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In [1] we considered the noncommutative torus T 2
q for q a root of unity,

and in [5] for generic q, which we showed to be approximated, under certain
assumptions, by the structures at roots of unity. Using the idea of structural
approximation from [5] we reduce calculations in the generic case to the
case when q is a root of unity. This allows a rigorous Dirac calculus in the
corresponding structure. We use this to calculate the kernels of the Feynman
propagator for the free particle and the simple harmonic oscillator.

1 Preliminaries

Consider the algebra generated by P,Q satisfying the Heisenberg commuta-
tion relation

QP− PQ = i~ (1)

(here and below in expressions like QP first P is applied).
This algebra is usually represented by actions on various Hilbert spaces

and it generalisations (known also as rigged Hilbert spaces). This results
in calculations in terms of inner products, eigenvectors and eigenvalues of
certain operators expressed in terms of P and Q. These calculations, crucial
for physics, termed generally as Dirac calculus, are far from being rigorous,
often involve making an educated guess on values of nonconvergent integrals.
We present below an alternative approach based on the following:

1.1 We consider Dirac calculus in the context of non-commutative geometry.
Crucially, we aim to represent ensuing non-commutative geometry in terms
of Zariski geometries, as done e.g. in [1]. These structures are analogues and
generalisations of (compact) complex manifolds and the substructure having
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relevance to physics could be seen as a ”real part” of such a Zariski structure,
or rather, the Zariski structure should be seen as a complexification of the
physicist’s one. This approach in general has the two potential advantages:

(i) The physicist’s structure (e.g. the system of eigenstates of an operator
with a discrete spectrum) is embedded in a rich complex geometric structure.

(ii) The topological nature of a Zariski structure allows an analysis of
deformations and approximations.

1.2 In the class of compact Zariski geometries, and more generally, compact
topological structures we can use the notion of a structural approximation,
developed in [5], to replace non-commutaive geometry associated with the
Heisenberg algebra by much nicer objects of finitary type, where Dirac cal-
culus gets rigorous meaning.

This Dirac calculus based on structural approximation looks at the first
glance quite similar to the usual discrete Dirac calculus based on lattices
[2], Ch.12, but as a matter of fact, is essentially different. In particular,
it is based on approximation of ~ by a rational number (in some physical
units), and number-theoretic properties of this rational number are crucial
for obtaining correct formulas of quantum physics.

1.3 We replace the Heisenberg algebra with the Weyl algebra generated by
operators U and V defined as

U = exp 2πiQ, V = exp iP

and, correspondingly, satisfying the commutation relation

V U = qUV, for q = exp ih, h = 2π~

This follows from the Heisenberg commutation relation by the Baker-Campbell-
Hausdorff formula. In the same manner as the structure of a Lie algebra can
replace the structure of a corresponding Lie group, the calculus in the Weyl
algebra (U, V ) serve as an adequate enough substitute for the calculus on the
Heisenberg algebra (P,Q).

More crucially, we observe that the geometry based on the Weyl algebra
(U, V ) with generic value of q has an appropriate structural approximation
by the geometry with q a root of unity (of order N). This shifts everything
into the finitary context, where the usual Hilbert spaces are being replaced
by N -dimensional ones in an adequate way. Here Dirac calculus obtains a
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standard rigorous meaning and we proceed with actual calculations, resulting
in a derivation of formulas for Feynman propagators in two simple cases: for
the free particle and for the simple harmonic oscillator.

2 Noncommutative 2-torus at root of unity

2.1 This was studied in [1] as one of the basic examples of a quantum
Zariski geometry. Below we describe a somewhat different but equivalent
(bi-interpretable) structure.

Let q be a root of unity of order N. We consider the algebra 〈U, V 〉 with
generators U,U−1, V, V −1 and defining relations

V U = q UV, UU−1 = I = V V −1.

Fix u, v ∈ F∗ Consider the irreducible 〈U, V 〉-module Mu,v such that UN =
uNI, V N = vNI on Mu,v. This module is generated by the U -eigenvectors
u(u, v),u(qu, v), ...u(qN−1u, v) (a canonical basis) satisfying

U : u(qku, v) 7→ qkuu(qku, v)
V : u(qku, v) 7→ vu(qk−1u, v)

(2)

Note, that the isomorphism type of the module is determined by the val-
ues uN and vN (which we call the invariants of the module) but our choice
of the ”canonical” basis depends on (u, v), see [1]. It is important to note
that we use the notation u(qku, v) for convenience in our ”metalanguage”
but there is no definable correspondence (u, v)→ u(qku, v) in our language.

