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1. Introduction.

Using high resolution electron microscopy, Boullay & Schryvers [6] observed
and documented interesting macrotwin interfaces in bulk and splat-cooled
NigsAlss polycrystals. This alloy undergoes a cubic (bcc) to tetragonal (bct)
martensitic transformation. The macrotwin interfaces separate two different
plates of martensite, each plate involving the same two martensitic variants
but with microtwin interfaces that are nearly orthogonal. They measured
the orientations both of the microtwin interfaces and of the rotations of the
variants comprising the microtwins, in the vicinity of the macrotwin plane
and at distances of up to several hundred nanometres from this plane. In
addition, they described atomic scale details of the macrotwin region, in
particular identifying two different ways in which the microtwins meet at
the macrotwin plane, one in which they appear to cross, and the other
in which they meet in a stepped configuration (see Fig. 1). In the bulk
samples, which form the main focus of this paper, the grain-size is large (of
the order of lmm) compared to that of the macrotwins. In the splat-cooled
samples it is smaller (of the order of 1um).

It is natural to believe that these macrotwins arise from coalescence
of two different martensitic plates nucleated in the austenite at different
points, each having a different habit plane separating the martensite from
the austenite, that propagate towards each other, eliminating the austenite
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Figure 1. Low magnification images of macrotwin boundaries of (a) crossing, and (b)
step type. The angles a indicated are those between the microtwin interfaces in each
plate.

between them. However for the bulk and splat-cooled samples used in the
experiments the transformation is too fast to observe the sequence of events
leading to the final martensitic microstructure, and so indirect evidence is
needed to confirm the above scenario.

Some such evidence is provided by correlating details of the observed mi-
crostructures with predictions of the nonlinear elasticity model of marten-
sitic transformations (see Ball & James [2], [3]), a model that incorporates
the crystallographic theory of martensite (Wechsler, Lieberman & Read
[13]) into a much more general framework. (For corresponding linearized
models see [8], [9], [10], [11], [12], [5].) We treat the sample as if it were
a single crystal, ignoring constraints imposed by neighbouring grains. In
terms of the kind of calculations made, this is justified provided the mi-
crostructures have close to zero energy (the zero of energy being taken to
be that of a pure variant of martensite or of undistorted austenite, these
energies being equal at the transformation temperature 6.).

A calculation of Bhattacharya [4] related to the so-called wedge mi-
crostructure shows that it is impossible for two different martensitic plates,
involving the same two martensitic variants and having different habit plane
normals, to be compatible at zero energy at 6. across any macrotwin plane.
This means that if the observed macrotwins arise by coalescence of two
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such plates, then stresses must be accommodated in the vicinity of the
macrotwin boundaries. Nevertheless one can calculate (see Section 3) the
relative orientations of the microtwin planes and of the different variants in
the two plates prior to meeting of the habit planes, as well as the relative
volume fractions of the two variants in each plate. These volume fractions
are predicted by the theory to be either the same in each plate, or reversed.
In all the examples of macrotwins observed by Boullay & Schryvers the
volume fractions in the two plates were found to be almost the same and to
be close to that predicted by the theory for a single plate in contact with
the austenite, suggesting that these volume fractions remain more or less
unchanged as the plates coalesce.

On the other hand one can do a second calculation (see Section 4) to
determine whether two plates involving the same two martensitic variants
and having the same volume fractions can be compatible at zero energy
across a macrotwin interface, without requiring, as in the Bhattacharya
calculation, that these plates are also compatible with the austenite. This
calculation shows that the macrotwin normal must be a prior [100] cubic
plane, and delivers relative orientations of the microtwin planes and variants
that are different from those of the first calculation.

It turns out that both these calculations seem to be relevant. The first
predicts with satisfactory accuracy many details of the experimental data
at a sufficiently large distance (more than 500nm) from the macrotwin
interface, while for the case of the crossing-type macrotwins, the second
correctly predicts the trends in the relative orientations that are observed in
an intermediate region between 50 and 500nm from the macrotwin interface.
In this intermediate region the microtwin interfaces curve, this curvature
being accompanied by a corresponding rotation of the crystal lattice. In the
region very close to the macrotwin interface, from 0 to 50nm from it, there
is still an apparent macroscopic curvature of the microtwin interfaces, but
at the atomic level this is seen to be achieved without lattice rotation, the
microtwin interfaces consisting of planar sections having the same orienta-
tion and separated by nearly equidistant atomic scale ledges. Presumably
lattice curvature is the energetically optimal way to relieve small stresses,
while ledges, for which the energy is concentrated in dislocations, are best
for relieving the larger stresses close to the macrotwin interface. The situ-
ation for the stepped-type macrotwins closer to the macrotwin interface is
somewhat different, and is described in more detail in [7].

