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1 Introduction

1.1 Our motivation for working on the subject presented below comes from
the realisation of the rather paradoxical situation with the mathematics used
by physicists in the last 70 or so years. Physicists have always been ahead
of mathematicians in introducing and testing new methods of calculations,
leaving to mathematicians the task of putting the new methods and ideas on a
solid and rigorous foundation. But this time, with developments in quantum
field theory huge progress achieved by physicists in dealing with singularities
and non-convergent sums and integrals (famous Feynman path integrals) has
not been matched so far, after all these years, with an adequate mathematical
theory. A nice account of some of these methods with a demonstration of
challenging calculations can be found in [6], and more detailed account in
[7] (Chapter 2. The basic strategy of exctracting finite information from
infinities).

One may suggest that the success in developing this calculus in the ab-
sence of a rigorous mathematical theory is due to the fact that the physicist,
in fact, uses an implicit or explicit knowledge of the structure of his model
which is not yet available in mathematical terms. A beautiful and honest
account by a mathematician attemting to translate physicists’ vision into a
mathematical concept provides the introductory section of [10]. In particu-
lar, many formulas which to the mathematician’s eye are defined in terms
of a metric or a measure are not what they look. Typically, it is crucial
that discrete approximations to the continuous models have the same type
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of symmetries or other structural properties, though the formula does not
say this.

1.2 Model theory and logic in general has an obvious advantage over gen-
eral mathematics in this situation. The logician is not restricted by any
conventional mathematics and is ready to deal with any type of structure at
all. Moreover, modern model theory has worked out, in fact, a very efficient
hierarchy of types of structures (stability theory and beyond), and has a cru-
cial experience in introducing new tailor-made structures to accommodate
and deal with specific mathematical problems. One particularly relevant
class of structures was discovered by Hrushovski and the author [5] in an at-
tempt to identify and characterise, essentially, “logically perfect” structures,
or more technically, the top level of the stability hierarchy. These are Zariski
structures (in some variation called also Zariski geometries), defined in very
general terms of geometric flavour (see below) and modelled on algebraic va-
rieties over algebraically closed fields equipped with relations corresponding
to Zariski closed sets. The one-dimensional objects in this class have been
characterised as finite covers of algebraic curves, which is generally quite sat-
isfactory and has led to important applications. But the structure ”hidden”
in the finite covers makes, in general, the object not definable in the under-
lying algebraically closed field. The analysis of these in [2], [4] and [3] shows
that these ”nonclassical” structures are of noncommutative geometric origin,
essentially of the same nature as structures of quantum physics.

This link between model theory of Zariski structures, noncommutative
geometry and physics is essential part of what is presented in the article.

1.3 The process of understanding the physical reality by working in an
ideal model can be interpreted as follows. We assume that the ideal model
Mideal is being chosen from a class of “nice” structures, which allows a good
theory. We suppose that the real structure Mreal is “very similar” to Mideal,
meaning by this that the description of Mideal (as a set of statements) has a
large intersection with the corresponding description of Mreal. The notion of
“large” is of course relative and can be formalised dynamically, by assuming
that Mideal is approximated by a sequence Mi of structures and Mreal is one
of these, Mi = Mreal, sufficiently close to Mideal. The notion of approxima-
tion must also contain both logical (qualitative) and topological ingredients.
Topology gives us a way to speak of “nearness” between points and events.
Naturally, the reason that we wouldn’t distinguish two points in the ideal

2



model Mideal is that the corresponding points are very close in the real world
Mreal, so that we do not see the difference (using the tools available). In the
limit of the Mi’s this sort of difference will manifest itself as an infinitesimal.
In other words, the limit passage from the sequence Mi to the ideal model
Mideal must happen by killing the infinitesimal differences. This corresponds
to taking a specialisation (“equations” preserving map) from an ultraproduct∏

D Mi to Mideal.

We formalise and study the notion of a structural approximation below.
We give a number of examples that demonstrate that this notion covers well-
known notions of approximation such as:

• limit point in a topological space;

• Gromov-Hausdorff limit of metric spaces;

• deformation of algebraic varieties

We note that the scheme is quite delicate regarding metric issues. In
principle we may have a well-defined metric, agreeing with the qualitative
topology, on the ideal structure only. Existence of a metric, especially the
one that gives rise to a structure of a differentiable manifold, is one of the key
reasons of why we regard some structures as ’nice’ or ’tame’. The problem of
whether and when a metric on M can be passed to approximating structures
Mi might be difficult, indeed we don’t know how to answer this problem in
some interesting cases.

