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Abstract

Various issues are addressed related to the computation of minimizers
for variational problems. Special attention is paid (i) to problems with
singular minimizers, which natural numerical schemes may fail to de-
tect, and the role of the choice of function space for such problems, and
(ii) to problems for which there is no minimizer, which lead to difficult
numerical questions such as the computation of microstructure for elas-

tic materials that undergo phase transformations involving a change of
shape.

1 Introduction

In this article I give a brief tour of some topics related to the computation
of minimizers for integrals of the calculus of variations. In this I take
the point of view not of a numerical analyst, which I am not, but of an
applied mathematician for whom questions of computation have arisen
not just because of the need to understand phenomena inaccessible to
contemporary analysis, but also because they are naturally motivated
by attempts to apply analysis to variational problems.

I will concentrate on two specific issues. The first is that minimizers
of variational problems may have singularities, but natural numerical
schemes may fail to detect them. Connected with this is the surpris-
ing Lavrentiev phenomenon, according to which minimizers in different
function spaces may be different. The second is that minimizers may
not exist, in which case the question naturally arises as to what the be-
haviour of numerical schemes designed to compute such minimizers will
be. In this case the predictive power of the variational problem may still
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be retained, for example as a explanatory mechanism for the formation
of microstructure in materials. A key tool here is the elusive concept of
quasiconvexity, which helps to describe the passage from microscales to
macroscales.

As a motivating example, consider (nonlinear) elasticity theory. For a
homogeneous elastic body the total elastic energy is given by the integral

I(y) = \s W (Dy) dz,

where W is the stored-energy function of the material. Here Q is a
bounded open subset of R, with Lipschitz boundary 89, that the body

occupies in a reference configuration, and y : @ — R3 denotes a typical
deformation with gradient

Dy(z) = Aml@v .

%.8..“.

Thus for each z, Dy(z) € M3*3, where M™*" — {real m x n matrices}.
In this case the singularities of minimizers could potentially be related
to various kinds of fracture or its onset, dislocations, or phase bound-
aries, while microstructure arises in materials undergoing phase trans-
formations, for which the minimum of J subject to suitable boundary
conditions may not be attained.

2 Singular minimizers and the Lavrentiev phenomenon
2.1 The Lavrentiev phenomenon and repulsion property

Consider first the simple problem due to Mania [45] of minimizing the
integral

1
I(w) = \ (W — z)%08 da 1)
0
among absolutely continuous functions satisfying the end conditions
u(0) = 0,u(1) = 1. (2.2)

The unique minimizer of this problem is easily seen to be
u*(z) = z¥.

In fact I(u*) = 0, and if @ were any other function satisfying the end
conditions (2.2) with I(@) = 0 then @, (z) =0 for ¢ € E and a(z) =
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u*(z) for z € (0,1)\E, where E has positive one-dimensional Lebesgue
measure. Thus

1
o.h\ ?Hlmav&aﬂ\malm&avp
0 - JE3

a contradiction.

Consider now a very natural finite-element scheme for computing the
minimizer. Take a uniform mesh subdividing [0, 1] into N subintervals of
length h = 1/N and minimize I among continuous functions satisfying
the end conditions (2.2) which are affine on each element (i/N, (i+1)/N).
For any such function vy, the integral I(v) can be computed exactly (due
to the explicit form of the integrand), so that questions of quadrature
can in the first instance be ignored. For each h there is at least one
minimizer u} to this discrete problem. What is the behaviour of u} as
h — 0?7 Remarkably, up, converges as h — 0, but not to the minimizer
u*! In fact the limit ug is a monotone increasing function that is smooth
in (0,1) but has infinite slope at the end-points ¢ = 0, 1.

This behaviour is hard to credit at a first glance. An illuminating
initial calculation is to compute I (up) for the function

_ -3z ifz € (0,h)

in which u* is altered only on the first element. Surely limy,_o I (up) =
I(u*) = 0? But no,

1
8
3 .\2.6 _ -1
\o?a T) up, dz ul.Homm )

which tends to +oc0 as h — 0!

In fact it can be shown (see Ball & Knowles [12]) that if 1 < p < o0
and

Ap = {v € WH(0,1) : v(0) = 0,0(1) = 1}
(so that A; is the admissible class of functions considered above) then

infI=min] >minl =0.

