On transcendental number theory, classical analytic functions and Diophantine geometry

B. Zilber

University of Oxford
http://www.maths.ox.ac.uk/~zilber/

Background

An efficient way to classify mathematical structures is through answering the following questions:

To what extent can a structure \mathbf{M} be described by a formal language L ?

What do we need to describe \mathbf{M} uniquely up to isomorphism?

Definition A structure \mathbf{M} in a language L is said to have theory categorical in cardinality λ if there is exactly one, up to isomorphism, structure of cardinality λ satisfying the
L-description [the theory $\operatorname{Th}(\mathbf{M})$] of \mathbf{M}.

Definition A structure \mathbf{M} in a language L is said to have theory categorical in cardinality λ if there is exactly one, up to isomorphism, structure of cardinality λ satisfying the
L-description [the theory $\mathrm{Th}(\mathbf{M})$] of \mathbf{M}.

Uncountable structures with categorical theories = logically perfect structures.

Basic examples of 'perfect' structures:
(1) Trivial structures (the language allows the equality only)
(2) Linear structures: Abelian divisible torsion-free groups;

Vector spaces over a given division ring
Commutative one-dimensional algebraic groups (with or without "complex multiplication";
(3) Algebraically closed fields $(+, \cdot,=)$

One can construct more complicated structures over the basic ones preserving the property of categoricity, e.g.

Algebraic groups

$$
\operatorname{GL}(n, \mathbb{C}), \operatorname{PGL}(n, \mathbb{C}), \ldots
$$

One can construct more complicated structures over the basic ones preserving the property of categoricity, e.g.

Algebraic groups

$$
\operatorname{GL}(n, \mathbb{C}), \operatorname{PGL}(n, \mathbb{C}), \ldots
$$

More generally, complex algebraic varieties $V \subseteq \mathbb{C}^{n}$ equipped with algebraic relations (given by polynomial equations

$$
p\left(\bar{x}_{1}, \ldots, \bar{x}_{m}\right)=0
$$

in $n \times m$ variables).
\mathbb{C} can be replaced by any algebraically closed field.

Dimension notions and pregeometries on logically perfect structures
for finite $X \subset \mathbf{M}$:
(1) Trivial pregeometry: the number of points in X, the number of connected components in the subgraph containing X,
(2) Linear structures:
the linear dimension lin. X of $\langle X\rangle$
(3) Algebraically closed fields:
the transcendence degree tr.d (X) over the prime subfield.

Dimension notions and pregeometries on logically perfect structures
for finite $X \subset \mathbf{M}$:
(1) Trivial pregeometry: the number of points in X, the number of connected components in the subgraph containing X,
(2) Linear structures:
the linear dimension lin. X of $\langle X\rangle$
(3) Algebraically closed fields:
the transcendence degree tr.d (X) over the prime subfield.
Dual notion: the dimension of an algebraic variety V over F

$$
\operatorname{dim} V=\max \left\{\operatorname{tr} . \mathrm{d}_{F}\left(x_{1}, \ldots, x_{n}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in V\right\} .
$$

Three basic geometries of stability theory:
(1) Trivial geometry
(2) Linear geometry
(3) Algebraic geometry.

Three basic geometries of stability theory:
(1) Trivial geometry
(2) Linear geometry
(3) Algebraic geometry.

Is any 'logically perfect' structure reducible to basic geometries (1) - (3)?

Three basic geometries of stability theory:
(1) Trivial geometry
(2) Linear geometry
(3) Algebraic geometry.

Is any 'logically perfect' structure reducible to basic geometries (1)-(3)?

YES, for some key classes (1993-2007).
NO in general (E.Hrushovski, 1989)

The analysis of 'NO'.

The analysis of 'NO'.

Hrushovski's construction of new structures

Given a class of structures \mathbf{M} with a dimension notions d_{1}, and d_{2} we want to consider a new function f on \mathbf{M}.

The analysis of 'NO'.