Lemma. Any two canonical bases {u(u, v),u(qu, v), ...u(qN−1u, v)} and
{u′(u, v),u′(qu, v), ...u′(qN−1u, v)} given by the condition (2) differ only by
a scalar muliplier, that is for some c 6= 0,

u′(qku, v) = cu(qku, v), k = 0, . . . , N − 1.

Proof. We will have u′(u, v) = cu(u, v) for some c since any two U -
eigenvectors in an irreducible (U, V )-module are proportional. The rest fol-
lows from the definition (2) of the action by V on the bases. �
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Define

v(qmv, u) :=
1√
N

∑
0≤k<N

qkm · u(qku, v) (3)

Then by (2) and (3),

U : v(qkv, u) 7→ uv(qk+1v, u)
V : v(qkv, u) 7→ qkvv(qkv, u)

(4)

We want to think of {u(qku, v) : k = 0, . . . , N − 1} as an orthonormal
basis of an inner product space. This leads to the definition of the pairing
(generalised inner product)

v(qmv, u) ∗ u(qku, v) =
1√
N
qkm

and more generally,

(
N−1∑
k=0

aku(qku, v)) ∗ (
N−1∑
k=0

bku(qku, v)) =
N−1∑
k=0

ak · b−1
k . (5)

Remark. In case F = C, the generalised inner product coincides with
the canonically defined inner product if |ak| = 1 = |bk|, all k.

We can extend this definition to include elements from distinct modules,
defining in this case

u(u′, v′) ∗ u(u, v) = 0, if v′ 6= qmv or u′ 6= qku, for some m, k ∈ Z.

2.2 An (U, V )-system as a structure. Model-theoretically we represent
our structure as consisting of 3 sorts, U,V and F. F has the structure of a
field and

U = {a · u(u, v) : a ∈ F, u, v ∈ F∗},

V = {b · v(v, u) : b ∈ F, u, v ∈ F∗},

with the corresponding pairing

U× V→ F

between the sorts.
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Note, that in this structure the relation (3) makes sense, as well as the
dual to it:

u(qku, v) :=
1√
N

∑
0≤k<N

q−km · v(qmv, u) (6)

2.3 Geometric interpretation
One may interpret an (U, V )-system over F as a pair of line bundles with

”discrete connections”.
Fix v = v0 and consider

{F · u(u, v0) : u ∈ F∗}

as the trivial line bundle with the section (u, v0) 7→ u(u, v0). On this bundle
V acts as a discrete connection xu(u, v0) 7→ v0xu(uq, v0). U acts as the
linear map xu(u, v0) 7→ uxu(u, v0). As v0 varies we may wish to consider
this as a line bundle over F∗ × F∗. But on the whole family of line bundles
{F · u(u, v) : u ∈ F∗}, v ∈ F∗, there is an extra relations which identifies,
for v′ = vqk, k ∈ Z, the vector u(u, v) with qmu(u, v′) for a corresponding
m ∈ Z. In other words, the two line bundles F · u(u, v) and F · u(u, v′) are
equal but trivialised differently.
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Slightly differently we may characterise E as the principal UZ-bundle with
V Z defining the group of connections on the bundle.

Dually there is given a family of line bundles

{F · v(u0, v) : v ∈ F∗}

with the discrete connection U (principal V Z-bundles G with the group of
connections UZ).

On the top of this structure we defined the pairing u(u, v) ∗ v(v′, u′)
providing an interaction between the two families of bundles.

For q a root of unity the pairing organises the family Mu,v of (U, V )-
modules, with the relations (3) between the basis {u(uqn, v) : 0 ≤ n < N}
and the basis {v(vqk, u) : 0 ≤ k < N}.

3 From (U, V ) to (Ua, V b).

3.1 From (U, V ) to (U, V m).
We assume below that q is of a finite order N such that the positive

integer m divides N.
Consider an algebra with generators U, V m and the defining relation

V mU = qmUV m.

