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Finite homogeneous geometries
by B. Zil'ber

The notion of a pregeometry (matroid) was introduced at the
beginning of the 1930s to study a general notion of dependence. Recently it was
found out that the combinatorics of homogeneous pregeometries is closely
connected with important problems in stability theory. From the other hand the
techniques and ideology of stability theory allow one to get serious results on
homogeneous geometries. The aim of the present paper is to give a proof of the

following:

Main Theorem. A finite homogeneous geometry of (projective)
dimension not less than 7 with more than 2 points on its lines is an affine or
projective geometry (possibly truncated).

_ Strictly speaking we present here only the draft of the proof omitting
details. However we hope the draft is quite comprehensible, in fact, the details
omitted could be reconstructed using the proof of the infinite version of the
theorem in [Z1], [Z2] and a close work [Z3].

' The methods of the proof are based on simple ideas of stability theory
and develop those of [Z1]-[Z3].

A pregeometry is a set A together with a closure operator cl: 2A 5 2A
satisfying the following conditions for any X, Y S A, x, y € A:

(i) X € cl(X);
(ii) X € cl(Y) > ci(X) € cl(Y);
(iii) x € cl(Xu{y)\cl(X) = y € cl(Xu(x)).

If A is allowed to be infinite then usually the following condition is added:

C(v) c(X) = Ulel(X) : X' € X, X' is finite).

Here we consider only finite A.
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An automorphism of a pregeometry is any bijection «: A — A for
which

cl(a(X)) = alcl(D) -

holds for any X © A. The group of all automorphisms fixing a set X pointwise is
denoted Aut(A/X) and Aut(A/@) = Aut(A).

A pregeometry is said to be homogeneous if x, y € A \ cl(X) implies the |
existence of an a € Aut(A/X) such that a(x) = y.

A pregeometry is called a g;nm,t.cx if c1(@) = @ and cl({x}) = (x} for
any x € A, -

For any pregeometry A one can construct the geometry A by putting
X = {cl((x)) :x € X \ cl(@)} .
for any X € A and defining the closure on 4 to be as follows: cl(X) = cl(X)".

Another construction called localization gives a new pregeometry on

the set A given a subset C & A. Define the new closure clg to be: clp(X) = c1(XuC)

for any X € A. The new pregeometry on A is denoted Ac. dim X denotes the

cardinality of a maximal independent (in the sense of cl) subset of X, called a base
of X. The cardinality does not depend on the choice of the base. '

dimcx is the dimension of X in Ac.

Note that dim X - 1 is what is called the projective dimension of X. '

1. Sets over a pregeometry

We shall call a subset S © AR X-definable for an X € A if S is invariant
under all automorphisms from Aut(A/X). This definition defines also X-definable
relations on S as subsets of ADK,

An X-definable set over A is a‘set of the form S/E, where S 1san
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X-definable subset of A™ and E is an X-definable equivalence relation on S.
It is easy to see that Aut(A/X) acts on any X-definable set U = S/E. Any
Aut(A/X)-invariant subset of U can be in a natural way presented as an '

X-definable set, so we call it X-definable too.

If E is trivial then S/E can be identified as S, so the X-definable
subsets of A are in this sense X-definable sets over A.

If u € Uand U is an X-definable set then denote by O(u/X) the orbit of
u under the action of Aut(A/X). This is an X-definable set (cf. tp(u/X) in model
theory). h

We shall call an X-definable set S/E (S © A®) strictly coordinatizable

over X if for any <sj....sp>, <§'{....5x> € S, $SquSp> E <s',..8', > implies
Throughout the paper all X-definable sets are considered to be strictly
linatizabl X

An example: The set L of all lines in a geometry A is a O-definable set
over A. More precisely L = S/E, where S = (<x,y> € A2 . x £yl

<x,y> E <x\y»> iff cl(xy) = cl(x'y').

we put

(ug....up X) = cllsyguiSypoeniSg oS} U X). |
Note that for ay....a; € A

tal....,ak) = cl(ay,..ap),

thus we can use the operator ( ) instead of cl.

For u € U we define

T |

e e ki
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rank(u/X) = dimy(u.X).

It follows from the definition that

1.1. rank(<u1.u2>/X) =
= rank(u;/(upX)) + rank(uy/X)
= rank(up/(ug X)) + ra.nk(ul/X).

Define for sets ' i
rank(U/X) = max (rank(u/X) :u € U). ;

1.2. From the homogeneity it follows that rank(U/X) = rank(U/Y)
provided U is X-definable, X © Y & A, rank(U/X) = r, r <dimyA, r < dimyA. O

i

For any Y € A, define UlY] ={u € U : (uX) € (Y)).

