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Gődel Lecture

AMS meeting at Chicago, 1 June 2003

1



1.Uniqueness, completeness and
categoricity

Description of an object in a language
– informally

Naive assumption on a language: we
can describe an object of our interest
fully and completely, uniquely de-
termining the object.

Newtonian physics: such a descrip-
tion, a theory, is possible.

Newtonian physics: The world is
not a chaotic collection of objects and
events but a smooth structure allowing
a comprehensive description.
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Newtonian physics: The world is
not a chaotic collection of objects and
events but a smooth structure allowing
a comprehensive description.

What about modern physics?
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In a formal logic we have

Completeness and Categoricity.

Completeness = ’fully and completely’
in terms of the formal language itself.

Categoricity = unique interpretation in
reality.

Categoricity – easier acceptable to
practical mathematicians and physicists.

Completeness – easier achievable on
the theoretical level.
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Do the objects described by a formal
theory exists in reality?

Depends on the type of the description,
complete or categorical.

5



2. Categoricity. What categoricity?

Must not be based on a list of all
possible configuration in all possible
locations of the structure.

We want a concise description of a
large structure.

Thus the (absolute) categoricity for first
order languages is uninteresting.
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Definition A structure M in a lan-
guage L is said to have λ-categorical

theory if there is exactly one, up to iso-
morphism, structure of cardinality λ sat-
isfying the L-theory Th(M) of M.
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Theorem (M.Morley, 1964 confirming
a conjecture by J.Los)

If a countable first-order T is λ-categorical
for some λ > ℵ0 then it is categorical
for all λ > ℵ0.

8



Theorem (M.Morley, 1964 confirming
a conjecture by J.Los)

If a countable first-order T is λ-categorical
for some λ > ℵ0 then it is categorical
for all λ > ℵ0.

Theorem (S.Shelah, 1983)

If an Lω1,ω-sentence is categorical in
ℵn for all n then it is categorical (and
has models) in all infinite λ.

9



3. Stability, homogeneity and
smoothness.

Theorem (M.Morley, S.Shelah)
Categoricity implies stability

Stability = dimension theory plus
highly homogeneous models in all
cardinalities).

Thesis This is a weak form of
smoothness
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4. Trichotmy Conjecture

Classical first-order λ-categorical struc-
tures for uncountable λ :

(1) Trivial structures (= only)

(2) Linear structures (Abelian
divisible torsion-free groups; Vector spaces
over a countable division ring, . . . )

(3) Algebraically closed fields.
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One can construct more complicated struc-
tures over the basic ones preserving the
property of categoricity, e.g.

Algebraic groups

GL(n, C), PGL(n, C), ...

More generally,
complex algebraic varieties V ⊆ Cn

equipped with polynomially de-

fined relations

p(x̄1, . . . , x̄m) = 0

in n × m variables).
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Observation – example: Compact

complex spaces in the natural lan-
guage are ω-stable of finite Morley rank.

If a compact complex space is Ka̋hler it
is saturated.

13



Trichotomy Conjecture: An un-
countably categorical structure must be
classical.
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Trichotomy Conjecture (Z. 1982)
Given a f-o uncountably categorical
structure M one and only one of the
following holds:

(i) the geometry of M is trivial;

(ii) the geometry of M is isomorphic
to an affine or projective geometry
over a countable division ring;

(iii) M is a structure of algebraic

geometry over an algebraically closed
field K.
(M is definably equivalent to the field
K.)
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The Trichotomy conjecture

refuted in general (E.Hrushovski, 1989)

proved under extra Zariski assumptions
(E.Hrushovski and B.Zilber, 1994)

Also, proved in the o-minimality –

real algebraic geometry context
(Y.Peterzil, S.Starchenko, 1996).
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Both the Zariski and o-minimality proofs
exploit heavily smoothness assumptions.
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Both the Zariski and o-minimality proofs
exploit heavily smoothness assumptions.

In the Zariski context

Pre-smoothness assumption on M
(dimension theorem):

For any closed irreducible

S1, S2 ⊆ Mn

dim S1∩S2 ≥ dim S1+dim S2−dim Mn

component-wise.
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Hrushovski’s counter-examples

Given a class of structures M with a
dimension notions ∂1, and ∂2 we want
to consider a new function f on M.
On (M, f) introduce a predimension

δ(X) = ∂1(X ∪ f(X)) − ∂2(X).

Consider structures (M, f) which sat-
isfy the Hrushovski inequality:

δ(X) ≥ 0 for any finite X ⊂ M.

Amalgamate all such structures to get a
universal and homogeneous structure
in the class.
The resulting structure (M̃, f) will have
a good dimension notion and a nice
geometry.
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Observation:

If M is a field and we want f = ex to be
a group homomorphism

ex(x1 + x2) = ex(x1) · ex(x2)

then the corresponding predimension must
be

δ(X) = tr.deg(X∪ex(X))−lin.dimQ(X) ≥ 0.