1.4 In the next section we explain how Zariski geometries, introduced and
studied by model-theorists can be used, via noncommutative geometry, to
model physical spaces.

In section 3 we introduce one special type of Zariski geometries corre-
sponding to quantum 2-tori (geometric quantum 2-tori) and in section 4
structural approximation in this class of geometries is studied. It is shown
that a general geometric quantum 2-tori can be structurally approximated
by quantum 2-tori at roots of unity. This is used in section 5 to rigorously
calculate kernels of Feynman propagators for two cases: the free particle and
the quantum harmonic oscillator.
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2 Structures of physics and model theory

2.1 How should a logician think of a structure for physics? We may try to
stick to model-theoretic tradition and imagine the physics universe in a form
of a structure M with a domain M and a collection of basic predicates C,

M = (M, C).
We have to accept that for the physicist it is very sensitive to distinguish
between a formula of the form, say, R and ¬R. In fact the physicist thinks,
often implicitly, of relations of the form of equation

Rf,g(x1, . . . , xn) : f(x1, . . . , xn) = g(x1, . . . , xn)

for certain nice functions, or inequalities

Rf,r(x1, . . . , xn) : |f(x1, . . . , xn)| ≤ r.

So our collection C must be generating a topology on Mn, for every cartesian
power Mn of the universe ( a basis of closed sets of the topology), with
the assumption that the projections (permutations) pri1...ik : Mn → Mk,
(x1, . . . , xn) 7→ (xi1 , . . . , xik) are continuous. Such a structure M = (M, C)
we call a topological structure in [1].

Furthermore, the physicist would want to think that the closed sets are
lines, surfaces and so on, that is we should be able to assign a dimension,
dimR, to every closed set R and its projections, with certain nice properties,
e.g. for an irreducible closed R ⊆Mn,

dimR = dim prR + dim{generic fiber}.
Finally, and very importantly, there must be a meaningful notion of smooth-
ness expressible in terms of the structure. For topological structures with
a good dimension such a notion, called presmoothness, has been found in
[5] (we use the terminology of [1]). An open irreducible set U is said to be
presmooth if, for any irreducible relatively closed subsets S1, S2 ⊂ U, and
any irreducible component S0 of the intersection S1 ∩ S2,

dimS0 ≥ dimS1 + dimS2 − dimU.

Taken together these assumptions lead to a definition of a Zariski structure
(Zariski geometry), in its Noetherian version as in [5], or a more general one,
called analytic Zariski structure as in [1].
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2.2 The paper [5] proves an important classification theorem for a one-
dimensional Zariski geometry M. In the most interesting non-locally modular
case there is a smooth algebraic curve C over an algebraically closed field F
and a surjective map p : M → C(F), all definable in M, so that the fibres of
p are uniformly finite.

This almost reduces Zariski geometry to algebraic geometry, but in fact
the structure hidden in the finite fibres can be quite complicated and in-
teresting on its own, and this in general can not be definable in the field
F. Roughly speaking, there are not enough definable coordinate functions
M → F to encode all the structure on M. The usual coordinate algebra gives
us just C(F) and the rest of the structure M remains hidden.

We have shown in [2] that this difficulty can be overcome if one introduces
an appropriate coordinate algebra of operators A(M), generally noncommu-
tative. This analysis strongly resembles the process that lead physicists of
the 1920th towards the introduction of what nowadays will be identified as
noncommutative geometry.

2.3 In [4] we continued our investigation of possible links between non-
commutative geometry and Zariski structures and developed a construction
which, given an algebraically closed field F and a quantum F-algebra A at
root of unity, produces a Noetherian Zariski structure M. By a reverse corre-
spondence one can recover A as a coordinate algebra of M. In most cases M
is non-classical, that is not definable in F or indeed in any algebraically closed
field. But when A is commutative M is just the affine variety corresponding
to the affine commutative algebra A.

M ←→ A
Zariski operator
geometry algebra

Although [4] developes a systematic procedure only for A at root of unity,
the same or very similar construction produces Zariski geometries (as one
can see in [2] and [3]) from more general quantum algebras. We do not have
precise conditions of when this scheme works but it does in most important
cases. One of the cases is discussed below, section 3.