Hrushovski's construction of new structures

Given a class of structures \mathbf{M} with a dimension notions d_{1}, and d_{2} we want to consider a new function f on \mathbf{M}.
On ($\mathbf{M}, \mathrm{f})$ introduce a predimension

$$
\delta(X)=\mathrm{d}_{1}(X \cup \mathrm{f}(X))-\mathrm{d}_{2}(X)
$$

Consider structures (\mathbf{M}, f) which satisfy the Hrushovski inequality:

$$
\delta(X) \geq 0 \text { for any finite } X \subset \mathbf{M}
$$

The analysis of 'NO'.

Hrushovski's construction of new structures

Given a class of structures \mathbf{M} with a dimension notions d_{1}, and d_{2} we want to consider a new function f on M .
On (M,f) introduce a predimension

$$
\delta(X)=\mathrm{d}_{1}(X \cup \mathrm{f}(X))-\mathrm{d}_{2}(X) .
$$

Consider structures (\mathbf{M}, f) which satisfy the Hrushovski inequality:

$$
\delta(X) \geq 0 \text { for any finite } X \subset \mathrm{M} .
$$

Amalgamate all such structures to get a universal and homogeneous structure in the class.
The resulting structure ($\tilde{\mathbf{M}}, \mathrm{f}$) will be homogeneous and have a good dimension theory.

Are Hrushovski structures mathematical pathologies?

Observation (1996): If \mathbf{M} is a field and we want $\mathrm{f}=\mathrm{ex}$ to be a group homomorphism

$$
\operatorname{ex}\left(x_{1}+x_{2}\right)=\operatorname{ex}\left(x_{1}\right) \cdot \operatorname{ex}\left(x_{2}\right)
$$

then the corresponding predimension must be

$$
\delta(X)=\operatorname{tr} . \mathrm{d}(X \cup \operatorname{ex}(X))-\operatorname{lin} . \mathrm{d}(X) \geq 0 .
$$

Are Hrushovski structures mathematical pathologies?

Observation (1996): If \mathbf{M} is a field and we want $\mathrm{f}=\mathrm{ex}$ to be a group homomorphism

$$
\operatorname{ex}\left(x_{1}+x_{2}\right)=\operatorname{ex}\left(x_{1}\right) \cdot \operatorname{ex}\left(x_{2}\right)
$$

then the corresponding predimension must be

$$
\delta(X)=\operatorname{tr} . \mathrm{d}(X \cup \operatorname{ex}(X))-\operatorname{lin} . \mathrm{d}(X) \geq 0
$$

The Hrushovski inequality, in the case of the complex numbers and ex = exp, is equivalent to

$$
\operatorname{tr.d}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right) \geq n
$$

assuming that x_{1}, \ldots, x_{n} are linearly independent (the Schanuel conjecture).

Pseudo-exponentiation

Consider the class of fields of characteristic 0 with a function ex: $\quad \mathbf{F}_{\mathrm{ex}}=$ ($F,+, \cdot$, ex) satisfying

EXP1: $\operatorname{ex}\left(x_{1}+x_{2}\right)=\operatorname{ex}\left(x_{1}\right) \cdot \operatorname{ex}\left(x_{2}\right)$
EXP2: ker ex $=\omega \mathbb{Z}$

Consider the subclass satisfying the Schanuel condition

$$
\mathrm{SCH}: \quad \operatorname{tr} . \mathrm{d}(X \cup \operatorname{ex}(X))-\operatorname{lin} . \mathrm{d}(X) \geq 0
$$

Amalgamation process produces an algebraically-exponentially closed field with pseudo-exponentiation, $\mathbf{F}_{\mathrm{ex}}(\lambda)$.
$\mathbf{F}_{\mathrm{ex}}(\lambda)$ satisfies:
Algebraic-exponential closedness (Existential closedness):
EC: Every system of algebraic-exponential equations which does not contradict SCH must have a solution.

Countable closure property:

CC: Analytic subsets of \mathbf{F}^{n} of dimension 0 are countable.