Ao Az/a Az
The fact that the infimum of I in different function spaces can be dif-
ferent is known as the Lawvrentiey phenomenon (see Lavrentiev [37] for
the original example). The initial calculation above has the following
generalization, let us call it the repulsion property, that if u() ¢ Asz/a
and u®) — u* ae. in (0,1) then I(w9) - oo.
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In the Manié example the integrand f(z,u,p) = (u3 — z)2p® is convex
in p, but not strictly convex. However, as was shown by Ball & Mizel
[13, 14], the Lavrentiev phenomenon and the repulsion property can hold
for elliptic integrands, i.e. those for which Jop(Z,u,0) > 1> 0 for all
T, u,p. Such an example is given by the problem [14] of minimizing

H
::vn \ :af%vm&fgw% @.@
-1

in 4, = {veW(-1,1) : v(-1) = —1,v(1) = 1}. Note that the
integrand f(z,u,p) = (z* —u®)?p*® +ep? satisfies f,p > 2¢ > 0. Here, for
sufficiently small & > 0, there is an absolute minimizer u* of I in Aj; that
is a smooth solution of the Euler-Lagrange equation in [—1,0)U (0,1] but

has derivative 400 at z = 0, where u*(z) ~ |z|¥sign . The Lavrentiev
phenomenon holds in the form

inf I =minl > inf I = I(u*). (2.4)
Aco As Ay

As indicated in (2.4), I attains its infimum in A3, and every such mini-
mizer is a smooth solution of the Euler-Lagrange equation in the whole

interval [~1,1]. The repulsion property also holds in the form that if
ul) € Az with u® — u* ae. then I(u®)) = oo.

2.2 Computation of singular minimizers

What are possible numerical methods for detecting such singular mini-
mizers? Consider the problem of minimizing

b
10) = [ 0,0 ds
in
A = {u € W' (a,b) : u(a) = a,u(b) = B},

where a,  are given constants.

A first method proposed by Ball & Knowles [12] consists in decoupling
u from its derivative. Thus given & > 0 we minimize

I{u,v) = \aula“:“ev&.‘u.

among piecewise affine functions u in .4; on a uniform mesh of size h,

Computation of minimizers 5

and functions v that are piecewise constant on the same grid, subject to
the constraint

b
\, o(ug —v)dz < e,
a

where ¢ > 0 is a suitable even continuous function satisfying (i) ¢(p) >
|v|° for all v € R, where 1 < s < o0, (ii) ¢(p; +p2) < Cle(pi) + o(p2))
for all p;,p2 € R. For example, one can take @(p) = |p|. Then under
suitable growth and convexity hypotheses on f (in particular guaran-
teeing that the infimum of I(u) in A, is attained) it can be shown that
minimizers {up,e, Vhe}, with A < () for a suitable function ¥, con-

verge to minimizers {u*,u%} of I in A;, possibly after extraction of a
subsequence, and that

FmiomonMaAimv Tune, vn.e) = @MHMH Tw) = I(uw).
The effect of numerical quadrature is also studied in [12]; in fact for the
Mania example a direct numerical minimization of (2.1) among piecewise
affine functions in A; using the trapezoidal rule succeeds in finding u*,
but this is a freak resulting from the special form of the integrand and
in particular its degeneracy when u?® = z. .

A second idea (see Li [43]) is the truncation method, in which f=
f(z,u,p) is replaced by a truncated integrand fas(z,u,p) satisfying
fu(z,u,p) = f(z,u,p) whenever lp| £ M, and far — f monotoni-
cally as M — co. If fys has suitable mild growth properties as |p| — oo,
ensuring in particular that the truncated integral

b
In(u) H\ fu(z,u,uz) do

does not have the Lavrentiev phénomenon, then we can first minimize
Ins, and then let M — oo. Although this method works theoretically, it
has practical drawbacks in that it may not be easy to find an absolute
minimizer of Is (for example, in the case when I attains a minimum

_among smooth functions, as for the integral (2.3), there is the danger of

finding this minimizer instead, since it is a local minimizer of T e for all
sufficiently large M).