When A is an operator algebra describing essential physical process, M
could be regarded as the corresponding geometric space where the process
takes place. This was the case in Newtonian physics, the luxury that was
lost with the advent of quantum physics.
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2.4 At this point we would like to mention a different but rather similar
in spirit project undertaken by Isham, Butterfield and Doering in a series
of papers (see e.g.[14], [15]). The aim of their project is to introduce a
mathematical object ”that takes the role of the state space of a quantum
system... Here the state space is to be seen in analogy to classical physics and
does not mean Hilbert space.” The main idea in this approach is to use topoi
in place of the category of sets and classical structures. Isham and Doering
construct a topos associated to a given noncommutative algebra. We remark
here that although technically very different, our construction of a Zariski
geometry associated to a given noncommutative algebra can be seen in a
similar light. We also remark that our approach does not reject completely
the Hilbert space paradigm but rather the Zariski structure emerges as an
object embedded in a Hilbert space. For the reader with a knowledge of the
model theory of differentially closed fields the reference to the following can
be helpful, in order to get a better idea on the sort of connection between
a Hilbert space and a Zariski structure. Recall A.Pillay’s theorem [16] that
states that finite Morley rank substructures of a differentially closed field F
can be seen as Zariski structures in a natural Zariski topology. Now note
that F can be thought as an abstraction for a field of functions, an infinite
dimensional space over the field of constants C.

3 Noncommutative 2-tori

3.1 Let F be an algebraically closed field. Consider an F-algebra Aq gener-
ated by “operators” U,U−1, V, V −1 satisfying the relation

V U = qUV, (1)

for some q ∈ F∗. The algebra Aq is called a quantum (or noncommutative) 2-
torus. When q is a root of unity, Aq is one of the basic examples of a quantum
algebra at root of unity and the construction of a structure associated to Aq
presented below is a modification and generalisation of the one in [4].

We denote
G = {qm : m ∈ Z},

a multiplicative subgroup of F∗.
Fix a pair (u, v) ∈ F∗ × F∗. We will associate to (u, v) two Aq-modules

M|u,v> and M<v,u|, which in case of q root of unity can be identified as two
representations of the same module.
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The module M|u,v> generated by elements labeled {u(gu, v) : g ∈ G}
satisfying

U : u(gu, v) 7→ guu(gu, v)
V : u(gu, v) 7→ v u(q−1gu, v)

(2)

Define also the module M<v,u| generated by {v(gv, u) : g ∈ G} satisfying

U : v(gv, u) 7→ uv(qgv, u)
V : v(gv, u) 7→ gv v(gv, u)

(3)

Eventually we would like to see the both modules as submodules of an
ambient module, which in case q is a root of unity will coincide with each of
the modules, that is M|u,v> = M<v,u| in this case.

Now let φ : F∗/G → F∗ be a (non-definable) “choice function” which
chooses an element in every class uG and Φ = rangeφ, a set of representatives
of F∗/G. We will work with Φ2 = Φ × Φ, a set of representatives of F∗/G ×
F∗/G.

Let
Uφ := {g1 · u(g2u, v) : 〈u, v〉 ∈ Φ2, g1, g2 ∈ G}

a subset of ⋃
u,v

M|u,v>

and
Vφ := {g1 · v(g2v, u) : 〈u, v〉 ∈ Φ2, g1, g2 ∈ G},

a subset of ⋃
v,u

M<v,u|

Our language for the structure will have unary predicates U and V for the
sorts Uφ and Vφ.

We will also consider the sets

FUφ := {x · u(gu, v) : 〈u, v〉 ∈ Φ2, x ∈ F, g ∈ G}
FVφ := {y · v(gv, u) : 〈u, v〉 ∈ Φ2, y ∈ F, g ∈ G},

which can be defined as sets of pairs factored by an equivalence relation that
identifies g ∈ G as an element of F∗ :

FUφ = (F× Uφ)/E, FVφ = (F× Vφ)/E.
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We consider the pairing

〈· | ·〉 : Uφ × Vφ → F

(as a ternary relation on U×V×F) defined as follows. For qs v(qmv, u) ∈ Uφ
and qr u(qku, v) ∈ Vφ set

〈qs v(qmv, u)|qr u(qku, v)〉 = q−km−s+r, (4)

and 〈qs v(v′, u)|qr u(u′, v)〉 not defined (the ternary relation does not hold) if
v′ /∈ G · v ∨ u′ /∈ G · u.

Our structure now consists of 3 sorts Uφ, Vφ and F with the structure of
field on F, the operators U and V acting on the sorts as described above and
the pairing. We will call the structure (Uφ,Vφ,F) a (geometric) quantum
2-torus associated with the Aq above.