Theorem (2001) Given an uncountable cardinal λ, there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation \mathbf{F}_{ex} of cardinality λ satisfying $\mathrm{EXP}+\mathrm{SCH}+\mathrm{EC}+\mathrm{CC}$

Theorem (2001) Given an uncountable cardinal λ, there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation \mathbf{F}_{ex} of cardinality λ satisfying $\mathrm{EXP}+\mathrm{SCH}+\mathrm{EC}+\mathrm{CC}$

Conjecture The field of complex numbers $\mathbb{C}_{\exp }$ is isomorphic to the unique field with exponentiation $\mathbf{F}_{\text {ex }}$ of cardinality $2^{\aleph_{0}}$.

Equivalently, $\mathbb{C}_{\exp }$ satisfies $\mathrm{SCH}+\mathrm{EC}$.

Theorem (2001) Given an uncountable cardinal λ, there is a unique, up to isomorphism, algebraically closed field with pseudo-exponentiation $\mathbf{F}_{\text {ex }}$ of cardinality λ satisfying $\mathrm{EXP}+\mathrm{SCH}+\mathrm{EC}+\mathrm{CC}$

Conjecture The field of complex numbers $\mathbb{C}_{\exp }$ is isomorphic to the unique field with exponentiation $\mathbf{F}_{\text {ex }}$ of cardinality $2^{\aleph_{0}}$.

Equivalently, $\mathbb{C}_{\exp }$ satisfies $\mathrm{SCH}+\mathrm{EC}$.

Model-theoretic geometry suggest a geometry of exponentiation.

Weaker forms of Schanuel's conjecture

$\mathrm{SCH}^{\prime}: \quad \operatorname{tr} . \mathrm{d}(X \cup \exp (X))-$ mlt.rk $\exp X \geq 0$ mlt.rk Y the multiplicative group rank of $\langle Y\rangle$ lin.d $X-1 \leq$ mlt.rk $\exp X \leq \operatorname{lin} . d X$.

Weaker forms of Schanuel's conjecture

$$
\operatorname{tr} . \mathrm{d} X+\text { tr.d } \exp X-\text { mlt.rk } \exp X \geq 0
$$

Weaker forms of Schanuel's conjecture

$$
\operatorname{tr} . \mathrm{d} X+\text { tr.d } \exp X-\text { mlt.rk } \exp X \geq 0
$$

lin.d ${ }_{K} X+$ tr.d $\exp X+c(K)-$ mlt.rk $\exp X \geq 0$

$$
(K \subset \mathbb{C}, \quad 0 \leq c(K) \leq \operatorname{tr} . \mathrm{d} K \text { finite })
$$

Weaker forms of Schanuel's conjecture

$$
\text { tr.d } X+\text { tr.d } \exp X-\text { mlt.rk } \exp X \geq 0
$$

lin.d ${ }_{K} X+$ tr.d $\exp X+c(K)-$ mlt.rk $\exp X \geq 0$

$$
(K \subset \mathbb{C}, \quad 0 \leq c(K) \leq \operatorname{tr} . \mathrm{d} K \text { finite })
$$

$$
\text { tr.d } \exp X+c(L)-\text { mlt.rk } \exp X \geq 0
$$

$$
\text { for all } X \subset_{\text {fin }} L, L=K e_{1}+\ldots+K e_{m}
$$

Weaker forms of Schanuel's conjecture

$$
\text { tr.d } X+\operatorname{tr} . d \exp X-\text { mlt.rk } \exp X \geq 0
$$

lin.d ${ }_{K} X+$ tr.d $\exp X+c(K)-$ mlt.rk $\exp X \geq 0$

$$
(K \subset \mathbb{C}, \quad 0 \leq c(K) \leq \operatorname{tr} . \mathrm{d} K \text { finite })
$$

$$
\text { tr.d } \exp X+c(L)-\text { mlt.rk } \exp X \geq 0
$$

$$
\text { for all } X \subset_{\text {fin }} L, L=K e_{1}+\ldots+K e_{m}
$$

$$
\begin{aligned}
& \operatorname{tr} . \mathrm{d} Y+c(L)-\text { mlt.rk } Y \geq 0 \\
& \quad \text { for all } Y \subset_{\mathrm{fin}} G
\end{aligned}
$$