A more interesting method (see Li [41]) is that of element removal.
Here we use piecewise affine approximations, but for each h minimize

\ flz,u,uz) dx
[a.b]\E
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where E consists of a (controlled) small number of elements (in practice
these turn out to be elements where uy is large). As for the method
in [12] the number of unknowns is increased, in this case by variables
tracking which elements are removed.

A potentially promising method, which as far as T am aware has not
been studied, is that of using nonconforming elements. It seems possible
that this could lead to ways of detecting minimizers in a continuous scale
of Sobolev spaces.

There is a growing literature on singular minimizers of one-dimensional
variational problems. These singular minimizers do not in general sat-
isfy the Buler-Lagrange equation in weak or integrated form on the whole
interval [a, b]. For elliptic integrands the Euler-Lagrange equation is sat-
isfied on the complement of a closed set of Lebesgue measure zero. This
is part of the content of the Tonelli partial regularity theorem [60]II
P.359. This theorem is shown to be optimal in [14] (where a slightly
improved version can be found), and in Davie [29]. The singularities
of minimizers can also be studied in the (z, u) plane; it was shown by
Ball & Nadirashvili [16] that under natural hypotheses on f there is a
universal singular set Dy to which all points (z,u(z)) with |ug(z)] = 00
for minimizers u of I in 4; for any a,b, e, 8 must belong, and that Dy
is of first category in R2. Later Sychev [58] proved that Dy has two-
dimensional Lebesgue measure zero.

There is an important philosophical consequence of the above discus-
sion. Suppose for a moment that one of the variational integrals (2.1),
(2.3) represented the energy of some physical system (of course this is
not the case, but I will give a physical example later). Since minimiz-
ers in different function spaces can be different, in other words different
function spaces lead to different predictions, it follows that the function
space is part of the model. This conclusion seems to me inescapable, but
is an uncomfortable one in the sense that little attention is traditionally
paid to function spaces when deriving mathematical models (an inter-
esting exception is quantum mechanics, in which the underlying Hilbert
space is introduced at the foundational level). If we accept it, then the
next question is where the function space (for example, for a model of
continuum physics) should come from? To the extent that it is made ex-
plicit, common practice is to adopt a pragmatic attitude to this question,
making a partly phenomenological choice based on the experimentally
observed singularities and the form of natural expressions such as energy
that appear in the theory. A more satisfactory approach would be to de-
rive the function space (as well as the governing equations) from a more
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detailed (e.g. atomistic) model. The only example that I am familiar
with where this is done is in the paper of Braides, Dal Maso & Garroni
(18], where a one-dimensional model for softening phenomena in fracture
mechanics is derived from a (primitive) atomistic model complete with
a function space (the space BV of functions of bounded variation).

As was pointed out to me by J.F. Traub at the Oxford FoCM con-
ference, the issue of the choice of a function space arises in continuous
complexity theory, for example in analysing the complexity of the prob-
lem of computing the integral of a function (see, for example, Traub &
Werschutz [61]), where some a priori hypothesis has to be made about
the regularity of the function to be integrated. It would be interesting
to analyse the complexity of computation of integrals of the calculus of
variations, and of the problem of minimization of such integrals, in the
light of the Lavrentiev phenomenon.

3 Nonlinear elasticity

As described in the Fﬁomzoaon“ the total elastic energy of a homoge-
neous elastic body has the form

I(y) = \@ W (Dy) de. (3.1)

Consider the problem of minimizing I among deformations y satisfying
the boundary condition

@_mbw =9, Awwv

where 8Q; C 0Q has positive area and where 7 : 89 — R3 is a given
measurable mapping. No condition is specified on the remainder of the
boundary 9Q\0%;, where minimization-leads to a natural boundary
condition corresponding to zero applied traction.