In this paper we give precise statements and a few details of these
calculations, the results of which are used for the experimental compar-
isons in [6], and which led to some of the observations made there. A more
comprehensive treatment will appear elsewhere.
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2. The nonlinear elasticity model of martensitic transformations

This model is based on an elastic free-energy density ¢(F,§), in terms of
which the total free-energy of a single crystal at temperature 6 is given by

I) = [ ¢(V4(@),0)dz. (2.1)

In (2.1) y(z) = (y1(z),y2(z),y3(z)) denotes the deformed position of the
material point of the crystal occupying the point z = (z1,z2,z3) in the
region {2 occupied by the crystal in a reference configuration, which we
take to be undistorted austenite at the transformation temperature 6., and
Vy(z) denotes the deformation gradient, namely the 3 x 3 matrix (9y;/0z;).
The free-energy density is assumed to be frame-indifferent, that is

¢(RF,0) = ¢(F,0) (2.2)

for all F in the set Mixs‘ of 3 x 3 matrices with positive determinant, and
all R in the set SO(3) of rotations. Further, ¢ is assumed to satisfy the
material symmetry condition

P(FQ,0) = ¢(F,0) (2.3)

for all rotations @ in the point group S of the crystal, in our case given
by S = P?, the set of rotations of a cube into itself. By adding a suitable
function of € to ¢ we may assume that min ¢(-,6) = 0, so that the set K ()
of energy-minimizing deformation gradients is given by

K(6) = {F € M3*%: o(F,0) = 0}
By (2.2), (2.3) we have that
K(0) = RK(6)Q forall Re SO(3),Q€S.

More specifically, for a cubic-to-tetragonal transformation, K(6.) is as-
sumed to have the form

K(8:) = SO(3)U L3J SO(3)U;,

=1

where Uy = diag (13,71, m), U2 = diag (11,73, M), and Us = diag (m, m, n3)
are the transformation strains of the three martensitic variants, and where

m > 0,7m3 > 0 are the deformation parameters.

We can identify zero-energy microstructures with sequences of defor-
mations y) such that I, (y")) — 0 as j — oo, or with the Young mea-
sures (vz)xeq corresponding to the deformation gradients Dy of such
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sequences. For each z € {2, v, is a probability measure on Mj”_xs describing
the limiting probability of finding particular values of Dyl)(z) for very
large j when z is sampled at random from a small ball B(z,r) of radius r
about the point = (see [1]). More precisely, for a subset E of M3*?

1 : DyU) E
() — Kt B volume {z € B(z,r) : DyVY)(z) € }
7—0 j—00 volume B(z,r)

Since Iy, (y\)) — 0, we have that v, is supported in K (6,) for each z; that
is, the limiting probability of finding a value for the deformation gradient
outside K (0.) is zero.

As is well known, twins correspond to rank-one connections

A-B=aQ®n (2.4)

between two of the martensitic energy wells SO(3)U;, A and B being the
deformation gradients on opposite sides of the twin plane, which has normal
n. Taking without loss of generality twins involving the first two variants
and B = U, the two possible twins with A € SO(3)U; are given by

\/—77%—71% 1
a=—= 2 —n3,kn1,0), n = —(1,,0), 2.5)
gl ) 720 (

where k = £1. The angle of rotation -y between variants across a microtwin

plane is given by

1 2mmns .
i+ 13
A martensitic plate with twins A, B in the volume fraction A to 1 — A

corresponds to the Young measure

W =co (2.6)

vg = Aa+ (1= A)dpB,

where g denotes the Dirac mass at G defined by §g(E) = 1 if G € F,
dc(F) = 0 otherwise. The corresponding macroscopic deformation gradient
is F=MA+(1-))B.

