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J.M. BALL

1. Introduction

This paper was motivated by studies of the nonlinear
beam equation
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In (1.1) @, k and & are positive constants. We regard the
equation as an approximate model for the transverse motion
of a linearly elastic extensible beam with ends fixed in space.
There are, of course, more satisfactory models available and
the reader is referred to the article by Antman [1]; neverthe-
less the relative simplicity and tractability of (1.1) make it

a useful prototype for study. Bennett and Eisley [ 5] and Ray
and Bert [ 28] have shown that under carefully controlled ex-
perimental conditions models based on (l.1) give satisfactory
quantitative accuracy, at least when the tensile load H in-
duced in the beam when it is constrained to lie straight is
greater than the (negative) Euler critical load Hg.

In a previous paper [ 3], it was shown that for both
clamped and hinged end conditions (l.1) generates a dynam -
ical system, on a Banach space X, which is continuous in
both the strong and weak topologies on X . (Actually, in
[ 3], extra terms with positive coefficients were included in
(1.1), but the results carry over in an obvious way.) An in-
variance principle (in the weak topology) was then used to
show that any orbit converges strongly to some equilibrium
position. Thus X may be partitioned into a finite number
of regions of attraction, each region corresponding to one
equilibrium position. In this paper we investigate the struc-
ture of this partition, and hence prove some stability results
for (1.1). A natural approach, adopted, for instance, by Hsu,
Kuo and Lee [ 20], is to linearize (l.1l) about each equilibrium
position in turn. To carry through this procedure, however,
some method is required of relating the behavior of the non-
linear and linearized equations in a neighbourhood of the rel-
evant equilibrium position. Saddle point analysis is the tool
we use for this purpose.
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Saddle point analysis originated in the context of an
ordinary differential equation (ODE) in R™, but has been
extended to neutral functional differential equations by Cruz
and Hale [10]. In section 2 we present an extension to a
class (which includes (l.1)) of ODE in a Banach space. As
hypotheses we assume both that the equation may be written
in 'variation of constants' form and that an 'exponential de-
composition' holds for the linearized equation. With these
hypotheses certain proofs for ODE in R® carry over to ODE
in a Banach space almost word for word. For instance, the
reader may readily obtain a proof of our corollary to Theorem
2.2 by replacing the symbol . | with Il - |l in the proof
given by Hale [16, Chapter 3]. We need a more general
treatment than this, however, so as to be able to treat bifur-
cation situations. To prove the existence of the various man-
ifolds we combine techniques due to Hale [17] and Kelley
[21]. The proofs have been included because there seems to
be no strictly equivalent body of results in the literature even
for ODE in RD. Kelley, for instance, treats differentiable
perturbations rather than our Lipschitz ones, and works with
the differential equation rather than the variation of constants
formula. We treat only autonomous equations, although some
techniques for nonautonomous ODE in R (e.g. Hale [16,
Chapter 4]) carry over to nonautonomous ODE in Banach
space.

Whether a solution to an ODE in a Banach space
satisfies the corresponding variation of constants formula,
and vice versa, seem to be delicate questions. There are a
number of relevant theorems with varying hypotheses and dif-
ferent definitions of 'solution'; the reader is referred to
Carroll [7] for a comprehensive survey. The hypothesis that
a variation of constants formula holds avoids these difficul-
ties. - Our hypothesis of the existence of an exponential de-
composition also conceals difficulties. It would be useful
to have conditions on the spectrum of the infinitesimal gen-
erator of the semigroup appearing in the variation of constants
formula for such a decomposition to exist, but in general we
know of no nontrivial conditions of this type.
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In applying the saddle point analysis to (1.1) the main
difficulties are in satisfying the two hypotheses we have dis-
cussed. The exponential decomposition is established by
explicitly solving the linearized equations, and the dimen-
sions of the unstable manifolds are calculated using a theo-
rem on a linear eigenvalue problem in Hilbert space which is
proved in section 3. The explicit solution of the linearized
equations is then used to prove the equivalence of a 'weak'
form of (1.1) and the corresponding variation of constants
formula.