To be physically meaningful, the deformation y should be invertible
on . (This is another requirement on the function space that we could
ask to be the consequence of a derivation of (3.1) from a more detailed
model.) In particular this leads to the requirement that

det Dy(z) >0 for ae. z € 0. (3.3)

To guarantee (3.3) for deformations of finite energy, suppose that W :




8 J.M. Ball ,
MZ*® - R, where MPP ={Ae M®3 . det A > 0}, with
W(4) = o0 as det 4 — O+ , (34)

If 09 # 09 there is the possibility of self-contact of the boundary (for
a treatment of this see Ciarlet & Neas [24]), and for this reason ¥ need
not be invertible on the closure € of 0. However, even if 80, = 89 the
requirement of invertibility leads to difficulties. Consider for example
the mapping v : D — R?, where D is the unit disk of R?, given in
plane polar coordinates by (r,8) — lemﬁ 26). It is easily seen that u is
Lipschitz with det Du(z) =1 a.e., but u is not locally invertible at 0.
Thus for mappings in Sobolev spaces local invertibility does not follow
from (3.3). This difficulty can be overcome, and global invertibility
established, by an appropriate use of degree theory (see [4], Sverak [55],
Fonseca & Gangbo [33]).

The problem of numerical minimization of I via finite elements leads
naturally to the

Open question. If y € W2 ig invertible, can y be approximated in JWi®
by piecewise affine invertible mappings?

Here Wi? = Wir(Q;R"), 0 c R"”, n > 2. This question is also
of considerable theoretical interest, and I first heard of it from L.C.
Evans [31] in the context of his attempts to prove a version of his partial
regularity theorem [32] for quasiconvex integrals that would be valid for
elastic energies satisfying (3.4). He remarked to me that the existing
literature on simplicial approximation (see e.g. [46]) did not cover the
case of mappings in Sobolev spaces, since the techniques used relied on
composition of mappings, and mappings in Sobolev spaces are not closed
under composition. :

Consider the simplest case n = 2. For g continuous y € WP with
det Dy(z) > 0 a.e. a natural algorithm is to triangulate O with a regu-
lar mesh of size h and define the approximating mapping y" to be that
piecewise affine mapping coinciding with y at the mesh points. Unfortu-
nately this fails because even if Y € W with det Dy(z) > o > 0 there
can be, for arbitrarily small h, triangles on which det Dy is negative,
An algorithm is needed for choosing a sequence of finer and finer meshes
without this undesirable behaviour.

The existence theory for minimizers of (3.1) has been reviewed in
many places (see, for example, [7, 8], Ciarlet [23], Dacorogna [28], Sithavy
[63], Pedregal [51]). For the existence of minimizers it is necessary to
impose growth and convexity conditions on the stored-energy function
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W. The natural convexity condition is that of quasiconvezity. In fact
for the variational problem of minimizing

10)= [ 10y)as
subject to

@_,mbu =7,

- where  C R™ is a bounded Lipschitz domain, y : § — R™ and f:

M™*™ — R is continuous and satisfies suitablé growth conditions, it is
now understood (Morrey [47], Acerbi & Fusco [1]) that for the existence
of minimizers it is sufficient (and, up to the addition of lower-order terms,
necessary, see Ball & Murat [15]) that f be quasiconvex.

Definition 3.1 Let f : Mmxn |y R {00} be continuous. Then f is

quasiconves if

\w F(Dv)dz > \s Fed) d

Jor all A€ M™*™ and oll v € Az + C§° (Q; R™),

(This condition seems to, but does not, depend on ) No tractable
necessary and sufficient conditions are known for a function f to be

quasiconvex. If f is quasiconvex then [ is rank-one convez, that is
the mapping t — W(d +t\ @ u) is convex for all A e M™xn ) €
R™, 11 € R™, but it was shown by Sversk [56] that the converse is false
forn >2,m'> 3. Based on Sverak’s example, Kristensen [36] proved the
striking result that for the same dimensions there is no local necessary
and sufficient condition for quasiconvexity.