1.3. Polynomial Theorem. For any X-definable strictly coordinatizable

set U over A there is a unique polynomial py;(v) of one variable over the

rationals such that
(i) for any closed YE A, if |[Y| =n, Y 2 X, then

|ULY] = pyln),

e = o 14 e 5 S —— HZ et e e

(ii) deg py = rank(U/X),

(iii) if U’ is an X'-definable set over A such that for some a« € Aut(A),
X' = a(X), U' = a(U), then pyy = py.

A proof of the theorem is in fact given in [Z1], Theorem 2.2.

1.4. Let U be an X-definable set, rank(U/X) = r. Define for any n a
binary relation E, on U: |




190 |

uy E, u; < there are y{....y, € A independent over (u;,u,X) and

o € Aut(A/(yq....¥y.X)) such that a(uy) = u,.
It |

If n + 2r < codim X, (X) # @ and planes in A are not projective, then

E

n iS an equivalence relation on U.

Proof. The only problem is transitivity. Let uy E, up anduy E; us.
By homogeneity to prove uy E; uj it is sufficient to find yy....y, independent over

(uq.u5.X) as well as over (uz.u3,X) and over (uj,upX). If yy....y; (i < n) have been pel

found already then

Vie1 € A\ (U1 02.y1...7;X) U (Upu3.71....73X) U (Ugug. ¥,y X).

_ pro
The sum of the three subspaces is less than A since the number of points on a line

1.5. Suppose n + 2r = codim X, E, is an equivalence relation on U,

n=r = rank(U/X). set
rati

Under these conditions any class Uy of the equivalence E, is

(Z)-definable, provided X S Z € A, dimyZ > r.

Proof. It suffices to find ug € U such that (ug.X) € (Z). Letu; € Uy,
rank(Ugy/(X,uy)) = ro- By 1.2 we can find Qz € U with rank(uy/(Z)) = rg and uj € U
with rank(uz/(Z,up)) = ry. Since

dim(X.Uz)(x'u3) = rg € dim(x.llz) Z, )

there is o € Aut(A/(X,u3)) such that nr.((u3)) € (2), Uy is invariant under «. Put
ug = a(up). O
binz
Let Uy be an X'definable set X & X C A, ra.nk(UO/X') =r. UO is called

almost X-definable if for any Z 2 X with dimgZ > r, U is (Z)-definable.
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TSR T
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uy E, u, < there are y;....y, € A independent over (uy.uyX) and

o € Aut(A/(yq.....¥,.X)) such that a(uy) = u,.

If n + 2r = codim X, (X) # @ and planes in A are not projective, then

E, is an equivalence relation on U.

Proof. The only problem is transitivity. Let uy E; uy anduj E uj.

By homogeneity to prove uy E, uj it is sufficient to find yy....y, independent over

The sum of the three subspaces is less than A since the number of points on a line
iﬂ. A(X.‘yl,,,,,yi) is gI‘Ea.Ler tha_u 3‘ O

1.5. Suppose n + 2r = codim X, E, is an equivalence relation on U,

ner=rank(U/X).

Under these conditions any class Uy of the equivalence E, is

(Z)-definable, provided X € Z € A, dimyZ > r.

Proof. It suffices to find ug € U such that (ugX) € (Z). Let u; € Uy,
rank(Uy/(Xuy)) = rg. By 1.2 we can find upy € U with rank(uy/(Z)) = rg and uz €U
_ with ra.nk(u3/(2.u2)) = rg. Since

dim(X.UZ)(X.U3) = l‘O = dim(x.llz) Z.

there is o € Aut(A/(X,up)) such that a((u3)) € (2), Uy is invariant under . Put

ug = a(uz). o

Let Uy be an X'definable set X € X' € A, rank(Uy/X') = r. Uy is called
almost X-definable if for any Z 2 X with dimyZ > r, Uy is (Z)-definable.
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1.6. Under the conditions of 1.5, Uy satisfies the following: for any Z

with dimy Z € n and any (Z)-definable set V,
rank(UynV/(2)) < rg or rank(Ug\V/(Z)) < Q-

This follows from the definition of E,- O

Ug as in 1.6 will be called ngm_dughlg_

2. Parallelism

In what follows in this section A is a finite homogeneaus geometry, L
the set of all lines in A.

Two lines {{, {, are called weakly paralle] if ty =t or dim(2y,t) = 3
and (t{)n(ty) = @. The fact is denoted | t.

We say three lines ], {5, {3 satisfy the relation of friple parallelism if
ity & tltz & 8y # 85 & (83) E (21.85).
This fact is denoted {11{21{3.