In order for such a plate to be compatible with undistorted austenite
across the habit plane {z - m = k} the equation

M+ (1-NB=1+b®m (2.7)

must hold for some vector b, this being necessary and sufficient for there to

exist a sequence y) with gradient Dy() having Young measure v, given
by

o 01 il
Tl AMa+(1=XN)dp ifz-m > k.
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The solutions A € SO(3)U;, B € SO(3)Uj, A € [0,1], b,m of (2.4), (2.7)
are given by the formulae of the crystallographic theory of martensite [13].
Taking ¢+ = 1,j = 2 we have that A = QU;, B = Q(U; + a ® n) with
Q € SO(3) and a,n given by (2.5), that A = A\* or 1 — \*, where

. (1 . \/2(77% ~ D0 = D +n3) 1) |

2 (m§ —n?)?
and that
1 1
m = (§X(5+T)’§X'€(T‘5),1), (2.8)
1 1
b = (EXC((S A T)a EXCH(T - 6)7ﬁ)’ (29)
for A = \*, with the sign before 7 changed if A = 1 — \*. Here
151
§ =[5 +nf—2)(1—n) "z, (2.10)
=
7= [(2nn3 —nf —n3)(1 —n}) 7]z, (2.11)
1—nf n3(nf — 1)
=—— = —— x= =1, 212
¢ 1+m3 1+m3 & L)

These solutions exist provided the inequalities
m+n<2ifm>1L gl+nz’<2ifmg <1 (2.13)
hold. For details see [2].

3. Calculations for macrotwins (i)

Two different martensitic plates with macroscopic deformation gradients
1+bQ®m,1+b®m can only be compatible if b ® m — b ® m has rank
one, that is if b is parallel to b or m is parallel to . Using the formulae
(2.8)-(2.12), Bhattacharya [4] showed that this cannot happen if the two
plates comprise the same two variants, and that it can happen for plates
which together use all three variants if and only if

g2 — (L= m8) + dm3(1 + )
' (1-m)2+8nf

(3.1)

in which case the macrotwin plane is [110]g2 and the microtwin interfaces
meet at an angle of about 120°. This case is observed in NigsAlss, for which
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(3.1) is nearly satisfied, but we do not consider it further in this paper. In-
stead we concentrate on the case of macrotwins involving only two variants,
whose microtwin interfaces meet at about 90°, for which the calculation in
[4] shows that compatibility cannot be achieved at zero energy, and thus
that the deformation close to the macrotwin interface cannot be stress-free.

We take the viewing direction in the TEM images to be ez = [001]g2.
Since there is no austenite present it is not possible to check the accuracy
of this assumption directly. The situation is also complicated by various
imaging issues that are discussed more fully in [6]. Fortunately the results
of the calculations are insensitive to changes in the viewing direction of
a few degrees. To fix orientation we take the e3 axis to be pointing into
the sample plane, with the e = [010]p2 axis horizontal and the e; =
[100] g2 axis vertical. From (2.8) we see that e3 is not parallel to the habit
plane. As a consequence, the microtwin plane with undeformed normal
= %(1, k,0) is not parallel to the viewing direction, but has normal n’

parallel to (1 4+ b ® m)~Tn, from which it follows that n’ is obtained by
rotating n about n A n’ clockwise through the angle

0 — cos-1 LT M7 _ml g’
=cos  ——, z={——.
(14 mn3)2 2

The angle of rotation of the trace of the microtwin plane in {z3 = 0} is
different and is given by

1 nfn _'%CT2
Vg — Cr2nlng + 12r2(82 + 72)

the sense of rotation being clockwise in the case A = A\* (corresponding to
vol U; > vol Uy) if k = 1 and anticlockwise if K = —1 (with the orientation
described above).

The deformation parameters are measured from the HRTEM images
assuming that the transformation strain is volume-preserving, giving values
m = .93,7m3 = 1.15 used below. These values satisfy (2.13). In particular,
from (3.2) we get 1) = 1.88°.

Suppose that a macrotwin is formed by coalescence of two martensitic
plates, Plate I and Plate II, comprising the variants U; and U; in the same
relative volume fractions A* but using different microtwins, namely with
normals n = %(1, 1,0) for Plate I, and n = %(1,—1,0) for Plate II. We
suppose that the macrotwin normal N is either e; or e;. That these are
preferred normals is motivated in Section 4.

The above calculations imply that for N = e; the microtwin traces in
the two plates make an angle a = 90° + 2¢p = 93.76° > 90° with one
another, while for N = e3 we have a = 90° — 2y = 86.24° < 90°.

i lCOSH

(3.2)
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The rotations of the variants in each plate can also be calculated. Con-
sider, for example, the U; variant in a macrotwin with k = 1, A = A\*. In the
austenite a [010] g2 plane intersects {z3 = 0} in a line z9 = constant, while
in the U; variant of the macrotwin the corresponding line of intersection for
a prior [010] g2 plane is rotated anticlockwise through an angle of 4.23°. In
the Uy variant the lines of intersection of prior [100] g2 planes with {z3 = 0}
are rotated clockwise through 7.89° with respect to the corresponding lines
for the austenite. If kK = —1 the sense of rotation is reversed.