3.2 Theorem Given an algebraically closed field F with q,H ∈ F, choice
functions φ and ψ, F∗/G → F∗ and two corresponding quantum tori (Uφ,Vφ,F),
and (Uψ,Vψ,F), there exists an isomorphism over F between the two struc-
tures.

In other words, the definition does not depend on the choice function and
the isomorphism type of the structure is determined by the isomorphism type
of the field F and constants q and H.

For q root of unity the geometric quantum torus is a Noetherian Zariski
structure. (In the general case we expect it to be an analytic Zariski struc-
ture.)

If q 6= 1, the structure is not definable in (F,G) (the field with a predicate
for the subgoup).

The case of q root of unity is proved in [4]. The general case is similar.

Following the theorem we omit mentioning the choice function in the
construction of the geometric tori and refer to these as simply (U,V,F).

3.3 The quantum torus operators were introduced to physics by H.Weyl,
with F = C, the complex numbers,

q = e2πi~,

~ the (reduced) Planck constant, V = exp iP, U = exp 2πiQ, for P,Q the
momentum and position operators satisfying the Heisenberg commutation
relation

QP − PQ = i~I (5)
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(I the identity) from which the Weyl commutation relation (1) follows.
Clearly q is a root of unity of order N if

q = e
2πin

N , ~ =
n

N
, n ∈ N, (n,N) = 1.

We assume from now on that F = C and our parameters are chosen as in
this subsection.

3.4 Note that in the case q is a root of unity of order N the pairing (4)
gives rise to an inner product (· | ·) defined by skew-linearity from

(
u(qku, v) |v(qmv, u)

)
:=

1√
N
〈v(qmv, u)|u(qku, v)〉 =

1√
N
q−km, (6)

(
v(qkv, u) |v(qmv, u)

)
= δkm, (7)

(
u(qku, v) |u(qmv, u)

)
= δkm. (8)

Observe that (6)–(8) can be read as saying that in the module M|u,v〉 =
M<v,u|

u(qku, v) =
1√
N

N−1∑
m=0

q−kmv(qmv, u), (9)

v(qmv, u) =
1√
N

N−1∑

k=0

qkmu(qku, v), (10)

transition formulas between two orthonormal bases.

3.5 In the general case, when q is not a root of unity, physicists work with
the pairing and assume in analogy to (7), (8)

〈v(qkv, u) |v(qmv, u)〉 = δ(k −m),
〈u(qku, v) |u(qmv, u)〉 = δ(k −m),

where the Kronecker delta function is replaced by the Dirac delta function.
For the root of unity case these correspond to

〈v(qkv, u) |v(qmv, u)〉 = Nδkm,
〈u(qku, v) |u(qmv, u)〉 = Nδkm.

(11)
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3.6 Remark Finally note that our structure should be considered a com-
plexification of the quantum 2-torus, since we have not fully taken into
account the extra condition, relevant to physics, that U and V are unitary.

3.7 The ∗-conditions and the case q = 1. In noncommutaive geometry
an important role is played by the extra ∗-conditions. In case of the non-
commutative tori it is the assumption that U and V must be considered as
unitary operators. This will have the consequence that the eigenvalues of U
and V are on the unit circle S (complex numbers of modulus 1) and so we
will be forced to consider just the substructure of (Uφ,Vφ,C) with Φ ⊆ S.

In case q = 1 (without ∗-assumptions) Φ = C∗ and every element of Uφ
as well as Vφ is determined just by (u, v) ∈ C∗×C∗. So, in fact, each of these
sorts can be simply identified with the algebraic 2-torus C∗×C∗ (we can say
that the bundles are trivial) and the actions of U and V are definable in the
usual algebraic (Zariski) structure on C∗.

Under the assumption that U and V are unitary we will get the corre-
sponding classical structure on S2.

4 Structural approximation

4.1 General scheme. We work in the context of topological structures as
in 2.1. We say that a topological structure M = (M, C) is complete if, for
each S(x, y) ∈ C there is P (y) ∈ C such that M ² ∃xS ≡ P. We say M is
quasi-compact (often just compact) if M is complete, every point in M is
closed and for any filter of closed subsets of Mn the intersection is nonempty.

Given a topological structure M and a family of structures Mi, i ∈ I,
in the same language, we say that M is approximated by Mi along an
ultrafilter D on I, if for some elementary extension MD <

∏
Mi/D of the

ultraproduct there is a surjective homomorphism

lim
D

: MD →M.

Remark 1. Assuming the continuum hypothesis in all cases of interest to
us it would suffice to consider for a nonprincipal ultrafilter D just MD =∏

Mi/D.