Unfortunately, the known existence theorems for quasiconvex inte-

_mugam do not apply to elasticity, because they assume growth conditions

incompatible with (3.4). For this reason it is at present necessary (see

_the references cited above), to make the stronger convexity hypothesis

hat W be polyconve, namely
W(A) = g(A, cof 4,det A)

or some convex g, where cof A denotes the matrix of 2 x 2 subdeter-
minants of A. Then the existence of an absolute minimzer is assured,
provided the growth condition

W(4) > co(|AP + |cof A|2) ~ ¢, (3.5)
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holds, where ¢y > 0, ¢; are constants (see Miiller, Qi & Yan [49] for this
improved version of a result of [3]). However essentially nothing is known
about the smoothness of absolute minimizers y* for strictly polyconvex
or strictly quasiconvex W. It is not even known if the usual weak form
of the Euler-Lagrange equation is satisfied (though certain weak forms
may be obtained, see [5, 2], Bauman, Owen & Phillips [17]), or if

det Dy*(z) > o >0 for a.e. z € Q. (3.6)

Of course a proof of smoothness and of (3.6) would lead to a justifi-
cation of standard finite-element minimization schemes for (3.1), (3.2).
Otherwise the above Open Problem makes the construction of a scheme
generating invertible approximate minimizers problematic. Another ap-
proach is to tolerate a small set on which the approximate minimizers
fail to satisfy (3.3). This approach is taken in Li [42], who applies the
element removal method to find a sequence of such (possibly nonin-
vertible) approximate minimizers converging, at least theoretically, to a
minimizer of (3.1),(3.2).:

Under the hypotheses of the existence theorem it is not known whether
the Lavrentiev phenomenon can hold. However if the growth condition
(3.5) is slightly weakened then there is a physically interesting example
involving cavitation.

As an illustrative example of cavitation consider the problem of min-
imizing

I{y) = W(Dy) dz

B(0,1)
subject to the pure displacement boundary condition

Ylom(o,1) = Az, A> 0,

where B(0,1) denotes the unit ball in R3, and where
W(A) = |A]? + h(det A),
with A : (0,00) = R smooth and satisfying A" > 0,limg_, o Wm@. =
lims o4 A(8) = co. Note that (3.5) does not hold, but that W is poly-
convex. Hence, since polyconvexity implies quasiconvexity, the mini-
mizer of I among smooth (or even W2) y is given by
@y AHV = Az,
But among radial maps
z

y(z) = Qh_s_v_uul_
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we have nontrivial minimizers for A > A, for some critical value Aer-
These radial minimizers satisfy 5 (0) > 0. Thus a hole is formed at the
origin. Furthermore we have the Lavrentiev phenomenon in the form

i inf I = I(§y),
I <infI'=1I()

where Ap = {y € WHP(B(0,1); R®) : y|ap(0,1) = Az}. In fact cavitation
is a common failure mechanism in polymers. See Lazzeri & Bucknall [38]
for some striking images of almost radial cavitation of roughly spherical
rubber particles imbedded in a matrix of nylon-6; such rubber-toughened
plastics are used, for example, in car bumpers. See [7] for further remarks
about cavitation and function spaces.

4 Computation of microstructure
4-1 Nonattainment of minimum energy and microstructure

Consider a single crystal of a material (for example, some metallic alloy) .

 that can undergo a phase transformation involving a change of shape at

some critical temperature § = 6. from a higher symmetry austenite

phase to a lower symmetry martensite phase. The crystal is assumed

to be elastic with stored-energy function Wjy(Dy) that depends on the
temperature 6. If W attains a finite minimum, then by adding a suitable
function of § there is no loss of generality in assuming that

Emwb Ws(4) = 0.
Consider the corresponding set of energy-minimizing gradients
Kyg={Ae M¥3 . Wy(4) =0}
Since the stored-energy function must satisfy the frame-indifference con-
dition
Wo(QA) = Wy(A) for all Q € SO(3)

it follows that Ky = SO(3)Ky. Let U = UT > 0 be the linear transfor-
mation describing the change of shape at § = 8, relative to undistorted
austenite. Then at 0 = 6,

N
Ky, =SOB3)u J so@)U;,

=1

where the U; are the distinct matrices RURT for R belonging to the
symmetry group S of the material (assumed to be a subgroup of SO(3)).
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The energy well SO(3) corresponds to the austenite, while each energy
well SO(3)U; corresponds to one of the N variants of the martensite.
If, as is often the case, the austenite is stable for temperatures > 4,
then for these temperatures K, = a(0)SO(3), where a(-) accounts for
thermal expansion, while, for § < 8., Ky is given by the N martensitic
variants, with U = U(9).