When H > HE the only equilibrium position is the
trivial one. When H < Hg, however, there are 2n+l equi-
librium positions, two of which, + v, minimize the poten-
tial energy of the beam. In the latter case the saddle point
analysis enables us to show that the regions of attraction of
t+ v} have union dense in Z. Thus any orbit in the region of
attraction of another equilibrium state is Lyapunov unstable.
By contrast, orbits in the regions of attraction of + v (or
zero if H > HE) are asymptotically stable. Weaker forms of
the last result were proved by Dickey [12] for hinged end
conditions, and in [ 3] for both hinged and clamped end con-
ditions. Dickey also obtained exponential rate-of-decay
estimates for convergence to t V; - byproducts of our saddle
point analysis are more and improved estimates of this type.

We make a particular study of the case n =1. Then
there are unique orbits 'connecting' 0 and tvy. It is shown
that if the beam has initial position close to zero in X then
in general the motion stays close to one of these two orbits.
For n >1 the orbits connecting equilibrium states are helpful
in visualizing the complicated structure of the regions of
attraction. We include a conjecture about the nature of these
orbits (see Figure 2) - to settle this conjecture new tech-
niques would seem to be necessary.

The combined use of an invariance principle and saddle
point analysis may find other applications to problems in con-
tinuum mechanics whose characteristic feature is a multiplic-
ity of equilibrium states, steady states, or periodic solutions.

Sections 2 and 3 of this paper are self-contained and
may be read independently of each other and the rest of the
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paper. In the remaining sections the reader may find helpful
some familiarity with the methods used in [ 2] and [ 3].

2. The Saddle Point Property for an Ordinary Differential
Equation in a Banach Space

Suppose A is a constant n X n matrix and
f : R® - R is continuous with £(0) = 0. is the purpose
of classical autonomous saddle point analysis (Hale
[16, Chapter 3], Hartman [ 18], Urabe [ 33]) to compare, in
a neighbourhood of x =0, the properties of the nonlinear
ordinary differential equation

(2.1) x = Ax + f(x)

with those of the linear equation

(12+2) & =N,

In this section we extend this analysis to the case of
certain ODE in a Banach space, for which the operator A
may be unbounded.

Let X be a Banach space with norm | |. Let
{T(t)} t>0 be a strongly continuous semigroup of linear
operators on X. That is

(i) foreach t>0, T(t) : X— X is a bounded linear
operator,

(ii) T(s)T(t) = T(s+t) forall s, t >0,
(iii) T(0) = I, where I denotes the identity operator,

and (iv) for each ¢e x, T(t)¢ is continuous in t > C.
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Thus {T(t)} t>0 possesses a densely defined infinitesimal
generator A (Hille and Phillips [19], Dunford and Schwartz
[14, Vol. 1]) though we shall not need this fact. Also, there
exist constants M >0, u >0 such that

(2. 3) IT(t)e | < Me*t o | for all ge X, t>o0.

From time to time we shall need the following hypothesis:

Hypothesis (BU) (backwards uniqueness): for each t >0
T(t) is injective.

We assume that {T(t)} t>0 induces an exponential
decomposition of x. That is

(@) X=m X EBTrOX ®m X, where m | Tor T, are
continuous linear projection operators 6n X.
Condition (a) implies the relations

If peX we write ¢ =T ¢, ¢ 0%, ¢, =T ¢. Throughout
+
we shall use the equlvalent norm H T on X, where “(p | =

|<p_|+ |¢o|+ |<p+ .

(b) For each t >0 T(t) commutes with the operators
T, Tgs T, SO that each of the subspaces T X m ™ X
are invariant under T(t). Futhermore {T(t)} “may %e extended
to form a continuous group of linear operators on TrOX @Tr+x.

That is

(i) foreach teR, T(t) :TTOX €B1T+X = T5X 6917+X
is a bounded linear operator,
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(ii) T(s)T(t)e = T(s+t) for all s, te R, ¢e TFOX GBTT_FX,

and (iii) for each oe ﬂOX EBTT+X, T(t)e¢ is continuous in
te R .