4. Calculations for macrotwins (ii)

Although two martensitic plates cannot simultaneously be compatible with
each other and the austenite at zero energy, they can be compatible with
each other across a macrotwin plane if suitably rotated. As in the preceding
section we consider the case of two plates with the variants U; and U,
having the same relative volume fraction A*. Since the average deformation
gradient corresponding to layering U; with U; +a®n = RU; in the volume
fraction A* to 1 — A* is U1 + A*a ® n, we need to solve the equation

Q(U1 + Nay ®TL2) = (U1 + Xaq ®TL1) =d® N,

where aj,n; and ag,ny are given by (2.5) with kK = 1 and k = —1 respec-
tively, and where @ € SO(3) and d, N are to be determined. The solutions

are given by
cosep —sing 0
Q= | sinp cosp 0
0 0 1

with either

= P13
— 1:2tan1————, N = ey,
v (14 p)m
or
=1 P
p=g=2tan ————, N =ey,
(1-p)ms
where ) 5
o= «M3 — M
n} + 3

Thus the possible macrotwin normals are [100] g2 and [010] g2, as observed.
The angle o’ between the microtwin planes in each plate is given by

o =90° +v— 1 =9243° if N =e,
ol =009 — 4 03 — 85,24 5 N — e,

hongkongl.tex; 6/07/2001; 11:17; p.8



5. Discussion

The observed a angles at distances of more than 500nm from the macrotwin
interface are in the ranges 92°-97° for [100] g2 macrotwins and 83°-86° for
[010]) g2 macrotwins, corresponding to the predicted values of a = 93.76°
and a = 86.24° respectively. As the macrotwin interface is approached the
a angle is observed to decrease, with values ' in the 50-500nm region in the
ranges 90°-95° for [100] g2 macrotwins and 83°-85° for [010] g2 macrotwins.
The sense of rotation of the microtwin variants is as predicted.

Suppose Plate I has habit plane normal my = (3x(6+7), $x( — 6), 1),
while Plate II has habit plane normal mg = (3%(6 + 7), —3x(7 — 9),1).
Can we say which choices of the signs x and x lead to a macrotwin normal
N = e, and which to a macrotwin normal N = ey? This is difficult to
answer directly from the TEM observations because the angles calculated
in Section 3 do not depend on these signs.

A possible mechanism for the selection of IV is that when two austenite-
martensite interfaces propagate towards each other, they contact first along
the common line of their two habit-planes. Up to this time, the deformation
has close to zero energy. The process by which the wedge-shaped regions be-
tween the plates close up is unclear, but the formation of the final macrotwin
is presumably aided if the common line lies in the macrotwin plane. This
is the case for N = e; if and only if x = —x, and for N = e if and only if
X = X- On the other hand, the calculations in Section 4 imply that given
Plate I, there are two rotations R; and R2 which make it compatible with
Plate II across the macrotwin planes with normals N = e; and N = ey
res[pectively. These rotations are quite close to one another, the angle of
rotation of R1Ry ! being @1 — (g = 2.33°. The angle of rotation of R; is
1.75° if x = x, and 7.99° if x = —¥, while that of Ry is 1.63° if x = ¥,
and 7.99° if x = —x. Whether the larger angles of rotation when y = —%
make this case less likely is unclear. In one case (see [6]) two plates were
observed to make contact across both e; and ey at either ends of a curved
macrotwin interface.

In the less symmetrical situation in which the two plates are composed
of the same two variants but with reversed volume fractions, using either the
same or different microtwins, it is surprisingly still true that the common
line of the two habit planes can lie in a zero-energy macrotwin plane.
Research is in progress to understand whether there are features of the
microstructure in these cases deducible from the nonlinear elasticity model
which might explain either why they are unlikely to arise, or why they are
difficult to see in TEM images.

To summarise, the observations are consistent with the hypothesis that
the macrotwins indeed arise from coalescence of two plates with differ-
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ent habit planes, and that these plates remain relatively undistorted in
the transformation process except near the macrotwin interface, where
achieving compatibility necessarily introduces stresses.

Our work can be thought of as a small step towards a better under-
standing of pattern formation due to displacive phase transformations. Of
course the generation of microstructure is a dynamic process, which one
might hope to treat using appropriate dynamic equations at the continuum
level. However it is not clear which dynamic equations in the bulk and for
the motion of interfaces should be used, and for no such equations would we
currently have much hope of making quantitative or qualitative predictions.
Like many calculations using the static theory, our work has more the
flavour of a consistency check for a scenario of pattern formation, rather
than being a genuine prediction starting from the governing equations.
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