Remark 2. We allow 0-ary predicates in C, which can be interpreted as
unary predicates on I, defining closed subset of the latter.
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It is not difficult to see the following

4.2 Proposition. Suppose every point of M is closed and M is approxi-
mated by the sequence {Mi = M : i ∈ I} for some I along an ultrafilter D
on I, with MD ℵ0-saturated. Then M is quasi-compact.

According to the proposition we will normally consider only approxima-
tions to quasi-compact structures.

Nevertheless, in many cases we have to deal with an M which is not
quasi-compact. Then we aim to construct a compactification M̄, a super-
structure of M, which is quasi-compact and definable in M. So we reduce
the problem of approximation to M to that of M̄.

4.3 Examples. The following two examples are discussed in [12]

1. LetM be a metric space. Consider, for every positive rational number r
the binary relations d≤r (x, y) and d≥r (x, y), with the interpretation dist(x, y) ≤
r and dist(x, y) ≥ r correspondingly. The sets given by positive existential
formulas in this language form our class C.

4.4 Proposition. Assume M and Mi, i ∈ I, are compact metric spaces
and M is the Gromov-Hausdorff limit of metric spaces along a non-principal
ultrafilter D on I.

Then, for structures M = (M, C) and Mi = (Mi, C),

M = lim
D

Mi,

2. Let Z = (Z,+) be the additive group of integers and Z̄ = Z ∪
{−∞,+∞}, the structure with the ternary relation ”x+ y = z” interpreted
as usual on Z and

• ”x−∞ = −∞” for all x ∈ Z;

• ”x+∞ = +∞” for all x ∈ Z;

• ” +∞−∞ = x” for all x ∈ Z̄.
We set C to consist of the relation ”x+ y = z”, the unary relations x = n for
every integer n and +∞, −∞, and all positive existential formulas in this
language. It is easy to see that (Z̄, C) is quasi-compact. This is one of the
possible compactifications of Z.
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The same language makes sense for the residue classes modulo n extended
by +∞ and −∞ : Z̄/nZ̄.

Below we say that an ultrafilter D on positive integers N is profinite if
for every positive integer m the subset mN belongs to D.

4.5 Proposition. Given an ultrafilter D on positive integers N,
Z̄ = limD Z̄/nZ̄ if and only if D is profinite.

Now we are ready to consider the structural approximation of a quantum
torus at q by quantum tori at roots of unity.

First we determine a compactification (Ū, V̄, C̄) of a quantum torus (U,V,C)
described in section 3. The compactification of C is standard, C̄ = C∪{∞},
the projective complex line. The compactification of U and V is determined
once we determine the compactification of the group G = qZ. The latter is
isomorphic to the additive group Z, if q is not a root of unity, and to Z/nZ if
q is a root of unity of order n. We apply the compactification of the example
above.

This allows us to apply the notion of structural approximation. Note that
physics also requires that qN = exp 2πiM

N
metrically converge to q = exp 2πi~

(M and N positive coprime integers) if we approximate the corresponding
quantum structures. We incorporate this condition into our notion of struc-
tural approximation in the family of quantum tori by including into the lan-
guage C for these structures the 0-ary predicates d≤r (1, q) and d≥r (1, q) which
assess the distance between 1 and the constant q. Equivalently, for M

N
< 1

and ~ < 1, these assess the values of the real numbers M
N

and ~.

4.6 Theorem. In order for a geometric quantum torus at generic q to be
approximated by quantum tori at roots of unity exp 2πiMN

N
, N ∈ N, along an

ultrafilter D on N it is necessary and sufficient that D is profinite and MN

N

metrically converge to ~ along D.
In case q = 1 the necessary and sufficient condition is that MN

N
converge

to 1. In particular, in this case the geometric tori at roots of unity approxi-
mate the classical torus S2.

The proof of this theorem in [12] is built on the extension of the argument
in the proof of 4.5.
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4.7 A practical corollary of the theorem is that in the context of quantum
tori ~ may be replaced by a rational number M

N
, (M,N) = 1, for some ”huge”

integer N with the property that every ”feasible” integer m divides N.
Note that ~ is measured in physical units ”energy”×”time”, so we have to

formulate ~ in some absolute units before applying the above considerations.
We have to make a physical assumption, which appears to be consistent with
some thinking in modern physics (see e.g. p.92 [13], article by S.Majid)

Physics assumption. In some natural physical units

~ =
1

N

for some positive integer N, such that N is divisible by any ”feasible” integer
m.