2.1, Suppose t{Tt,1t3 holds. Then:.

(i) dim(t;.ty.83) = 4 ;

() (t;) n(t3) =9 ;

(iii) for any a € A \ (£1.ty) there is a unique ¢ € L such thata € (2)
and 8T, 1 ;

Giv) ¢y [ ¢ ;

(v) _({i,"i,"i,) for any permuﬁt.!on (il.iz.i.3 ).

The proof is an exercise in elementary properties of homogeneous

geometries.
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Fix a pair of distinct points a, b € A and put

dit
Ryp = (> € L2 12 € (1)) & b € (tp) & (IteL) t;1e,10).
o
For 1 = <ty 5> € R,y denote (1
2.2. If 14, 19 € Ryp. 19 # 1o, the.n TyNTy contains at most one line.
Proof. Let 1y = <t1.812> Tp = dp1.822> my, my € T NTp, my # my. fix
Des
For some i, j € (1.2}, (m)) & (ty;82j). Otherwise (my.my) &
(fll,fz:l)ﬂ(flz.{zz). this implies ({11.{21) - ({12.‘!22). since dun(ml.mz) = 3.
Moreover (ml.mz) - “11-{12) = (f21.f22}. This contradicts with fllT‘ElszI.
So, let (my) & (ty7.ty;). Together with m; € T;nT, it implies
{IIT{ZITmI. provided tll # f21. By 2.1(iv) it contradicts a € (fll)ﬂ(fZI). Thus
1 = t21- Now we have '11"12"“1 and tyqMooTmy and b € (‘Elz)n(!zz). By 2.1(v)
and (iii) we get tj5 = {55, thus 1y = 15. O o
2.3. Itis easy to see that R,y is an (a,b)definable set with
rank(R,y/(ab)) = 1. Let Rlab' ... R ¢ be all the E{-classes. Ria.b are almost
(a,b)-definable and l-irreducible by 1.6, provided dim A = 6, Ry, # 8.
If 1y € Riab- 1) € Riab- ij € (1,...m), 1y # 15, Ty nT, # @ then for any if S
distinct ‘['1 = Riab' ‘['2 € Ria it holds that '-f'lrﬁ'z # @ and (‘['1) # (1'2). i
‘Proof. One can assume 1y = U'y. Note that (1y) # (1), since there is ~ and

t € T nTp and by 2.2, (1) € (74,77), but by the definition of Ty () & (1y). We show

that we may assume (1) & (14,7'2) and this will finish the proof by using the

definition of E 1-
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So, suppose (1) € (12,1), then either (15) = (1'7) = (1¢) or

di_m(,[l}(fz.'t'z) = 1. The first one is impossible. If the second holds there is

o € Aut(A/(tq)) such that (a(t’;)) & (15,75). Denote a(t'y) = 1“5, then

(11); (19,1"5). Take 1", instead of 5. O

2.4. Denote

st - <ty o> 11y € Ri, 1y € Rl te T, 11 # )

fix ¢y € L, such that (tg) n (ab) = @, and a plane of the form (ab,c), c € A \ (ab).

Denote

following hold:

if st 4 ¢

and also

X = ltgl. pl=ltx e Riy :tg e D, m=l@bol.
yd = J(t € R : (1) = (ab.0)),

S . 0 ifi#j,
1 ifi=j.

If we put z = |Z| for any closed set Z © A containing c, a, b, then t.ﬁe

® iz = FE

2-1'[_1 i-
e

G Rz -

Gi) Isbrzy - IRitz) - Rz - )

Gv) [siiz) « BoNE-m G o sy,

A -1)
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Proof. (i) is well-known and easy. (ii) follows from computations of
the number of elements in

Ti[z] = (<t :c e (), t € LIZL, ¢ € 7.7 € RIZ)).

For (1) = (a,b,c) there is no { € T with ¢ € £ by 2.1(ii). If (1) # (a,b,c) then there is
a unique { such that <z t> € T!. It follows that

ITiz)] - [Ri[Z]] - 3.

From the other hand for any ¢ € L, provided c € (t) and (f) & (a,b,c) there are
exactly pi elements T € Riab such that <t.®> € Ti. Using 2.1(iii) one gets

Z-"

g
x-17%

') -

where (z - w)/(\ - 1) is counted as the number of { € L[Z] such thatc € ()
¢ (a.b.c).

(iii) follows from 2.3 and 2.2 if one counts [Sij[Z]I as the number of

(T1,Tp> € Ri[Z] x RI[Z] such that Ty niy#90.