This can be naturally identified with the corresponding subalgebra of the
algebra generated by U and V discussed above. Clearly in the above (U, V )-
system the vectors v(v, u) can be seen as eigenvectors of V m with eigenvalue
vm. But, if γ is a root of unity of order m then also v(vγ, u) is an eigenvector
of V m with the same eigenvalue vm. Moreover, any element of the form

m−1∑
p=0

apv(vγp, u)

is an eigenvector of V m with the same eigenvalue vm.
Lemma. Let M be an irreducible (U, V )-module with U-eigenvalues

{uqk : k = 0, . . . , N − 1} and V -eigenvalues {vqn : n = 0, . . . , N − 1}.
This may naturally be considered a (U, V m)-module. Assume m devides N
and p ∈ {0, . . . ,m− 1}.
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Then there is a unique irreducible (U, V m)-submodule M
(m)
uqp,vm of M. Its

V m-eigenvalues are {vmqnm : n = 0, . . . , N
m
−1}, U-eigenvalues are {uqp+km :

k = 0, . . . , N
m
−1} and its canonical systems of V m-eigenvectors is of the form

v̌(vmqnm, uqkm) := a
m−1∑
l=0

v(vqn+lN
m , uqk), n = 0, . . . ,

N

m
, (7)

that satisfy

U : v̌(vmqnm, uqp+km) 7→ uqp+kmv̌(vmq(n+1)m, uqp+km),

in accordance with (4). The invariants of M
(m)
uqp,vm are (u

N
m qp

N
m , vN). M is the

direct sum of its m-submodules M
(m)
uqp,vm , p = 0, . . . ,m− 1.

Proof. It is easy to check that (7) generates an irreducible module and
the dimenion of any irreducible (U, V m)-module has to be equal to N

m
.

Suppose a general V m-eigenvector v =
∑m−1

p=0 apv(vqn+lN
m , u) belongs to

an irreducible (U, V m)-submodule M ′. Then by the general property (4)

U
N
m (v) = u

N
mv and U

N
mv(vqn+lN

m , u) = u
N
mv(vqn+(l+1)N

m , u)

It follows that al = al+1 for all l.
The action of U on the v̌(vmqnm, uqkm) satisfies the required property

by immediate calculation, which also determines the U -eigenvalues in the
submodule. It is easy to see now that for each p

{u(uqp+km, v) : k = 0, . . . ,
N

m
− 1}

are U -eigenvectors in the correspondent submodule and hence the sum of the
m submodules is direct. �

We assume the coefficient a in the definition of v̌(vm, u) to be
√
m−1,

which defines the latter uniquely.
We also rename ǔ(uqp+km, vmqnm) = u(uqp+km, vqn) and note that this

satisfies (6) with regard to v̌(vmqnm, uqp+km).

3.2 Now we can define a canonical relation between an (U, V )-system and
an (U, V m)-system as (étale) covering maps

p1,m : V(U,V ) → V(U,Vm), p(U,Vm) : v(v, u) 7→ v̌(vm, u)
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p1,m : U(U,V ) → U(U,Vm), p(U,Vm) : u(u, v) 7→ ǔ(u, vm)

Lemma 1. An (U, V m)-system is definable in an (U, V )-system along
with the maps p1,m.

Proof is by the explicit construction above.�

We can conversely consider an extension of an (U, V )-system to an (U, V
1
n )-

system by introducing a new operator V
1
n with the defining relations

V
1
nU = q

1
nUV

1
n , (V

1
n )n = V,

where the value of q
1
n is chosen among possible roots of q of order n.

Lemma 2. An (U, V m)-system is definable in an (U, V )-system along
with the maps p1,m.

3.3 System of étale coverings
It follows from above that we can conversely consider an extension of an

(U, V )-system to an (U, V
1
n )-system by introducing a new operator V

1
n with

the defining relations

V
1
nU = q

1
nUV

1
n , (V

1
n )n = V

consider a corresponding (U, V
1
n )-system and construct an étale covering as

above from the (U, V
1
n )-system onto the (U, V )-system.

Obviously, once (U, V
1
n )-system related (by the covering) to the (U, V )-

system is constructed, we can use 3.1 again to add an (U, V
m
n )-system to the

structure.
In case q is a root of unity of order N we will always require that m|N

(otherwise we can replace m with g.c.d.(m,N)). Note that

dimMu,va =
N

a
, where a =

m

n

in this case.
Independently we can extend an (U, V a)-system to an (U b, V a)-system,

for b ∈ Q, with defining relation

U bV a = qabV aU b.

This corresponds to a system of étale coverings extending in the two possible
directions.
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Finally, we have the corresponding formula for the dimension of an irre-
ducible (U b, V a)-module at root of unity of order N,

dimMub,va =
N

ab
(8)

provided N has the divisibility property as above.