Weaker forms of Schanuel's conjecture

$$
\text { tr.d } X+\operatorname{tr} . d \exp X-\text { mlt.rk } \exp X \geq 0
$$

lin.d ${ }_{K} X+$ tr.d $\exp X+c(K)-$ mlt.rk $\exp X \geq 0$

$$
(K \subset \mathbb{C}, \quad 0 \leq c(K) \leq \operatorname{tr} . \mathrm{d} K \text { finite })
$$

$$
\text { tr.d } \exp X+c(L)-\text { mlt.rk } \exp X \geq 0
$$

$$
\text { for all } X \subset_{\text {fin }} L, L=K e_{1}+\ldots+K e_{m}
$$

$$
\begin{gathered}
\operatorname{tr} . \mathrm{d} Y+c(L)-\operatorname{mlt} . \mathrm{rk} Y \geq 0 \\
\text { for all } Y \subset_{\text {fin }} G
\end{gathered}
$$

$$
2 \operatorname{tr} . \mathrm{d} Y+c(\alpha)-\operatorname{mlt} . \mathrm{rk} Y \geq 0
$$

$\alpha \notin \mathbb{R} \cup i \mathbb{R}, \quad$ for all $Y \subset_{\text {fin }} \exp \alpha \mathbb{R}, \quad 0 \leq c(\alpha) \leq 2$

Theorem(2004) The Schanuel conjecture SCH^{K} :

$$
\text { lin.d }{ }_{K} X+\text { tr.d } \exp X+c(K)-\text { mlt.rk } \exp X \geq 0
$$

is first order-axiomatisable. The first order theory \mathbf{F}^{K} of raising to powers $k \in K$ is superstable.
Given a finite $X \subseteq 2 \pi i K$, the subgroup $\langle\operatorname{ex}(X)\rangle \subseteq \mathbf{F}^{\times}$is definable in \mathbf{F}^{K}.

The proof requires Mordell-Lang for the multiplicative groups of fields.

Theorem(2004) The Schanuel conjecture SCH^{K} :

$$
\operatorname{lin} . \mathrm{d}_{K} X+\operatorname{tr} . \mathrm{d} \exp X+c(K)-\text { mlt.rk } \exp X \geq 0
$$

is first order-axiomatisable. The first order theory \mathbf{F}^{K} of raising to powers $k \in K$ is superstable.
Given a finite $X \subseteq 2 \pi i K$, the subgroup $\langle\operatorname{ex}(X)\rangle \subseteq \mathbf{F}^{\times}$is definable in \mathbf{F}^{K}.

The proof requires Mordell-Lang for the multiplicative groups of fields.

Corollary Let Γ be the subgroup of \mathbb{C}^{*} generated by $a_{1}, \ldots, a_{n} \in \mathbb{C}$ and K be the subfield containing $\frac{\ln a_{1}}{2 \pi i}, \ldots, \frac{\ln a_{n}}{2 \pi i}$.
Assume Schanuel's conjecture SCH^{K}. Then, for every $W \subseteq \mathbb{C}^{m}$ definable in \mathbb{C}^{K}, $\Gamma^{m} \cap W$ equals a finite union of cosets of subgroups $\Gamma^{m} \cap T$, some tori T.

Wilkie's Theorem SCH^{K} holds for $K \subseteq \mathbb{R}$ generated by generic

 tuples of real numbers.
Nonstandard numbers

$$
\mathbb{C} \prec^{*} \mathbb{C}, \quad \mathbb{Z} \prec^{*} \mathbb{Z}, \quad \mathbb{Q} \prec^{*} \mathbb{Q}, \ldots
$$

Correspondingly, it makes sense in ${ }^{*} \mathbf{F}$ to 'raise' to nonstandard integer powers and have the predimension for $X \subseteq{ }^{*} \mathbb{C}$,

$$
\delta(X)=\text { lin.d } *_{\mathbb{Q}} X+\text { tr.d } \exp X-\text { mlt.rk } \exp X .
$$

The relative predimension with respect to \mathbb{C} :

$$
\delta(X / \mathbb{C})=\min \left\{\delta(X \cup A)-\delta(A): A \subseteq_{\text {fin }} \mathbb{C},\right.
$$

A large enough $\}$.