The Hrushovski inequality, in the case
of the complex numbers and ex = exp,
is equivalent to

tr.deg(x1, . . . , xn, ex1, . . . , exn) ≥ n

assuming that x1, . . . , xn are linearly
independent.
This is the Schanuel conjecture.
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Pseudo-exponentiation

Consider the class of fields of character-
istic 0 with a function ex:
Kex = (K, +, ·, ex) satisfying

EXP1: ex(x1 + x2) = ex(x1) · ex(x2)
EXP2: ker ex = πZ

Consider the subclass satisfying the Schanuel
condition

SCH : tr.deg(X∪ex(X))−lin.dimQ(X) ≥ 0.

Amalgamation process produces Kex,
an Existentially Closed
field with pseudo-exponentiation,
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Existential Closedness property

EC: Any well-overdetermined system of
equations in +, ·, ex has a solution in
Kex.

And

Countable Closure property

CC: ’Analytic’ subsets of Kn of dimen-
sion 0 are countable.
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Theorem Given λ > ℵ0, there is a
unique model of axioms
ACF0 + EXP + SCH + EC + CC
of cardinality λ.

This is a consequence of

Theorem A The Lω1,ω(Q)-sentence
ACF0 + EXP + SCH + EC + CC
is axiomatising a quasi-minimal

excellent class.

and

Theorem B (Essentially S.Shelah 1983)
A quasi-minimal excellent class has
models and is categorical in any un-
countable cardinality.
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There are a series of further pseudo-
analytic and analytic examples.

Theorem (A.Wilkie, P.Koiran, B.Z.)
There is an entire analytic function
f which satisfies:
(i) Schanuel-type property (Hrushovski
inequality)
tr.deg(x1, . . . , xn, f (x1), . . . f (xn)) ≥ n
for distinct x1, . . . , xn ∈ C

(ii) existential closedness property,
(iii) the first-order theory Tf of (C, +, ·, f )
is ω-stable,
(iv) the Lω1,ω(Q)-sentence Tf+ CC
is categorical in all uncountable car-
dinals.
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Conclusions.

1.Taking into account λ-categoricity and
stability for stronger languages we can
extend the list of basic geometries:

Basic geometries of stability theory:

(1) Trivial geometry

(2) Linear geometry

(3) Algebraic geometry

(*) “Classical analytic” geometries

– fusions of (1)–(3).
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2. We can predict for classical analytic
geometries Schanuel-type property

– a Hrushovski inequality.

3. We can predict for classical analytic
geometries the existential closeness

property –
– Any non-overdetermined and free (from
obvious contradictions) system of equa-
tions has a solution.
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Universal covers of

semi-abelian varieties

0 −→ Λ
i

−→ Cg exp
−→ A(C) −→ 1,

where exp is an analytic homomorphism
from the additive group (Cg, +) and
Λ = ZN is a discrete subgroup of Cg,
exp a group homomorphism.

Question Is the universal cover uniquely
determined by algebraic data only?
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Universal covers of

semi-abelian varieties

0 −→ Λ
i

−→ V
ex
−→ A(F ) −→ 1

(V, +) a group, F an algebraically closed
field, A(F ) the F -points of semiabelian
variety with the structure induced by F,
ex a group homomorphism.

Reformulation Is the obvious Lω1,ω-
sentence ΣA describing the sequence
uncountably categorical?
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Theorem C ΣA is uncountably cate-
gorical iff the following arithmetic con-
ditions hold for good fields k:
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Theorem C ΣA is uncountably cate-
gorical iff the following arithmetic con-
ditions hold for good fields k:

(i) (Galois action on torsion points)
for all but finitely many prime p the
group Gal(k̃ : k) acts on the Tate mod-
ule Tp(A) as GLN (Zp), and for remain-
ing finite number of p the group acts as
a subgroup of GLN (Zp) of finite index;
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Theorem C ΣA is uncountably cate-
gorical iff the following arithmetic con-
ditions hold for good fields k:

(i) (Galois action on torsion points)
for all but finitely many prime p the
group Gal(k̃ : k) acts on the Tate mod-
ule Tp(A) as GLN (Zp), and for remain-
ing finite number of p the group acts as
a subgroup of GLN (Zp) of finite index;

(ii) (Kummer theory and heights)
given a mult-independent a1, . . . , an there
is an l ∈ N such that for any m ∈ N

s.t. A(k) contains ml-torsion

Gal(k(a
1

ml
1 , . . . , a

1
ml
n ) : k(a

1
l
1, . . . , a

1
l
n))

∼= (Z/mZ)Nn.
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Theorem C is a consequence of Keisler
– Shelah theory of Lω1,ω-categoricity
(excellency).

Galois action on roots of unity,

Kummer and height theories are
known for some A.

This implies

Theorem A The Lω1,ω(Q)-sentence
ACF0 + EXP + SCH + EC + CC
is axiomatising a quasi-minimal

excellent class.
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Conclusion 4 Categoricity can pre-
dict strong arithmetic properties.
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Analytic context

Can the universal cover of the multi-
plicative group (torus) F ∗ be compact-
ified as an analytic Zariski structure

0 −→ Λ
i

−→ V
ex
−→ F ∗ −→ 1?

This leads to the theory of toric

geometry.

Toric geometry is the main model for
string theory and mirror sym-

metry.
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Hope

Uniqueness - categoricity criterion
can help to find a true mathematical
model of physics.
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