Here, ”feasible” could mean small enough integer to be tested in physical
experiments.

We are going to discuss consequences of this assumption below, in par-
ticular formulas for the Feynman propagator for the free paricle and for the
quantum harmonic oscillator. These formulas may become false if the cor-
responding integer parameters in the formulas exceed the treschold of the
feasibility in the above sense.

5 Dirac calculus over the 2-torus

5.1 Dirac calculus was initially a heuristic method of calculation of results
of transformations of ”wave functions” (corresponding to states of a physical
system) by operators expressed in terms of Q (position) and P (momentum)
satisfying the Heisenberg commutation relation (5). By effors of D.Hilbert,
J.von Neumann and many other mathematicians this has been developed into
a rigorous mathematical theory (of self-adjoint operators in ”rigged” Hilbert
spaces) which covers most (but not all!) needs of quantum mechanics. By
this theory a wave function is just a particular element of the corresponding
Hilbert space, H, preferably, expressed in terms of the basis of normalised
eigenvectors of the operator Q (or Fourier-dually, of the operator P ). The
most important of such transformation is one by the time evolution oper-
ator depending on the time t,

Kt := e−it
H
~ , (12)
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where H is the Hamiltonian, a self-adjoint operator of the form

H =
P 2

2~
+ V (Q),

V (Q) a function of Q (the potential), often a polynomial.
By specifying V (Q) one determines the type of the physical particle under

consideration, and the physics of the particle is fully determined by the cor-
responding time evolution operator (12). In concrete terms this boils down
to evaluating certain integrals which often turn out to be non-convergent.
So, again, physicists invent various heuristic methods of evaluation of the
integrals justified partially by a mathematical analysis and partially by ex-
perimental tests.

5.2 For Dirac calculus one uses the standard bases of the Hilbert space
H, the basis consisting of eigenvectors |p〉 for the operator P, where |p〉 de-
notes an eigenvector of norm 1 with an eigenvalue p, and the Fourier-dual
basis |x〉 of Q-eigenvectors of norm 1, where again x is the corresponding
eigenvalue. This is in a clear analogy to the classical Hamiltonian system,
a 2-space (in the simplest 1-dimensional case) with two coordinate function,
the momentum p and the position x.

Elements of the Hilbert space, which are eigenvectors of self-adjoint oper-
ators of physical meaning are usually called states. In this sense the Hilbert
space H is the home of the “space of quantum states”, the nearest analogue
of the classical space where the Newtonian physics takes place. We extract
from this arrangement a proper geometric structure - a Zariski geometry.

5.3 Our first step is to replace the operators P and Q with eventually
equivalent (Weyl) operators V = exp iaP and U = exp ibQ, for some a, b ∈ R.
In particular, for a = 1, b = 2π (5) implies, by the Baker-Campbell-Hausdorff
formula, the Weyl commutation relation (1).

Note that a P -eigenvector |p〉 is by definition an eigenvector of V with
eigenvalue exp iap, and similarly with eigenevectors of Q and U.

The whole structure of V - and U-eigenvectors is represented as the geo-
metric quantum 2-torus as described in section 3. This is a Zariski structure.

More generally denote Ua = exp 2πiaQ and V b = exp ibQ, for rational
numbers a and b (U1 := U, V 1 := V, by definition). This will satisfy the
more general form of the commutation relation (1),

V bUa = qab UaV b, qab = exp 2abπi~. (13)
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The structure of Ua- and V b-eigenvectors is by the same reasons as above
represented as the geometric quantum 2-torus (or as the (Ua, V b)-system)

and is a Zariski structure. Moreover, for natural numbers m,n, an (U
1
m , V

1
n )-

system can be seen as an étale covering of the (U, V )-system and the latter
is definable in the former. Altogether, the (Ua, V b)-systems through the web
of étale covers converge to a (Q,P )-system, a linear space with an action
of operators P and Q on it, akin to the Hilbert space H above.

More precisely, there is a map

expa,b : |x〉 7→ u(e2πax, 1),
expa,b : |p〉 7→ v(ebp, 1),

(14)

from H to respective eigenvectors of (Ua, V b)-systems, which allows to treat
|x〉 and |p〉 as limits of u(e2πax, 1) and v(ebp, 1) respectively as a and b con-
verge to 0.

This passes often ill-posed Dirac calculus problems into the context of
Zariski structures ”at roots of unity”.