(iv) is the result of counting first the number of the lines in

(t € LIZ] : (31 € Ri;)(31y € Rl )yt € st
= (¢ € L[Z] : dim(a,b.t) = 4).

This number is equal to (z - A\)(z - m)/A(\ - 1). -Now for each { from the set there
are exactly pi;(pi - gy pairs of different 1y, 15 such that <ty,15.t> € siifz). o

2.5. If dim A = 6, then for any 14, 15 € R,y

TNty # ¢ iff 1y =1

Proof. It suffices to show that S = ¢ for all i, j € (1,...m). For this use
2.4 and compare the leading coefficients of the polynomials given by (iii) and (iv)

i

R s e L A MR i 55

o R b A B

T et o e S S Y BRI I 15

(Y
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if sii # 8. The coefficients are distinct though tﬁe polynomials must coincide
by 1.3. O

2.6. If dim A = 6 then one of the following hold:
(i) every plane in A is projective;
(ii) every plane in A is affine;

(iii) there are two distinct lines ?1. &5 such that {1“2 & -(EI{){ITEZTL

Proof. Suppose (i) and (iii) do not hold. Then there are ti. tp e,
t; # {5, and there is t € L such that {l?szt. Letae (2), a2 ¢ ({1-{é)-- 4 e.L. a.e )
and #|¢'. Then U118y and by 2.1, £ = . Thus we have proved that through any
a & (11.15) there is a unique ¢ such that ¢|¢ 1- By homogeneity we get the same for
any {; and any a & (t{). This is exactly (ii). O

&

A geometry (A.cl) is called truncated projective (affine) if one can
define a new closure cI” on A such that (A,ci*) is isomorphic to a projective
(affine) geometry over a field and there is d < dim” A (dimension of A with respect.
to c1*) such that cl(X) = cf”(X) if dim"X < d and cI(X) = A if dim "X > d.

2.7. If all planes in A are projective (affine), then A is a truncated
projective (affine) geometry. '

This is a consequence of the transitivity of Aut(A) on the set of all
non-collinear triples of points from A and Theorem 1 of [CK]. O

28. If dim A > 6 then one of the following hold:

(i) A is a truncated projective geometry;

(ii) A is a truncated affine genmeu‘.y;

(iii) the binary relation I on the set of lines is not empty:

{11{2 = {1“2 & -(38) {11{2T{.

This is a reformulation of 2.6 taking into account 2.7. O



196

3. Quasi-design over A.

In this section we suppose dim A is finite, homogeneous and the

relation I deﬁnéd in 2.8 is not empty. We denote for t € L
It = (' e L)

The results of the section and their proofs are completely analogous to those of
[Z1, section 3]. We only improved the proofs and modified them to the

finite-dimensional case.

3t (1) ra.nk(lf/(f)) =1forall? el
"%
(ii) if ¢y # ¥ for 8y, 85 € L, then rank(Itynlt5 /(4 fz)) =0 or

Iflnlfz = @
The prodf is immediate from the definitions. O

Studying L with respect to I it is convenient to treat elemen.ts of L as
pomts and subsets of the form I? as blocks. As in [Z1] we will call this incidence

system a quasi-design.

To the end of the section we fix X € A such that codim X = 3 and the
partition of L

L = Llu...uLn

where L; are orbits with respect to Aut(A/X). By homogeneity among Ly, ..., L,

there is exactly one set of rank 2. Let

3.2. rank(L{/X) = 2 rank(L;/X) < 1 for i > 1.

3.3. If rank(Ly/X) = 1, ¢t € L, rank(L;nIt/(X,?)) = 1 then ? € L[X].

Proof. Under the hypotheses there is {' € L; n It such that (¥') ¢ £.X).

Since rank(?'/X) = 1 and rank(t/(')) = 1, one has

A A T e e B

(2
{t

an

orb

(1)

whe

(2)

whe

the |
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2% dimx({.{') > dimx(”.

Since codim(¢,t'X) » 1, hence supposing (f) & (X) we can find " € L such that
") & @.0X) and there is « € Aut(A/(#' X)) such that a(t) = t*. Then ¢"I¥,
() & (£."), thus it holds that ¢"t{1?', which contradicts {I{'. O

3.4. If rank(L;/X) = 1 and rack(L;nIt/(Xt)) < 1 for all t € L then for

any g € L; \ L;[X] there is {; € L; such that rank(?;/(X,q)) = 1 = rank(t;/(q)).
Proof. Fix L;. Denote foran t € L
Sf - {(fl.f2> €l sz & {l € I"i & 'El # 1),

It is easy to compute rank(Sy/(X,1)) = 1.