(Necessary and sufficient conditions in terms of A are
known for a strongly continuous semigroup to form a group
(Dunford and Schwartz [ 14, Vol. 1]). In applications (b)
may follow from finite-dimensionality of TrOX EBTT+X.)

(c) There exist constants a >0, a, >0,

min(a , a,) >ag 20, K>1 such that i

(2. 4i) Ittt Il <ke™®-“llo | forall gex, t2>o,
(2. 4ii) ”T(t)<p0 | < xe®0 It |l<,;0 || forall geX, teR,
(2. 4iii) Iz, Il < Ke2tt llo, Il forall gex, t<o.

Without loss of generality we assume ag > 0.

For (2.2) X =R", T(t) = et and the subspaces
Tr_Rn, TroRn, Tr+an correspond to the eigenvalues of A with
negative, zero and positive real parts respectively. When
Ty = 0 we say that an exponential dichotomy holds for {T(t)}.
Exponential dichotomies for ODE in Banach space of the form
(2. 2) with A bounded have been discussed by Massera and
Schieffer [ 25]. The corresponding saddle point theory is de-
scribed by Daleckiiand Krein [11].

Let n be a continuous, real-valued, nondecreasing
functionon [0, %) with n(0) =0. Let f:X— X be a con-
tinuous (nonlinear) operator such that

(i) f£(0) =0

(i) lfe) - W)l < lle - wll, lleoll, ol <r
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Consider the equation

t
(2.5) w(t) = T()w(0) + [ T(t-s)f(w(s))ds .
0

The integral in (2.5) is a Bochner integral in the
Banach space X. For many ODE in a Banach space with not
necessarily bounded operator coefficients, an equivalent
‘variations of constants' form such as (2. 5) exists (see the
introduction). Solutions to such equations which satisfy
(2. 5) are termed 'mild solutions' by Browder [6]. We con-
sider only continuous solutions to (2.5) for t > 0.

Lemma 2.1. Let 7 >0 and continuous functions
w:[0,7] =X, y:[-T, 0] =X be such that

((256)) y(t) =w(t+7) forall te[-7, 0] .

If w satisfies (2.5) in [0, 7] then y satisfies

t
(2.7) T(-t)y(t) = y(0) + f T(-s)f(y(s))ds forall te[-1,0].
0

Conversely, if (BU) holds and y satisfies (2.7), then w
satisfies (2.5) in [0, T].

Proof. The first half of the lemma is a straightfor-
ward calculation, using the fact that bounded linear operators

may be brought inside the integral sign (Hille and Phillips
[19]). So let y satisfy (2.7). It is easy to show that

t
(2.8) T(T-t)[ w(t) - T(t)yw(0) - [ T(t-s)f(w(s))ds] =0 te]0,7].
0

Then y satisfies (2.5)in [0, 7] by (BU). O
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By a solution of (2. 5) in an interval [-7, 0], 7>0,
we mean a function y : [ -7, 0] = x such that w(.) given
by (2.6) is a solution to (2.5) in [0, 7]. The lemma gives
a sufficient condition for such a y to be a solution.

Following, for example, Chafee [8] and Hale [17]
define for N\ >0

f\lo) =fle)  if llofl <x
(2200}

K2 ) if lloll>n .
Tol

The properties of f and m ensure the existence of a contin-
uous, nondecreasing function v(\), X >0, v(0) =0, such
that

£y (@) | <veor, g () - £y | < v lle - wl
(2.10)
for all ¢, YeX .

In order to study (2. 5) locally we investigate the global be-
haviour of the equation

t
(2.11) wi(t) = T()w(0) + [ T(t-s)f, (w(s))ds .
0

Lemma 2.2. For A >0 sufficiently small and ¢eX
there exists a unique continuous solution w(t), w(0) = ¢, to
(2-11),

Proof. Let T > 0. Define G to be the set of con-
tinuous functions g : [0, T] - x with g(0) = ¢. Let &§ >0
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and define ”gll(S = sup e ®Yg(t)ll. G forms a Banach

te[0,T]
space under || ||5 For ge G, te [0, T] define
t
(2.12) (Po)(t) = T(t)y + | T(t-s)f, (g(s))ds .
0
By writing
t t
(2.13) J T(t-s)f, (g(s)ds = [ T(s)E, (g(t-s))ds ,
0 0

and using (2.3), (2.10) it is easy to show that P : G-~ G.
For g;, g,¢ G, te [0, T], it follows from (2.3), (2.10) that

-6
e Mg () - (Pg)(0) | <

(2.14)

1
< [ mvpe® ) ds .