5.4 The next step is to include the time evolution operator into the Zariski
geometric setting, that is to extend a (Ua, V b)-system to an (Ua, V b, Kt)-
system, for Kt the operator defined by (12) above, for a choice of H.

Consider first the simplest case, the free particle Hamiltonian,

H =
P2

2~
.

We choose to work only with values of time t such that 2πt is rational. This
is quite satisfactory in terms of practical purposes of the physicist.

Now use the exponential correspondence between Q,P and U, V to calcu-
late by the Baker-Campbell-Hausdorff formula (just like physicists do) that
for the Kt defined in (12) for the free particle Hamiltonian above,

KtUK−t = q−πtUV −2πt, KtV K−t = V. (15)

We define an (U, V 2πt, Kt)-algebra as an algebra generated by the three
operators and their inverses and satisfying (13) (with a = 1, b = 2πt) and
(15). Note, by using linear algebra, that in any irreducible finite-dimensional
(U, V 2πt)-module one can define an operator Kt satisfying (15) uniquely, up
to the multiplication by a normalising constant.
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We define an (U, V 2πt, Kt)-system abstractly as an (U, V 2πt)-system with
an action of the (U, V 2πt, Kt)-algebra, extending the action of the (U, V 2πt)-
algebra.

Under a certain choice of the normalising constant an (U, V 2πt, Kt)-system
is determined uniquely, up to isomorphism over C. (In particular, its first-
order theory is categorical in uncountable cardinals). Moreover, we expect
that the system is a Zariski geometry.

5.5 Now we work out the content of the previous subsection in more detail,
assumin that q is a root of unity of order N. We choose t so that 2πt is a
rational number (with a feasible numerator).

Let {u(u, v) : u ∈ C∗, v ∈ Φ} be the system of U -eigenvectors for the
(U, V 2πt, Kt)-system, that is, by definition,

U : u(u, v) 7→ uu(u, v), V 2πt : u(u, v) 7→ v2πtu(u, v).

Note that the dimension of the module is N
2πt

which is an integer according
to the assumption in subsection 4.7.

Denote
s(u, v) := Kt u(u, v), St := q−πtUV −2πt.

Then, it is easy to derive from (15) that for all u ∈ C∗, v ∈ Φ, k ∈ Z :

St s(u, v) = u s(u, v), V 2πkt s(u, v) = v2πkt s(q−2πktu, v). (16)

Using these formulas one gets
(
s(u, v) |u(uq2πkt, v)

)
= c qπtk

2
v−2πkt,

where c = c(u, v2πt) = q−πt (s(u, v) | u(u, v)) .
(17)

In fact c depends only on the corresponding (U, V 2πt, Kt)-module but not on
the concrete choice of u and v.

Moreover, for physically meaningful case, u, v are of modulus 1 and then
U and V 2πt are unitary operators on the inner product space. It follows

c = c0

√
2πt

N
, for some c0 with |c0| = 1.

Finally, we rewrite (17) in the equivalent form

s(u, v) = c0

√
2πt

N

N
2πt

−1∑

k=0

qπtk
2

v−2πktu(uq2πkt, v) (18)
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5.6 Alternative representation and the value of c0
Recall that in the canonical Dirac calculus P : |p〉 7→ p|p〉 and so

e−it
P2

2~ : |p〉 7→ e−
itp2

2~ |p〉.

Since e−ithp
2

= q−tp
2
, in correspondence with (14) and (12)

Kt : v(q2πpt, 1) 7→ q−πtp
2

v(q2πpt, 1),

Recall that in an irreducible (U, V 2πt)-module

u(u, 1) =

N
2πt

−1∑
p=0

v(q2πpt, u).

Hence

Kt : u(1, 1) 7→
√

2πt

N

N
2πt

−1∑
p=0

q−πtp
2

v(q2πpt, 1).

This shows that the right-hand side of the above can be identified asKtu(1, 1),
that is

s(1, 1) :=

√
2πt

N

N
2πt

−1∑
p=0

q−πtp
2

v1,2πt(q2πpt, 1). (19)

Substituting (10) (with corresponding parameters) into (19) we get

s(1, 1) :=

√
2πt

N

N
2πt

−1∑
p=0

q−πtp
2

√
2πt

N
q2πpkt

N
2πt

−1∑

k=0

u(q2πkt, 1) =

=
2πt

N

N
2πt

−1∑

k=0

N
2πt

−1∑
p=0

q−πt(p
2−2pk)u(q2πkt, 1).

Finally we compare the latter with (18) and equate the coefficients in
front of u(q2πkt, 1).