Take an arbitrary closed Y € A such that (4X) € Y. By 1.3, [S;[Y]] is

the value of a polynomial of degree 1 depending on |Y|. Denote O{j. j=1,..m,all
orbits on L under Aut(A/(2)), except {f}. Denote |

.. _ 14
Lij-LinOi

and let L; \ (8)= Ltil u..ulLl Then

-
_ 1 R 4
where v{i is II{nI{II when {; € L{ij-

From the other hand

(2) !S{[Y]' . Elﬁksn iIfnLk[YH g )"{k'

where )\fk = lIfani\(t}! when {; € L.

_ Count now the ranks of a.ll the subsets involved and the degrees of all
the polynomials and consider the leading coefficients of the polynomials (Icp).
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Then front{2) we have

_ x,
(3) Lep ISLY]l = fep [aL (Y] - ;. X1
Now we assume () & (X). Then by 3.2 and 3.3
' ()
lep |1t n Ly[Y] = fLcp [RIY]| _ (ty)
(?)
and thus \
resg
(4) lep IS[Y)] = fep ROY] - Aty
4,
Now we consider two possibilities for ¢: t =q € L;[Yland t = p € L;[Y].
It is easy to see that \9; = )\pi - 1, therefore
affi;
“suf
(5) Icp ISq[Y]I < lcp lSp[Yll. .
Looking to (1) \‘ve get sem.
2-ir
(6) lep |Sp[Y]| = lep ILj (Y] - VP
since any two ;, '] € L; \ L;[p] are conjugated by Aut(A/(p)). And also vPy = : is ar
|I¢ynlp| when rank(t{/(p)) = 2. (5), (6) and (1) imply that vP; > vqj for any j
such that rank(Lqii/(X,q)) = 1. It implies that <ty,p> and <t;,g> are not conjugated
when tl € I‘qij‘ ie. rank({lfq) £2. 0 i
_ ': and
3.5. If z € (y.X) and codim X > 3, then there are Xy, X, € (X) such that
z € (yx1.x7).
“Proof. If (i) or (ii) of 2.8 holds then it is evident. Otherwise we use 3.3
and 3.4. X1, ¥
W,V

Let y #z, z ¢ (X), let q be the line through y and z, L; the orbit of q

under Aut(A/X). Then rank(Li/X) =1.

—
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If there is t € L such that rank(L;nIt) = 1 then (f) € (X) by 3.3 and let
(XI.XZ) = ().

If not then use 3.4. There are two possibilities for t; from 3.4
(24)n(q) # 8 or there is t € L such that qt¢{tt. In the first case (xq1) = (xp) =
(t)n(q) € (X). In the second case ) < (X) or it is possible to find ¢ such that

) (X) a.nd qft t. Then rank(q/(x;.x5)) = 1 for (xl.xz) = (ty) or (x1.xp) = ¢
respectively. O

4. Definable transformations.
Under the assumption dim A » 7 and A is neither a projective nor an

affine geometry we construct here a defmahle set V over A so that Lhere are
suff1c1ently many" definable transformations on V.

We begin with a broader notion. An almost X-definable _
semitransformation on A is an almost X-definable set f © AxA of rank 1 which is
2-irreducible a_nd does not contain <v,u> with v € (X) or u € (X).

41. If codim X 5, <uv> € Az rank(<«u,v»>/X) =1, v,u e (X) t.hen Lhere
is an almost X-definable semitransformation f on A with wu v>ef.

This follows from 1.6.

42. If fi is an almost Xi—definable semitransformation on A fori =12

and dim XIUX2 < dim Xl + 2, ra.nk(flnfz / XIUXZ) > 0 then rank(fl\fz / XIUXZJ =0
This is a consequence of 2-irreducibility. O

4.3. Ifdim A = 7, codim X 2 3, <u,v> as in 4.1, then there are
X1, Xp € (X) and an almost (x{.xp)-definable semintransformation f on A with

wuv> € f.

This follows from 3.5 and 4.1. O
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Denote F the set of all almost (xl.xz )-definable semitransformations on
A for all x{, Xy € A. Itis"easy toseé that if f € F, then f! € F, where 1.

(<v,u>:<u,v> € f).

For almost X-definable sets g, g of rank 1 we denote by g; C g, the

fact that rank(g,\gy / X) = 0, and gyogy denotes g(cgy & goc8y.

4.4. It follows from 4.2 that c coincides with o on F and o is an

equivalence relation on F. It follows from 4.3 that for any f{, f, € F there are

g1.--8¢ € F such that gyu..ugy o fof,, where
fiofy = (uw> : (3V) W € fi & <v,w> € fp).