3.4 Universal covering
We treat the system of étale coverings of (Ua, V b)-systems as a multi-

sorted structure, its sorts (Ua, V b)-system itself being multi-sorted.
One needs to keep in mind that the symbols u(u, v) and v(v, u) have

different meaning in different (Ua, V b)-systems.
We will use a uniform notation Ma,b

u,v for an irreducible (Ua, V b)-module
and for eigenvectors:

ua,b(u, v),ua,b(uqab, v) . . . ,ua,b(uqkab, v), . . .

is a basis of Ua-eigenvectors in the module, and

va,b(v, u),va,b(vqab, u) . . . ,va,b(vqkab, u) . . .

is a basis of V b-eigenvectors in the same module.
Correspondingly, (2), (4) become

Ua : ua,b(uqkab, v) 7→ uqkabua,b(uqkab, v)
V b : ua,b(uqkab, v) 7→ vua,b(uq(k−1)ab, v)

(9)
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Ua : va,b(vqkab, u) 7→ uva,b(vq(k+1)ab, u)
V b : va,b(vqkab, u) 7→ vqkabva,b(vqkab, u)

(10)

and the covering maps of subsection 3.1 between levels are

pn,m : ua,b(u, v) 7→ una,mb(un, vm),

pn,m : va,b(v, u) 7→ va,b(vm, un).

Model-theoreticall we treat all the (Ua, V b)-systems together as sorts of
a structure and the covering maps pn,m as definable maps in the structure.

The whole picture becomes even more uniform if we introduce a univer-
sal cover (covering structure) (Q,P ) consisting of two sorts Q and P, with
Q of elements (vectors) written as |x, p〉, for x, p ∈ C, and P of elements
|p, x〉, for x, p ∈ C. Call this structure a (Q,P)-system.

We consider (Q,P ) along with the covering map

expa,b : |x, p〉 7→ ua,b(e2πiax, eibp)
expa,b : |p, x〉 7→ va,b(eibp, e2πiax).

(11)

This can be presented as the following (noncommutative!) diagram

expa,b

-|x, p〉 ua,b(e2πiax, eibp)

?

Ua−1
2πia

expa,b

-

?

Q

x · |x, p〉

e2πiax−1
2πia

ua,b(e2πiax, eibp)

x · ua,b(e2πiax, eibp)

Note that the bottom right corner of the diagram has two different entries,
which converge as a tends to 0.

Similar diagram holds for P, va,b(eibp, e2πiax) and V b correspondingly.
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Recall that a complex number z can be uniquely identified by the sequence
{exp z

n
: n ∈ N}, that is the map

z 7→ {exp
z

n
: n ∈ N}

is injective. So, elements |x, p〉 of the (Q,P)-system can be uniquely identified
with sequences {ua,b(q x

n~ , q
p

2πn~ ) : n ∈ N} and |p, x〉 with {va,b(q p
2πn~ , q

x
n~ ) :

n ∈ N}. In this sense the (Q,P)-system can be considered a limit structure
for the (Ua, V b)-systems.

3.5 Problem Eventually one would like to have a complete universal
cover H, an extension of (Q,P ) and an action of operators P and Q on
H which satisfies the Heisenberg relation (1) and agrees with Ua and V b via
pa,b. The (heuristic) Dirac calculus assumes that such an H exists in the form
of a Hilbert space of generalised function R → C with P given by operator
f 7→ −i~ d

dx
f and Q by f 7→ x · f, but this approach encounters a lot of

mathematical difficulties and has not succeded so far.

3.6 Principal module
Given a (Ua, V b)-system, normally only one among (Ua, V b)-modules has

a meaning compatible with physics interpretations.
The module Ma,b

1,1 with Ua and V b-eigenvalues

{qabk : k = 0, 1, 2, . . . ,
N

ab
− 1}

will be called the principal module.
According to our construction of étale coverings there is a whole system

of principal modules, one for each pair of rational numbers a and b. Note that
an application of the covering map pn,m to eigenvectors of a corresponding
principal module, by definition produces eigenvectors of another principal
module, so we have a well-defined system of étale coverings of principal mod-
ules which corresponds to a universal principal object corresponding to
the system of Q-eigenvectors |x, 0〉 and P-eigenvectors |p, 0〉 with x ∈ Q,
p ∈ 2πQ.

We assume the notation for the particular values of parameters

|x〉 := |x, 0〉 |p〉 := |p, 0〉,
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which establishes an exact link with Dirac’s bra-ket notation used by physi-
cist.