4 An important example is provided by a cubic to tetragonal transfor-
mation. Here N = 3, and the three variants correspond to the matrices

Uy = diag (12,71, m),
QN = &m@ Adu»dwgduvu
. Us = diag (11,1, 72),

where 71,7, are lattice parameters.
Interfaces between variants are described by rank-one connections be-

tween the corresponding energy wells S0(3)U;, S0(3)U;, ie. by pairs
of matrices R;U;, R;U; with

mws.qs. — NNQ.Q«Q. =A® M,

where ¢ # j and R;, R; € SO(3), and where u s the interface normal.
Such rank-one connections exist between any pai: of the three tetragonal
wells in a cubic to tetragonal transformation. Given such a rank-one
connection, the function ¢ — Wy (R;U; +tA ® 1) has a double-well form,
and therefore is not convex. Hence Wy is not rank-one convex, and so
not quasiconvex either, leading to the expectation that the minimum of

L(y) = \b Ws(Dy) da (4.1)
in W(Q; R®) subject to the boundary condition

m\_mbw =9, Tva
is in general not attained. In fact this has been proved in certain cases
(see Ball & James [11]Theorem 7 -1, Ball & Carstensen [9]Theorems 3.1,
3.2). Minimizing sequences ") typically have gradients Dy() that os-
cillate more and more finely as j increases, generating in the limit an
infinitely fine microstructure.
Real microstructures are not of course infinitely fine, and their limited
fineness can be modelled by introducing interfacial energy. For example,
a crude way of doing this is to change the energy functional to

i) = [ Wo(Dy) + 2e D%y s, NCE)
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for some small ¢ > 0.
I refer the reader to Ball & James [10, 11], Luskin [44], Miiller [48],

Pedregal [51] for further details concerning the physical model and its
analysis.

4-2 What should we compute and how?

According to the elasticity model described above, minimizing sequences
for the total elastic energy may develop infinitely fine microstructure.
Thus, however fine a finite-element mesh is used, numerical minimization
of the energy can be expected to yield oscillations in Dy at a length-scale
comparable with the mesh size. For a model such as (4.3) incorporating
interfacial energy a very fine mesh is still needed to capture the details
of the microstructure, which in real materials can have a length-scale of
as little as a few atomic spacings. Thus numerical minimization of the
energy is computationally highly intensive.

A second difficulty is that, because oscillations can develop at the level
of the mesh, and the problem has preferred crystallographic directions,
the computations will in general be sensitive to mesh orientation.

A third difficulty is that the discretized energy has a huge number of

local minimizers. Consider, for example, the one-dimensional problem
of minimizing

1
I(u) = \o (w2 —1)? + 42 da

in W11(0,1) (so that there are no end conditions). Then

inf I=0
w1

but the infimum is not attained. Consider the discretized problem of
minimizing I among piecewise affine functions on a mesh of size h = .%m
Let up be a minimizer and set I(up) = Ej. Then (Carstensen [19])
there exists a family K consisting of NV local minimizers of the same
discretized problem, such that

(i) K is a subset of the ball in L?(0,1) with centre up, radius 5h,

(i) I(v) < (1 +24Vh)Ep, for each v € K,

(iii) if vo,vy are distinct points of K then SUp,epo,1 [(v(t)) > 2By for
any continuous path v : [0,1] — L?(0, 1) with v(0) = v, v(1) = vy.
Because of the exponential number of local minimizers, and the rela-
tively high energy thresholds between them, local descent methods will
typically fail to detect a global minimizer of the discretized problem.
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But what should we compute? For the problem (4.1),(4.2) (similar
issues arise for problems incorporating small interfacial energy) one pos-
sible answer is the set of possible Young measures (Ve)zen corresponding
to sequences of deformation gradients Dy for minimizing sequences
¥ (for the definition and properties of these measures see, for exam-
ple, [6, 59, 48, 50, 62]). For each z € Q, vz is a probability measure on
M3**3_ Let y be the macroscopic deformation given by the weak limit of
the minimizing sequence vy inan appropriate Sobolev space determined
by the growth of W. The Young measure determines the corresponding
macroscopic deformation gradient Dy through the formula Dy(z) = ,,
where 7, = S, arexs A dv; (A) denotes the centre of mass of Vg.