Theorem (with M.Bays, 2006) TFAE:
(i) (CIT) Given $W \subseteq \mathbb{C}^{n}$, an irreducible algebraic variety over \mathbb{Q}, there is finite collection $\tau(W)$ of tori in \mathbb{C}^{n} such that for any torus $T \subseteq \mathbb{C}^{n}$ and an atypical irreducible component $A \subseteq W \cap T$ (that is $\operatorname{dim} A>\operatorname{dim} W+\operatorname{dim} T-n$) there is $\mathbf{T} \in \tau(W)$ such that $A \subseteq W \cap \mathbf{T}$.
(ii) for all $X \subseteq_{\text {fin }}{ }^{*} \mathbb{C}, \quad \delta(X / \mathbb{C}) \geq 0$;

Theorem (with M.Bays, 2006) TFAE:
(i) (CIT) Given $W \subseteq \mathbb{C}^{n}$, an irreducible algebraic variety over \mathbb{Q}, there is finite collection $\tau(W)$ of tori in \mathbb{C}^{n} such that for any torus $T \subseteq \mathbb{C}^{n}$ and an atypical irreducible component $A \subseteq W \cap T$
(that is $\operatorname{dim} A>\operatorname{dim} W+\operatorname{dim} T-n$)
there is $\mathbf{T} \in \tau(W)$ such that $A \subseteq W \cap \mathbf{T}$.
(ii) for all $X \subseteq_{\text {fin }}{ }^{*} \mathbb{C}, \quad \delta(X / \mathbb{C}) \geq 0$;
(iii) (Bombieri - Masser - Zanier's Conjecture) Given $W \subseteq \mathbb{C}^{n}$, an irreducible algebraic variety over \mathbb{C}, there is finite collection $\tau(W)$ of tori in \mathbb{C}^{n} such that for any torus $T \subseteq \mathbb{C}^{n}$ and an atypical irreducible component $A \subseteq W \cap T$ there is $\mathbf{T} \in \tau(W)$ such that $A \subseteq W \cap \mathbf{T}$.
(iv)
$\operatorname{lin} . \mathrm{d} * \mathbb{Q}(X / 2 \pi i \mathbb{Z})+\operatorname{tr} . \mathrm{d}(\exp X / \mathbb{C})-$ mlt.rk $\exp X \geq 0$

Consider $L \subseteq \mathbb{C}^{n} m$-generated \mathbb{Q}-module. Then $L\left({ }^{*} \mathbb{C}\right) \subseteq{ }^{*} \mathbb{C}^{n}$ is m generated ${ }^{*} \mathbb{Q}$-module. So,

$$
\operatorname{lin} . \mathrm{d} * \mathbb{Q}(X / 2 \pi i \mathbb{Z}) \leq m, \text { for all } X \subset_{\text {fin }} L\left({ }^{*} \mathbb{C}\right)
$$

Consider $L \subseteq \mathbb{C}^{n} m$-generated \mathbb{Q}-module. Then $L\left({ }^{*} \mathbb{C}\right) \subseteq{ }^{*} \mathbb{C}^{n}$ is m generated ${ }^{*} \mathbb{Q}$-module. So,

$$
\operatorname{lin} . \mathrm{d} * \mathbb{Q}(X / 2 \pi i \mathbb{Z}) \leq m, \text { for all } X \subset_{\text {fin }} L\left({ }^{*} \mathbb{C}\right)
$$

Proposition The following are equivalent:
(i) tr.d $\exp X+c(L)-$ mlt.rk $\exp X \geq 0$ for all $X \subset_{\text {fin }} L\left({ }^{*} \mathbb{C}\right)$.
(ii) the geometry of $\exp L$ is linear (locally modular) in the field \mathbb{C}.
(iii) (Mordell-Lang) For every algebraic variety $W \subseteq \mathbb{C}^{n}$ over \mathbb{C}, $W \cap$ $\exp L$ is equal to a finite union of cosets of subgroups $T \cap \exp L, T$ tori in \mathbb{C}^{n}.