In this case we also may invert the correspondence in (11) using the
principal branch of logarithm, so

|x〉 ↔ ua,b(e2πiax, 1) = u(q
ax
~ , 1)

|p〉 ↔ va,b(eibp, 1) = v(q
bp

2π~ , 1)
x = n

N
, n = 0, 1 . . . , N

ab
− 1; p = 2πk

N
, k = 0, 1 . . . , N

ab
− 1.

(12)

3.7 Structural approximation and rescaling.
We use in later calculations below the fact that an (U, V )-system corre-

sponding to a generic q = eih can be approximated by (U, V )-systems for
q = ε a root of unity of order N, see [5] for the corresponding notion of
approximation.

An essential fact in this context is that we approximate the generic q and
the infinite cyclic group generated by it by ε = exp 2πi

N
and the corresponding

finite cyclic groups, along an ultrafilter D. The fact established in [5], section
4, states that it is necessary and sufficient then that

the sequence of roots of unity, exp 2πiMN

N
, (N,MN ∈ N) satisfies the

following:
(i)

lim
D

MN

N
=

h

2π
=: ~

(ii) for every given positive m ∈ Z, almost all N modulo the ultrafilter
are divisible by m.

In particular, the condition (ii) allows us to assume the divisibility for N
as in 3.1 and so the formula (8) holds. Correspondingly, we also make the
following assumption about the constant ~.

Physics assumption. In some natural physics units

(PA1) ~ = 1
N

;

(PA2) the integer N is divisible by any positive integer m << N.

4 ”Time evolution” for the free particle

4.1 Motivation. According to quantum mechanics the time evolution op-

erator for the free particle is Kt := e−it
P2

2~ and the expression on the right
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makes sense in the (Banach) operator algebra1. Then the Heisenberg relation
(1) gives

[Q, Kt] = tPKt.

Hence QKt −KtQ = tPKt and

Kt2πiQK−t = 2πi(Q− tP).

Note that by the Baker-Campbell-Hausdorff formula applicable in Banach
algebras

U ·V −2πt = exp 2πiQ ·exp−2πitP = exp(2πiQ−2πitP+
1

2
[2πiQ,−2πitP]) =

= exp(2πiQ− 2πitP + πith) = qπtKtUK−t,

so one gets
KtUK−t = q−πtUV −2πt (13)

Here and below we have chosen once and for all a certain value for qπt.
Another property that follows from the form of the time evolution oper-

ator, is that it must commute with P and so with V a for all rational a :

KtV aK−t = V a (14)

Note that (13) and (14) can at best determineKt up to a scalar coefficient.

In the particular case of the free particle there is an alternative way of
determining Kt on the principal module (not on an arbitrary one!)

Recall that according to the Dirac notation P : |p〉 7→ p|p〉, so

e−it
P2

2~ : |p〉 7→ e−
itp2

2~ |p〉

and since p = 2πtk~ = 2πt
N
k, k = 0, 1 . . . , N

2πt
− 1,

e−
itp2

2~ = q−πtk
2

.

Finally, by the correspondence (12) we have from above

e−it
P2

2~ : v1,2πt(q2πtk, 1) 7→ q−πtk
2

v1,2πt(q2πtk, 1).

This can be rewritten as the determination of eigenvector and eigenvalues

Kt : v1,2πt(q2πtk, 1) 7→ q−πtk
2

v1,2πt(q2πtk, 1). (15)

1This also would assume that operators P and Q are bounded which is causes technical
problems
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4.2 Definition of the time evolution operator in an (U, V )-system.
Let t = m

2πn
, m, n ∈ Z, n 6= 0, so 2πt is a rational number. Let M be a

(U, V 2πt)-module and v2πt a V 2πt-eigenvalue in this module. Define Kt
v to be

an operator acting on this module and satisfying the relations

(i) Kt
vUK

−t
v = q−πtv2πtUV −2πt

(ii) Kt
vV

2πtK−tv = V 2πt (16)

In particularly, Kt
v must be invertible.

In addition to this we also assume that

Kt
1v

1,2πtk(q2πpt, 1) = q−πtk
2

v1,2πt(q2πptk, 1) (17)

The relation (ii) is obvious from the motivating paragraph, and the rela-
tion (i) differs from (13) by the multiplier v2πt on the right. This is necessary
if we do not assume that v2πt = 1 (compare the determinant on the both
sides of the equality). In (13) the latter in fact was a part of our assumptions
as the only physically relevant module is the principal module (see 3.6).

(iii) is the same as (15).

Denote St,v := q−πtv2πtUV −2πt, the right-hand side of (16(i)).