If f; is almost (x;.x;p)-definable for i = 1,2 then gj are almost (yjl,yjz)—def_ina.ble

to O.

Define Fj to be the subset of F containing all almost (x.x5)-definable
semitransformations f such that: if «u,v> € f, (uv) = (q), g € L, u & (xy.x),

(.xl.xz) = (1), t € L, then qlt.

4.5. Fy # @ iff A is neither a projective nor an affine truncated

geometry.

This is in fact 2.8, O

46. Iff; e Fl,i=12 f; of,and f; are almost (x;.x;5)-definable, then

(xll'xlz) = (121.122).
This follows from 3.1(ii). O

The observation above makes it possible to treat the quotient-set Fr/a

= Fy as g-definable. An element of F correspondinig to £ € Fy will be denoted

O T R e P A Tt e

() -

geor

then

(Ev)r

whick

max(]s

rank(§
exists «

let <v L

Since f

iff <v.u
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(f) = (xl.xz), rank(f/X) = diray(xy,x5) if f is almost (xl.xz)—definable.

47. () Iftefp thea il efy;

(ii) if fl €F, fz € FI' rank(f‘zf(i‘1)) w? = flofz. then f € FI'

(i) is evident. (ii) is again a consequence of 2.1 and elementary
geometric considerations. O

It is natural to use the following notation for v € A, f € I:
f(v) = {u:<v,u> € f).

48. If g. f € Fp, rank(g/()) =2, v e A\ (18). uj.up € f(v) and uy # uy,

then g(uy) n gluy) = @.

Proof. Assume the contrary, w € g(uq) n g(uy). Then uy, ujy €

(£:v)n(g,w), hence uy € (fuy) n (guy). It follows that rank(g/(uyq.up)) < 1,
which coatradicts :

rank(g/(ill.uz')) = rank(g/(fuq.uy)) = rank(g/(fv)) =2. O

4.9. Letf, h € Ff, rank(#/(R)) = 2 and k = [f(V)] =

max(|s(v)| :s € F, v € A\ (). Taking g loh we get h c fog, g € Fy (by 4.7) and

rank(g/(f)) = 2. Under these assumptions for any v € A \ (£,g), u € f(v) there
exists a unique w € g(u) n h(v). '
let <vu> € f, <u,w> € g, <v,w> € h,

f' = («vud>: @EwNw € glu) n h(v')).

Since f' © f and <v,u> € ', rank(f'/(£,8)) = 1, hence f' o f. It follows that <vup € f

iff <vu;> € ', therefore g(u;) n h(v) # ¢ and m; > 0 for i = 1....k.

From the other hand 3;_,'m; < k, since Ui<k 8(u;) n f(v) = h(v). Thus
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m; = 1 foralli=1,..k. 0O

4.10. Fix f € Fy as a set. For any <v,u> € f, <t;-w> € f such that
rank(<v,w>/f) = 2 there exist x;, X, € A and an (f.x{,xp)-definable mapping

v:f—f such that rank(<«v,u>/(£x1.x7)) = 1 and y(<v,u>) = <t,w>.

Proof. For given <v,u> € f take g, h € Fyas in 4.9 so that

w € g(u) n h(v). Such a choice is possible by homogeneity. Note that 4.9 gives an

~y

(#,A)-definable mapping «: f — h by the law o: <v,u> — <v,w>. Let i be the
inversion i: <v,w> — <v,w>. Let B be again an (f,h)-definable mapping al - gl

p— |

such that <w,v> — <w,t>. Then vy = aoiofoi is the required mapping,
(x1.%y) = (8). O

4.11. y in 4.10 is a bijection of f \ (f‘,xl.xz)z onto itself.

f
This is easily seen from the construction. O
An (fx{.x;)-definable bijection of f \ (f.xl,xz)z onto itself will be
called a transformation of f. One constructed as in 4.10 will be called generic. or
b : _ (
4.12. For any vy, vy, t{, tp € A such that rank(<vy,vp.t;.tp>/F) = 4, any
; ¥
Uy, Uy € A such that <vyu;> € f, <vo,uy> € f, there exists a transformation y' and
wi. wp € A with <ty wy> € f, <tp,wpd> € f, Y'(kvyup) = <ty wpd, Y'(kvpupd) = <ty,wod.
Proof. Let v, h be as in the proof of 4.10, rank(<v{.vy>/(£,8)) = 2. Let
y(viupd) = <t wp, Y(cvp,upd) = <t'h,Ww'pd>. It is easy to see that (vy,vo,t'y.th.0) = 4
(vl.vz.w'l.w'z.f) = (vq.v2.4.f) and therefore vy, v5, t', t' are independent over (f). ,
- Take « € Aut(A/(f,v{.v5)) such that a(t'y) = t;, a(ty) = t, and put wy = alw'y), | o
wy=a(ws), v = aly). O ' §
4.13. Let vy be a (f,x;.x5)-definable transformation, Y2 a generic
b