Consider $L \subseteq \mathbb{C}^{n} m$-generated \mathbb{Q}-module. Then $L\left({ }^{*} \mathbb{C}\right) \subseteq{ }^{*} \mathbb{C}^{n}$ is m generated ${ }^{*} \mathbb{Q}$-module. So,

$$
\operatorname{lin} . \mathrm{d} * \mathbb{Q}(X / 2 \pi i \mathbb{Z}) \leq m, \text { for all } X \subset_{\text {fin }} L\left({ }^{*} \mathbb{C}\right)
$$

Proposition The following are equivalent:
(i) tr.d $\exp X+c(L)-$ mlt.rk $\exp X \geq 0$ for all $X \subset$ fin $L(* \mathbb{C})$.
(ii) the geometry of $\exp L$ is linear (locally modular) in the field \mathbb{C}.
(iii) (Mordell-Lang) For every algebraic variety $W \subseteq \mathbb{C}^{n}$ over \mathbb{C}, $W \cap$ $\exp L$ is equal to a finite union of cosets of subgroups $T \cap \exp L, T$ tori in \mathbb{C}^{n}.

Corollary CIT implies Mordell-Lang.
B.Poizat (2000) used the condition on $G \leq \mathbf{F}^{*}$

$$
(k+1) \cdot \operatorname{tr} . \mathrm{d} Y-k \cdot \text { mlt.rk } Y \geq 0, \quad Y \subset_{\text {fin }} G
$$

to define a G of model theoretic dimension equal to $\frac{\operatorname{mtdim} \mathbf{F}}{k+1}$.
B.Poizat (2000) used the condition on
$G \leq \mathbf{F}^{*}$

$$
(k+1) \cdot \operatorname{tr} . \mathrm{d} Y-k \cdot \operatorname{mlt} . \text { rk } Y \geq 0, \quad Y \subset_{\text {fin }} G
$$

to define a G of model theoretic dimension equal to $\frac{\operatorname{mtdim} \mathbf{F}}{k+1}$.
Theorem (2002) The weak Schanuel conjecture

$$
2 \cdot \operatorname{tr} . \mathrm{d} Y-\text { mlt.rk } Y \geq 0, \quad Y \subset_{\text {fin }} \exp (\alpha \mathbb{R})
$$

implies

$$
\operatorname{mtdim} \mathbb{R}=\frac{\operatorname{mtdim} \mathbb{C}}{2}
$$

B.Poizat (2000) used the condition on
$G \leq \mathbf{F}^{*}$

$$
(k+1) \cdot \operatorname{tr} . \mathrm{d} Y-k \cdot \text { mlt.rk } Y \geq 0, \quad Y \subset_{\mathrm{fin}} G
$$

to define a G of model theoretic dimension equal to $\frac{\operatorname{mtdim} \mathbf{F}}{k+1}$.
Theorem (2002) The weak Schanuel conjecture

$$
2 \cdot \operatorname{tr} . \mathrm{d} Y-\text { mlt.rk } Y \geq 0, \quad Y \subset_{\operatorname{fin}} \exp (\alpha \mathbb{R})
$$

implies

$$
\operatorname{mtdim} \mathbb{R}=\frac{\operatorname{mtdim} \mathbb{C}}{2}
$$

Proposition Assume Schanuel's conjecture for the p-adic exponentiation.
Then, for every k there is $\alpha \in \mathbb{Q}_{p}^{\text {alg }},|\alpha|_{p}=1$, such that

$$
\frac{k+1}{k} \cdot \operatorname{tr} . \mathrm{d} Y-\operatorname{mlt} . r \mathrm{k} Y \geq 0
$$

for all $Y \subset_{\text {fin }} \exp \left(\alpha p \mathbb{Z}_{p}\right)$.
Corollary mtdim $\mathbb{Z}_{p}=0$, if defined.