4.3 We now work in an (U, V 2πt)-system and assume that q is a primitive
root of unity of order N satifying the assumption (PA2) of 3.7 so that in
particular N

2πt
is an integer.

We assume that Kt
v acts in an (U, V 2πt)-module Mu,v2πt and aim to de-

scribe this action and the parameters of the module.
Set

s(uq2πtm, v2πt) := Kt
vu

1,2πt(uq2πtm, v2πt).

Then

St,v s(u, v) = u s(u, v2πt), V 2πt s(u, v2πt) = v2πt s(q−2πtu, v2πt). (18)

Proof. Using (16),

St,vs(u, v2πt) = Kt
vUK

−tKt
vu

1,2πt(u, v2πt) = Kt
vUu1,2πt(u, v2πt) = uKt

vu
1,2πt(u, v2πt),

so St,vs(u, v2πt) = us(u, v2πt).

V 2πtKt
vu

1,2πt(u, v2πt) = Kt
vV

2πtu1,2πt(u, v2πt) = Kt
vv

2πtu1,2πt(q−2πtu, v2πt),

so V 2πts(u, v2πt) = v2πts(q−2πtu, v2πt), as required.
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4.4 Inner product. Recall that in an irreducible (U, V 2πt)-module the
(generalised) inner product is defined, which treats U and V 2πt as (gener-
alised) unitary operators. In particular, we will have

s(u, v2πt) ∗ u1,2πt(u, v2πt) = Us(u, v2πt) ∗ Uu1,2πt(u, v2πt) =
= V 2πts(u, v2πt) ∗ V 2πtu1,2πt(u, v2πt)

(19)

Then, by construction, St,v is unitary as well.
We have by (18) for arbitrary integer k :

s(u, v2πt) ∗ u1,2πt(uq2πkt, v2πt) = u−1St,vs(u, v2πt) ∗ u1,2πt(uqkt, v2πt) =

= u−1s(u, v2πt)∗S−1
t,v u1,2πt(uqkt, v2πt) = u−1s(u, v2πt)∗qπtv−2πtV tU−1u1,2πt(uq2πkt, v2πt) =

= u−1s(u, v2πt) ∗ qπtu−1q−2πktu1,2πt(uq(k−1)t, v2πt) =

= q2πt(k− 1
2
) · s(u, v2πt) ∗ u1,2πt(uq2π(k−1)t, v2πt),

in accordance with (5).
It follows by induction on k,

s(u, v2πt) ∗ u1,2πt(uq2πkt, v2πt) = c qπtk
2
,

where c = c(u, v2πt) = q−πts(u, v2πt) ∗ u1,2πt(u, v2πt).
(20)

On the other hand, by (18)

s(u, v2πt)∗u1,2πt(u, v2πt) = V 2πts(u, v2πt)∗V 2πtu1,2πt(u, v2πt) = s(uq−2πt, v2πt)∗u1,2πt(uq−2πt, v2πt)

which proves that in (20) c(u, v2πt) = c(uq2πkt, v2πt) that is depends on the
class û = {uq2πtk : k ∈ Z} but not on u.

Also note that c(u, v2πt) does not depend on v2πt but on the class v̂2πt =
{v2πtq2πtk : k ∈ Z}. Indeed, by (2) u1,2πt(u, v2πtq2πt) = q2πtmu1,2πt(u, v2πt) for
some m ∈ Z. By definition then s(u, v2πtq2πt) = q2πtms1,2πt(u, v2πt). Then by
properties of the inner product

s(u, v2πtq2πt) ∗ u(u, v2πtq2πt) = s(u, v2πt) ∗ u(u, v2πt).

So, summing up, c = c(û, v̂2πt) is an invariant of the cosets by the cyclic
group generated by q2πt, equivalently, invariant of the module.
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4.5 Corollary

Kt
vu(uq2πmt, v2πt) = c(û, v̂2πt)

N
2πt
−1∑

k=0

qπtk
2

u1,2πt(uq2π(m+k)t, v2πt). (21)

This follows from (20) and the second formula in (18). One can also check
independently and directly that the sum on the right is an St,v-eigenvector
with the eigenvalue u.

In particular, given the values of v2πt and c(û, v̂2πt) the operator Kt
v is

determined on the module M by the formula (21) uniquely.
The choice of v2πt amounts to a choice of the canonical basis of U -

eigenvectors.

4.6 Determining the coefficient.
Note that so far we have only used (16). We are now using (17). This

formula allows us to calculate the trace of Kt
1 :

Tr Kt
1 =

N
2πt
−1∑

k=0

q−πtk
2

.