2πt

N

∑

0≤p< N
2πt

q−πt(p
2−2pk) = c0

√
2πt

N
qπtk

2

, (20)
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which can be rewritten, for k = 0, M := N
2πt
, as

M−1∑
p=0

e−i
πp2

M = c0
√
M.

And here finally we can establish the value of the constant

c0 =
1− i√

2
,

as the above is the classical Gauss’ sum (see [9]), for an even (!) integer M :

M−1∑
p=0

e−i
πp2

M =
1− i√

2

√
M.

5.7 The kernel of the Feynman propagator.
This is defined as

〈x1|Kt|x0〉, (21)

where |x0〉 and |x1〉 are position eigenvectors and the formula should be read
as the inner product (pairing) of Kt|x0〉 and |x1〉.

Note that e2πix = q
x
~ . So in accordance with (11) and (14) we rewrite

(21), assuming that xi

~ are rational, i = 0, 1, as

N

2πt
·
(
s(q

x0
~ , 1) |u(q

x1
~ , 1)

)

(note that N in (11) should be now N
2πt
, the dimension of the (U, V 2πt, Kt)-

module). Now use (17) with x0 = 2πtm~, u = q2πtm, x1 = 2π(m + k)t~,
uq2πkt = q2π(m+k)t, to get

(
s(q

x0
~ , 1) |u(q

x1
~ , 1)

)
= c0

√
2πt

N
ei

(x1−x0)2

2t~

some c0 of modulus 1.
We will establish below that the only value for c0 consistent with the

meaning of Kt as the time evolution operator is

c0 =
1− i√

2
=
√−i =

√
1

i
.
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Recall also that by our assumptions

1

N
= ~.

This finally gives us the value for Kt, the kernel of the Feynman propagator
for the free particle,

〈x1|Kt|x0〉 =

√
1

2πi~t
ei

(x1−x0)2

2t~

5.8 The final expression is the well known formula, see e.g. [7], formula
(7.76). The standard method of obtaining this result is to assign a meaning
to the following Gaussian integral

I(a) =

∫

R
e−ax

2/2e−ipxdx

for a = i
t~ . This integral is divergent for imaginary values of a but is con-

vergent for a on the right halfplane. Physicists assume the value of I( i
t~) to

be determined by the analytic continuation of I(z) from the right halfplane
to its boundaries. Note that similarly physicists use the trick with analytic
continuation to give finite meanings to infinitary expressions, e.g. the formula

∞∑
n=1

n3 = ζ(−3) =
1

120

is used to calculate the so called Casimir effect which, remarkably, is testable
by an experiment.

5.9 The same scheme is applicable in the case of the simple Harmonic
oscillator given by the Hamiltonian

H =
P2 + ω2Q2

2~
.

We choose the parameter ω (angular frequency) to be 2π, which is a natural
unit of measure here.

First we obtain an analogue of the formulas (15) for Kt corresponding to
the Harmonic oscillator:
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KtUK−t = q−
1
2

sin 2πt cos 2πtU cos(−2πt)V sin(−2πt) =

= q
1
2

sin 2πt cos 2πtV sin(−2πt)U cos(−2πt); (22)

KtV K−t = q
1
2

sin 2πt cos 2πtU sin 2πtV cos 2πt =

= q−
1
2

sin 2πt cos 2πtV cos 2πtU sin 2πt. (23)

This is a result of calculations in the Banach algebra generated by oper-
ators P and Q and is well-known to physicists.

Next, we fix a value for t such that both sin 2πt and cos 2πt are nonzero
rational numbers. Note that there are infinitely many such because the
equation x2 + y2 = 1 determines a rational curve.

We note that the operators U and V sin(−2πt)U cos 2πt form a pair of Weyl op-
erators and we work with irreducible modules of the (U, V sin(−2πt)U cos(−2πt), Kt)-
algebra defined by relations (1),(22) and (23). It is easy to see that the
dimension of the irreducible modules is N

| sin 2πt| which is an integer by our
assumptions in 4.7.

Now we are able to calculateKtu(u, 1) in terms of the basis of U -eigenvectors,
uniquely up to a constant c0 of modulus 1. This finally produces, similarly to
5.7, the formula for the Feynman propagator for a simple Harmonic oscillator,

〈x2|Kt|x1〉 = c0

√
1

~| sin 2πt| exp πi
(x2

1 + x2
2) cos 2πt− 2x1x2

~ sin 2πt
.

In accordance with the well-known formula [8], p552, for ω = 2π.
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