The Uniform Schanuel conjecture

Theorem(2001) CIT+SCH' implies
Uniform SCH': Given an algebraic subvariety $W \subseteq \mathbb{C}^{2 n}$ over \mathbb{Q} with $\operatorname{dim} W<n$ there is a positive integer N such that

$$
\begin{aligned}
\left\langle x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right\rangle & \in W \Rightarrow \\
\bigvee_{\left|m_{i}\right| \leq N} \exp \left(m_{1} x_{1}+\ldots+m_{n} x_{n}\right) & =1 \& \bigvee_{i} m_{i} \neq 0
\end{aligned}
$$

The Uniform Schanuel conjecture

Theorem(2001) CIT+SCH' implies
Uniform SCH': Given an algebraic subvariety $W \subseteq \mathbb{C}^{2 n}$ over \mathbb{Q} with $\operatorname{dim} W<n$ there is a positive integer N such that

$$
\begin{gathered}
\left\langle x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right\rangle \in W \Rightarrow \\
\bigvee_{\left|m_{i}\right| \leq N} \exp \left(m_{1} x_{1}+\ldots+m_{n} x_{n}\right)=1 \& \bigvee_{i} m_{i} \neq 0
\end{gathered}
$$

Theorem (2004, with J.Kirby)
$\mathrm{SCH}\left(\mathbb{R}_{\exp }\right)$ is uniform. That is $\mathrm{SCH}\left(\mathbb{R}_{\exp }\right)$ is equivalent to:
Given an algebraic subvariety $W \subseteq \mathbb{R}^{2 n}$ over \mathbb{Q} with $\operatorname{dim} W<n$ there is a positive integer N such that

$$
\begin{gathered}
\left\langle x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right\rangle \in W \Rightarrow \\
\bigvee_{\left|m_{i}\right| \leq N} m_{1} x_{1}+\ldots+m_{n} x_{n}=0 \& \bigvee_{i} m_{i} \neq 0
\end{gathered}
$$

The proof is based on the analytic cell decomposition result (T.L.Loi) for $\mathbb{R}_{\exp }$ (which follows from Wilkie's Theorem).

The Weierstrass function

The case of the Weierstrass function $\mathbf{p}_{\omega}(x)$, for a fixed lattice is very similar.

The 'full' Weierstrass function

The Weierstrass function $\mathbf{p}(\tau, x)$ as a function of two variables

$$
\mathbf{p}(\tau, x)=\frac{1}{x^{2}}+\sum_{\lambda \in\langle\tau, 1\rangle \backslash(0)}\left[\frac{1}{(x-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right] .
$$

The 'full' Weierstrass function

The Weierstrass function $\mathbf{p}(\tau, x)$ as a function of two variables

$$
\mathbf{p}(\tau, x)=\frac{1}{x^{2}}+\sum_{\lambda \in\langle\tau, 1\rangle \backslash(0)}\left[\frac{1}{(x-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right] .
$$

For every $\tau \in \mathcal{H}$ define the field k_{τ} as \mathbb{Q} or $\mathbb{Q}\left(i_{\tau}\right)$, if the corresponding elliptic curve has complex multiplication i_{τ}.

The 'full' Weierstrass function

The Weierstrass function $\mathbf{p}(\tau, x)$ as a function of two variables

$$
\mathbf{p}(\tau, x)=\frac{1}{x^{2}}+\sum_{\lambda \in\langle\tau, 1\rangle \backslash(0)}\left[\frac{1}{(x-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right] .
$$

For every $\tau \in \mathcal{H}$ define the field k_{τ} as \mathbb{Q} or $\mathbb{Q}\left(i_{\tau}\right)$, if the corresponding elliptic curve has complex multiplication i_{τ}.

The corresponding 'Schanuel conjecture' must take into account the trivial geometry on \mathcal{H} (with the action of $\mathrm{SL}_{2}(\mathbb{Q})$) and the linear geometry along each elliptic curve. Thus it takes the form: given $\tau_{1}, \ldots, \tau_{m} \in \mathcal{H}$ and $x_{1}, \ldots, x_{n} \in \mathbb{C}$,

$$
\operatorname{tr} . \mathrm{d}\left(\left\{\tau_{i}\right\},\left\{x_{j}\right\}, \quad\left\{\mathbf{p}\left(\tau_{i}, x_{j}\right)\right\}\right)-\sum_{\tau_{i} / \mathrm{SL}_{2}(\mathbb{Q})} \operatorname{lin}^{\mathrm{d}}{ }_{k_{\tau_{i}}}\left\{x_{j}\right\} \geq 0
$$