We rewrite the latter using the notation Nt := N
2πt
, which is an even integer

by (PA2), and use the formula for (generalised) quadratic Gauss sums (see
[4]),

TrKt
1 =

Nt−1∑
k=0

e
− πi
Nt
k2

=
√
Nt · e−

πi
4 .

Alternative calculation using formula (21) gives

TrKt
1 = c(1̂, 1̂)

Nt−1∑
k=0

1 = c(1̂, 1̂) ·Nt.

Hence

c(1̂, 1̂) =
1√
Nt

e
πi
4 .

This formula can be rewritten using (PA1) which gives

Nt =
N

2πt
=

1

2πt~
,
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so
c(1̂, 1̂) =

√
2πt~ e

πi
4 . (22)

We now postulate our choice of the coefficient for an aribtrary module

c(û, v̂2πt) =
√

2πt~ e
πi
4 =

√
2πt

N
e
πi
4 . (23)

4.7 The (U, V,K)-systems.
To simplify the notation we assume for the time being that 2πt = 1.
Given a (U, V )-system we define its K-expansion, and call it a (U, V,K)-

system as follows.

We expand the language by adding a symbol K of a binary operation
K(v,w), where (v,w) is in the domain of the operation if and only if v ∈ F∗
and w is an element of an (U, V )-module Mu,v. The value of K(v,w) will be
defined by the formula (21) and the value of the coefficient by (22), which is
the same constant for all (U, V )-modules.

Proposition. K(v,w) is definable as a Zariski-closed relation in the
language of (U, V )-systems.

Proof. The formula for K(v,w1) = w2 says that

• there is an u ∈ F∗ and a canonical basis of U -eigenvectors satisfying
(2) with regards to u and v;

• there are a0, . . . , aN−1 ∈ F and b0, . . . , bN−1 ∈ F so that

w1 =
N−1∑
k=0

aku(uqk, v) & w2 =
N−1∑
m=0

bmu(uqm, v) &

bm =
N−1∑
k=0

akq
(k−m)2

2 where c =

√
2πt

N
e
πi
4 .

This gives us a definition of K(v,w1) = w2 as a positive ∃-core formula in
the terminology of [1], so Zariski-closed relation in the sense of the Zariski
structure.�
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Remark 1. Note that K(v, ·) could be equally defined as the operator
Kv acting on V -eigenvectors of an arbitrary module Mu,v as

Kvv(vqk, u) = q−
k2

2 v(vqk, u).

The fact that the eigenvalues have exactly this form easily follows from (17)
and the fact that the matrix of the operator Kt(v, ·) in the canonical U -bases
remains the same in all modules, as well as the transition matrix from a U -
base to a V -base.

Remark 2. We could not claim even ω-stability of the theory of (U, V,K)-
systems if we chose to expand (U, V )-systems by a unique operator Kt (not
a family of operators) in every module. Indeed, the formula

KtUK−t = q−
1
2vUV −1

defines, using Kt, the value of v in every module. The invariant vN of the
module is obviously definable too, so we get a definable map vN 7→ v for all
x = vN ∈ F∗ in M′ which contradicts ω-stability of the theory.

Remark 3. One may interprete the above proposition as a statement
that the algebra (U, V ) determines the operator-valued function K(v, ·). This
is a non-trivial claim since using conventional operator calculus we would
have to find a way from operators eiP and e2πiQ (that is V and U) to the

time evolution operator e−it
P2

2~ . This is a non-trivial analytic procedure but
in our setting we do not assume any analytic or topological properties of the
algebra.

Remark 4. The assumption (22) may look too strong and artificial. In
principle we calculate Kt

v on each (U, V )-module separately and c(û, v̂) is
not determined, even if one fixes its value in some of the modules. But if
we assume that the function c(û, v̂) is defined in a Zariski structure on the
(U, V )-system, then the choices for the function must become very limited, it
has to be a Zariski function (F∗/Γ)2 → F, where Γ is the cyclic subgroup of
F∗ generated by q. If in addition we require that in the limit, when Γ becomes
an infinite cyclic subgroup, the (U, V )-system is still (analytic) Zariski (see
[5]) then constant c(û, v̂) is the only option.

Finally we want to make explicit the dependence of K(v,w) on the pa-
rameter t. This comes through the introduction of the dependence of the
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(U, V ) system on t, namely we consider, as has been done in 4.2, a (U, V 2πt)-
system and define K(v,w) in it exactly as above, replacing N with N

2πt
.