(f, hy )-deflnable transformauon and mnk(ﬁz/(f X1.X3)) = 2. Then there isa

unique generic Y3 whu:h is (f,A)-definable for (ﬁ) (f ﬁz.xl Xp) such Lhat for

R e e
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any <v,u> € £\ (t‘.ﬁz,xl,xz)z.
"1'3(<v,u>) = 1;2(1"1(<v'.u>)).

- Proof. Let «vuw € f\ (fhy.xg xz)z Y1(¢V.u>) = <500, T2(<S £>) = <t,wo.
Then by 3.5, r € hy(v) for hy € F, hy almost (fxl Xp)-definable, s € f‘l(r) and
w € hy(s), ie. w € hlorlohz(v); By 4.7 there is'h € Fy such that (R) S (f.f{.8,)
and W e h(v), rank(ﬁ/(f‘)) = 2 This is sufficient to construct Y3 as m 4.10 with

TS((V u>) = <tw> By 4 3. 1'3 is umque I:i

4.14. If B, is a (1.%;1.x;p)-definable transformation, i = 1.2, and
dun(f‘ X1 x12 X21 x22) <5 then there 15 a umque (fyl,yZ)—definable _
transformation with y{, yo € (£,x11.X12.X21.Xp) such that B3(<v u>) = 2(,81(<v u>))

for any <v,u> € f \ (f.xll.xlz.xz_l.xzz_)_-.

Proof. As in the proof of 4.13 there are hy, h, € F, such that '/
rehy(v), wehys)we hlof‘lohz(v) and hy, hy are almost
(T.xll,xlz.xn.xzz )definable. Hence w € h(v), h € F, h is alniost (y1.y2)-definable,

Y1 V2 € (Bxy1.X12.%1%2).
There are three possibilities for h:

1. h € Fy, rank(h/(f)) = 2. In this case $3 can be constructed as in
4.10. '

2. h € F, rank(8/(}) < 1. Then dim(R.8) = k < 3 and let §; be an
almost ff.ﬁ)«definable (5-k)-irreducible subset of

{vu'twy cw e h(v) & u' e f(v) & W' € f(t))

by 1.4. Then B3 O BjoB,.

3. h ¢ F[. Then w € (v.iy) for some y € (f,y;.y;) and we get B3
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repéating the previous point. O

4.15. Any (fx.xy)-definable transformation P satisfies one of the

following:
(i) B is generic;

(ii) there isy € (f.x{,X;) and §' such that §' is almost (£,y)-definable

and §'c B; if B o B and " is almost (f,y')-definable then (ty) = (£.y");
(iii) there is p' which is almost (f)-definable and §' o .

Proof. Let <v,u> € f \ '(f,xl.xz)z. ]3(<v.u>)_.= <t,w>. Since w € (v.£x1.%5),
there is h € F which is (y.y;)-definable, yy, yp € (£x1.%x5). There are three

possibilities:

(1) h eFy, rank(f/(1)) - 2. This case like case 1 of 4.14 gives (i).
(2) h € Fp, rank(6/(£)) < 1. Again act like in 4.14 and get §' O §

which is almost (£.6)-definable, (1.6) = (£.y) and we get (i) if y & (}) or (iii) if
y € (f). ' '

(3) hGF;. The same as (2). O

For any transformation B of 4.15, (£.) is defined as (£.x1.x5) in the

cass (D), @y 500 aad 2D in. Ui,

~ 4.16. The set of all tra.nsformat.im_lé forms a group I'. The set I' and
multiplication in I are (f)-definable, as well as the partial action of I on f:
if vy eI, ¥ € £\ (I,7) then v(¥) is defined. '

In general T is not strongly coordinatizable over (£) but:

(i) th_e subset g ={y €T : v is generic) is strongly coordinatizable
over (£); |

(ii) T is strongly coordinatizable over any a(, a; € A which are
independent over (f); .

(iii) rank(T'/(aj.ap.8)) = 2, rank(T/(f)) = 2, rank(T\Tg/(aj.a5.8)) < 2.
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5. The structure of T

If T has a proper (f)-definable subgroup of rank 2, take a minimal
such one instead of I'. So we may assume I' has no proper (f)-definable subgroup
of rank 2.