In principle y can be computed by minimizing

() = \@ W3(Dy) dz, (4.4)

subject to (4.2), where Wg° is the quasiconves envelope of Wy, that is
the supremum of all quasiconvex functions that are less than Wy. This
is the content of the relaxation theorem of Dacorogna [27], though as for
the existence theorems assuming quasiconvexity, the theorem does not
strictly speaking apply to elasticity because the growth hypotheses are
inconsistent with the property W, (A) = oo as det A — 0*. Thus qua-
siconvexification describes the passage from microscopic to macroscopic
- stored-energy functions for these materials.

The idea of minimizing (4.4) to compute y is attractive, but a very
serious drawback is that the lack of a suitable characterization of qua-
siconvexity means that it is only in rare cases (see, for example, Kohn
[35], Pipkin [52, 53], LeDret & Raoult [39]) that W5 is known. Further,
to compute S\%o numerically leads to a problem of similar difficulty to
the original one.

Despite all these difficulties there have been a number of interesting
computations of martensitic microstructure, though it is fair to say that
there is a long way to go before the computer can be used as an effective
predictive tool in these problems. Some key references are Carstensen
and Plechéd¢ [21, 20, 22], Collins, Kinderlehrer & Luskin [25], Collins
& Luskin [26], Dolzmann [30], Killough [34], Li & Luskin [40] (these
last two papers concerning computations of needle-like martensitic mi-
crostructures), and the review article of Luskin [44].

As an illustration of what can be achieved, in Figure 1 are shown the
results of some computations due to P. Plech4z [54]. These computations
were carried out for a two-dimensional version of I§ (see (4.3)) with
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b.t=10,e=5.10"3 t =200

Fig. 1. Microstructure evolution a. for a single crystal b. for two adjacent
grains. )

W =W, M2X2 R given by

W(A) = 51(C11 — (14 6%))% + k3(Cap — 1)2 + k3(C% — 6%)2,  (4.5)
where C = AT 4. In this case we have that

K ={AeM>?*:W(4) = 0} = SO(2)Vi U SO(2)Vs,

1 0 (10
SHAIQ Hv, SIA% Hv.

The two energy wells are rank-one connected with

where

Vo—WVi =A@y,

where A = (0,26),44 = (1,0). In the computations, Q = (0,1)2, the
; oundary condition was taken to be linear with gradient WG\.H + VW2),
that is

, y(z) =z for z € A9,

and the constants in (4.5) had the values &; = 1,6 = 0.5. For these
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attained, and the Young measure of any minimizing sequence is given
by

1
Vyp = MQ.S +%<uv.
Similarly, for small & we expect a finely layered configuration to evolve

in which Dy mostly takes the values V1, V2. The minimization algorithm
was to solve the evolution equation

Ay = —dive(Dy) +£2A%y, *

where o(4) = DW(A). (This equation, used in the calculations as a
numerical solver, can also be thought of as a viscoelastic model for the
evolution of y that neglects inertia; however it should be noted that
the damping term Ay, is not frame-indifferent.) The time-discretization
was a fully implicit scheme, approximating the H~!-gradient flow for I 5
by a corresponding minimization problem at each time step. The mesh
was uniform with 500 x 500 mHmBmwﬁ. This algorithm is of course not
guaranteed to tend as timet — coto a global minimizer. In Figure 1a are
shown stages in the evolution starting from sinusoidal initial data, with
g = 1073, the shading varying from white when Dy(z) € SO(2)W; to
black when Dy(z) € SO(2)Vs. Note how the refinement of the layering
is via the initiation of new layers at the boundary; a similar effect was
observed earlier in the computations of Swart (see Swart & Holmes [57]).

For the computation in Figure 1b the crystal consists of two adjacent
grains, corresponding to the stored-energy function W = W (z, A) given

by
(W@
Wia,4) = A W (AR, 2)

where R, /4 denotes a planar rotation through the angle 7/4, and ¢ =
5.1073. The initial data was taken to be the identity with a small smooth
perturbation in a neighbourhood of the centre of the square. T'wo simple
laminates are formed meeting at the grain boundary.

z € =(0,1) x (1/2,1)
z €0 =(0,1) x (0,1/2) °
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