To make this dependence explicit we write Kt(v,w) for the operator in an
(U, V 2πt)-system.

4.8 Composition of time evolution operators
Suppose Kt

v,w) is the time evoution operator and m is a positive integer.
Then we can define Ktm in two ways:

first, ab initio as in 4.2, denote it Ktm
vm ;

second, as a composition Kt
v(K

t
v, . . .)) . . .) (m times). Denote it (Kt

v)
m.

Note that Ktm
vm is an operator on a (U, V 2πtm)-module while (Kt

v)
m acts

on a (U, V 2πt) one.
We want to find a canonical correspondence between the two definitions.

Proposition. LetMu,v2πt be an irreducible (U, V 2πt)-module andMu,v2πtm

an irreducible (U, V 2πtm)-submodule of Mu,v2πt .
For any w ∈Mu,v2πtm

(Kt
v2πt)

m(w) = Ktm
v2πtm(w),

that is the two operators coinside on each submodule.
Also, (Kt

v2πt)
−1 coincides with K−tv−2πt .

Proof. Consider a canonical V -basis

{v1,2πt(v2πtq2πtk, u) : k = 0, 1, . . . ,
N

2πt
− 1}

of Mu,v2πt . The action of (Kt
v2πt)

m on the basis gives (see Remark 1 of 4.7)

(Kt
v2πt)

mv(v2πtq2πtk, u) = q−πtmk
2

v(v2πtq2πtk, u).

According to the Lemma in 3.1 an irreducible (U, V 2πtm)-submodule in
the module has a V 2πtm-eigenvectors basis of the form

{v̌(v2πtmq2πtnm, u) : n = 0, 1, . . . ,
N

2πtm
− 1}

where

v̌(v2πtmq2πtnm, u) :=

√
1

m

m−1∑
l=0

v(v2πtq2πt(n+ N
2mπt

l), u),
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Claim.

(Kt
v2πt)

mv̌(v2πtmq2πtnm, u) = q−πtmn
2

v̌(v2πtq2πnm, u).

This follows by definitions once one takes into account that N
πt

is an inte-
ger divisible by 2m.

Finally we recall that by definition

Ktm
v2πtmv̌(v2πtmq2πtnm, u) = q−πtmn

2

v̌(v2πtq2πnm, u).

Same argument works for m = −1. �

Now observe also that

Corollary. For any integer m, Ktm
v2πtm can be considered as an operator

on an (U, V 2πt) module and coincides with (Kt
v2πt)

m on this module.

Ktm
v2πtm = (Kt

v2πt)
m

4.9 Feynman propagator for the free particle.

The kernel of the Feynman propagator is defined as

〈x1|Kt|x0〉,

which should be read as the inner product of Kt|x0〉 and |x1〉 (linear on the
right) renormalised by the Dirac delta function. The latter means that

〈x|x〉 = δ(x) =
1

∆x

for every vector |x〉 of length 1, where ∆x is the element of length in a discrete
approximation to the delta-function (see [2], 12.1.2-3).

We use the interpretation 3.4 and 3.6 of elements u(e2πix, 1) of the prin-
cipal (Ua, V b)-module as Dirac’s vectors |x〉, calculate the inner product

Ktu(e2πix0 , 1) ∗ u(e2πix1 , 1) (24)

and normalise it by the Dirac delta function.
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Note that e2πix = q
2πx
h . So we rewrite (24), assuming that 2πxi

h
is rational,

as
s(q

2πx0
h , 1) ∗ u(q

2πx1
h , 1)

and by (20) and (23), substituting x0 = mth, u = q2πmt, x1 = (m + k)th,
uq2πkt = q2π(m+k)t, we get

s(q
2πx0
h , 1) ∗ u(q

2πx1
h , 1) = c · qπtk2

= e
π
4
i · eπi

(x1−x0)2

th =

√
2πt

iN
ei

(x1−x0)2

2t~ .

Also, the discrete approximation which we explicitly use in our model
corresponds to the element of length

∆x =
2πt

N

(we split the interval [0, 1) into N
2πt

equal length subintervals). Recall that
we assumed in 3.7 that N = ~−1.

This finally determines

〈x1|Kt|x0〉 =

√
N

2πit
ei

(x1−x0)2

2t~ =

√
1

2πi~t
ei

(x1−x0)2

2t~

The final expression is the well known formula for the kernel of the Feyn-
man propagator for the free particle, see e.g. [2], formula (7.76).
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