5.1. The center Cof ' is an (#)-definable subgroup of rank 0.

Proof. For ¥ € £ \ (12 there is W € f \ (#7)2 and a subset

T =y €Ty : Y(¥) = W)

with rank(Fy/(EW.¥)) = 1. Suppose rank(C/(£¥,W)) > 0. Then for any

Y1 ¥2 € T U € £\ (f,?.?,rl.rz-)z one can find o € C such that
a(¥) =0, V¢ (typa)utyse).

Then v{(U) = v1(a(¥)) = a(T_l(?)) = aly2(¥)) = yola(¥)) = v2(T). It follows that
Y{ = Y2. contradiction. O

5.2. T is 2-irreducible, provided dim A = 8.

Proof. Let E, be the equivalence relation on I'g defined in 1.4, Uy an
Ey-class of rank 2. It is easy to see tha:t if y € T then y.Uy o Uy for some Ey—class
Uy. It follows that the (f)-definable group

(v € T : YU; a U; for any Ep-class U; of rank 2)

is of rank 2, thus it coincides with I'. Moreover, if Y € Ug then Uo.f“l arl, thusT

is 2-irreducible. O

5.3. T=T/C is a centerless (f)-definable group.

Proof. If ¥ is a central element of ' and y the corresponding .eleme_n._t

&
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of I, then ]'r = v.C is finite, therefore Cp(y) is of rank 2. Thus it coincides with T,

yeCy=e 0O

5.4. The _saine arguments show that ; can not be of rank 0 for

=l

. 1 '
ol
O

5.5. Suppose A is an X-definable group over A, rank(A/X) =
codim X ;s 3. Then there is a umque 1-irreducible X-definable normal subgroup
A° of A with rank(A°/X) = 1.

The proof is analogous to 5.2. O

The subgroup A° will be called the connected component of A. If
A = A®, A is called connected.

5.6. .If A is as in 5.5 and connected then A is abelian.

Proof. For 6 € A \ C(A) consider the-con‘jugdéy class 62 - dS A. dor
A\¢ is of rank 0 over (X,8), only the second is possible, since CA(8) is of rank 0.

Take no%v the polyn'omia.ls Pé and p A given by 1.3. From ¢ o A it follows that the
leading coefficients of the polynomials coincide. On the other hand p A =

ICA(G)['PQ:' thus [CA (8)] = 1, contradiction. O .

We assume now that ' isa centerless 2-irreducible @-definable group
over a pregeometry A', rank(I'/@) = 2, dim A' = 6.

5.7. There is no normal subgroup A of I’ which is (x1.x5)-definable

for some Xy, Xy € A’ and rank(A/(xy.x5)) = 1.

Proof. Repeating the known construction [C] we can define a
(xl,xz,x3 )-definable field structure on A, provided A is connected, which we may

assume by 5.5. But such a field can not exist since the mapping definable in the

field v o v2 - v maps A on a subset ¢ € A and contradicts 1.3 as in 5.6. O

5.8. Let P be a maximal p-subgroup of T for some prime p, Y a closed
subset of A', dim Y = 3, P[Y] a maximal p-subgroup of 1"[Y] - Then one and only one
of the following holds:

cc

[C
(C

{Z



207
(1) |PLY]| does not depend on |Y|;

(ii) P is an almost (y)-definable subgroup for some y € P,
rank(P/(y)) = 1, [P[Y]| is a polynomial of |Y| of degree 1, its connected component
PO is (y)-definable. ' :

Proof. Choose y € P[Y] n Cp-(P) \ (e), denote A = Cr(y). Then P € A,

rank(A/(y)) < 1. If rank(A/(y)) = 0 then A[Y] does not depend on Y by 1.3, the
same is true for P[Y].

If rank(A/Cy)) = 1 and A®nP # (e} then A° € P and all A%cosets in P
are almost (y)-definable, so is P. This gives (ii). If A°nP = (e) then P intersects
with any A%-coset at most in one pdint. The cosets are almost (y)-definable,
therefore the number of cosets in A[Y] which intersect with P does not depend
on |Y|.

5.9. There is at most one prime p for which 5.8(ii) holds.

Proof. From 5.8(ii) and 5.7 it follows that the set of all p-elements is of
rank 2. Now recall 52. O '

5.10. The polynomial pr(y) counting I'lY] by 1.3 is of degree 2. On the
other hand the Sylow Theorem together with 5.8 and 5.9 gives

ITIYH = g™ = 5 oip, T pn(y)
where py....p, are all the prime divisors of I'[Y] for which 5.8(i) holds and pp(y) is

the polynomial of degree 1 counting P[Y] satisfying 5.8(ii). This is the final
contradiction. Thus I' does not exist. [ '
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