the topology generated by the Zariski topology on K̄, that is the
smallest quasi-compact topology T extending the Zariski topology. Equiva-
lently, by [5], these are the fields K such that for any elementary extension
∗K � K there is a specialisation (place) π : ∗K → K.
Conjecture. For an infinite field, K̄ is quasi-compact iff K is algebraically
closed or K is isomorphic to one of the known non algebraically closed locally
compact fields: R or finite extension of Qp or Fp{t}.

5.2 Proposition. (i) Any algebraically closed field K of cardinality con-
tinuum with respect to the Zariski language is strongly approximable, but
not perfectly approximable, by finite fields.

(ii) The field of reals R in the field language is not approximable by finite
fields.

(iii) No locally compact field, other than algebraically closed, is approx-
imable by finite fields.

Proof (i)
∏

DMn = F for Mn finite fields is a pseudofinite field of cardinality
continuum. Choose Mn and D so that char F = charK. A pseudofinite field
is not algebraically closed, which immediately implies that we don’t have a
perfect approximation.

We will construct a total surjective specialisation π : F→ K̄ = K ∪{∞}.
Obviously there is a partial specialisation, in fact embedding, of the prime
field of charF into K. Suppose we have constructed partial π : F → K̄ with
|domπ| < 2ω. We want to show that
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a) given a ∈ F \ domπ we can extend π to a;
b) given b ∈ K we can extend π to some a ∈ F so that π(a) = b.
For a) just note the general fact that any partial specialisation from a

field into an algebraically closed field can be extended to a total one.
For b) choose a ∈ F \ acl(domπ). Then defining π(a) := b is consistent

with π being a specialisation.
(ii) It is known ([10]) that F is a pseudo-algebraically closed field, that is

any absolutely irreducible variety C over F has an F-point.
Claim. The affine curve C given by the equations

x2 + y2 + 1 = 0;
1

x2
+ z2 + 2 = 0

is irreducible over C and so is absolutely irreducible.
Proof. It is well known that x2 + y2 + a = 0, for a 6= 0, with any of the

point removed is biregularly isomorphic to C, and so irreducible. For the same
reason the subvariety of C2 given by 1

x2 + z2 + 2 = 0 is also irreducible. We
also note that the natural embeddings of both varieties into P2 are smooth.

The curve C projects into (x, y)-plane as the curve Cxy given by x2 +y2 +
1 = 0 and into the (x, z)-plane as the curve Cxz given by 1

x2 + z2 + 2 = 0.
Suppose towards a contradiction that C = C1∪C2 with C1 an irreducible

curve, C1 6= C, and C2 Zariski closed. We denote C̄, C̄1 and C̄2 the corre-
sponding closures in the projective space P3.

Consider the projection prxy : C̄1 → C̄xy. This is surjective and the order
of the projection is either 1 or 2. In the second case pr−1

xy (a)∩C̄1 = pr−1
xy (a)∩C̄

for all a ∈ C̄xy, so C = C1 and we are left with the first case only. In this
case prxy is an isomorphism between C̄1 and C̄xy. It is also clear in this case
that C2 must be a curve, and prxy also an isomorphism from C̄2 to C̄xy.
The points of intersection of C1 and C2 are the points over a ∈ Cxy where
|pr−1

xy (a) ∩ C| = 1. One immediately sees that this can only be the points
where z = 0, x2 = −1

2
, y2 = −1

2
.

We can apply the same arguments to the projection prxz onto C̄xz and
find that the points of intersection of C1 and C2 must satisfy y = 0, x2 = 1
and z2 = −2. The contradiction. Claim proved.

Now we prove that the existence of a total specialisation π : F→ R∪{∞}
or π : F→ R ∪ {+∞,−∞} leads to a contradiction.

By above there exist a point (x, y, z) in C(F). Then either π(x) or π( 1
x
) ∈

R (are finite). Let us assume π(x) ∈ R. Then necessarily π(y) 6= ∞, since
π(x)2 + π(y)2 + 1 = 0, but the latter contradicts that x2 + y2 ≥ 0 in R.
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(iii) If L is a residue field for a valued field K, then the residue map
K̄ → L̄ is a place. So assuming there is a sujective place F̄ → K̄ we get a
suregctive place F̄→ L̄. This is not possible for a PAC-field, by [10], Corol-
lary 11.5.5. �

5.3 The following, we believe, is crucial for discrete approximation for gauge
field theories.
Problem

1. Is the group SO(3) approximable by finite groups in the group lan-
guage?

2. More generally, let G be a compact simple Lie group. Is G approx-
imable by finite groups in the group language? Equivalently (assuming for
simplicity the continuum hypothesis), is there a sequence of finite groups Gn,
n ∈ N, an ultrafilter D on N and a surjective group homomorphism∏

n

Gn/D → G.

Remark This problem has an easy solution (in fact well-known to physicists)
if we are content with Gn to be quasi-groups, that is omit the requirement
of associativity of the group operation:

For each n choose an 1
n
-dense finite subset G(n) ⊂ G of points. For

a, b ∈ G(n) set a ∗ b to be a point in G(n) which is at a distance less than 1
n

from the actual product a · b in G. Now set, for γ ∈
∏

nGn,

lim γ = g iff {n ∈ N : dist(γ(n), g) ≤ 1

n
} ∈ D,

which is in fact the standard part map. Then clearly

lim(γ1 ∗ γ2) = lim γ1 · lim γ2,

that is the map is a homomorphism.
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