G; = g, g
0 1 2
Hence if 6§ < p and N small enough P is a contraction
on G and hence has a unique fixed point w. This completes
the proof. 0O

Remarks: See Chu and Diaz [9] for extensions of
this method of proof, which is due to Bielecki. Lemma 2.2
shows that existence and uniqueness holds for (2.5) in a
neighborhood of zero.

The open (respectively closed) ball with centre a,
radius e, in a Banach space is denoted B.(a, Y) (respec-
tively B (a, Y)). Let B, (Y) =B.(0, Y).

A subset K of X is said to be locally (+)-invariant
if there exists ¢ >0 such that for any ¢e B_(X) N K
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(i) for sufficiently small t >0 a solution w(t) of
(2.5) exists with w(0) = ¢,

(ii) if for 7 >0 w(t) exists and belongs to B, X)
for all te [0, 7], then w(t)e K for all te[0,7].

Local (-)-invariance is defined by changing > to < in (i),
(ii).

Suppose that a Banach space Y is decomposed as
Y =mY @w,Y for continuous linear operators ), m,. Then
a subset S of Y containing y, is said to be t angent to
mY at yg if [m(y-yg) ”/“sz(y yo)ll ~0 as y =y, in s.

Theorem 2.1. For sufficiently small 6 > 0 there
exist sets

*x

S ={peX: ”so_+¢0”<5, @ =p*(<p_+qo0)},

e
* s
U ={¢6X:”¢0+¢+”<6, ¢_=0q (pyt e},

termed the centre stable centre-unstable manifolds respec-
tively, where p s q are L1pschitz functions defined on
Bg(m_X D X) Bg (o XGBTT X) S" 1is locally (+)-invariant,
while if (BU holds U' is locally (-)-invariant. Any solution
o>fk (2. 5) which exists and remains in Bé(x) for t >0 lies on
S , and any solution of (2. 5) which exists and remains in
Bg(X) for t <0 lies on U*. Furthermore s* is tangent to
™ X @TrOX at zero.

Proof. First (compare Kelley [ 21]) we prove that
for N sufficiently small a centre-stable manifold exists for
(2.11) defined by p’i, which we show to be the unique solu-
tion for t > 0 of the system
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t
w (t) = T(t)e_+ { T(t-s)m _f, (w_(s) + w(s) +
+ pi(w_(s) i wo(s)))ds,
t
wo(t) = T(t).;pO + {T(t—s)wof)\(w_(s) + wo(s) +
(2.15)
+ p:(w_(s) i wo(s)))ds,
0
“ )= [ 1 £ +w (s)+
Py(o_+ ¢, 2 -s)m £, (w_(s) + w,(s

+ o, (W _(s) + wo(s)))ds .

In (2.15) w_(.) and w_(.) are unique. Sometimes we make
the dependence on ¢ , %0 explicit by writing W_((p_'f'qoo,t),
wo(e_+¢,,t). Define

£={x:TXO" X>mX: lxto_+oy) - xw_+v )<
< Il‘P_ + ‘PO - L«‘-‘_ '4’0”’ any ¢, yeX,
x(0) =0, x|l =sup lixte_+ oy ll<=}.

peX

X is a complete metric space with metric d(x;, Xxp) =
”XI - Xp . For xeZX consider the system
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t
X/t ) X X
wX(t) = T(t)p_+ OfT(t s)m_£, (W(s) + wy(s) +

+ x(wX(s) + wy(s)))ds,
(2.16) .
wz)((t) = T(t)g, + of T(t-s)"of)\(w)_((s) + wz)((S) +

+ x(w_X(s) + wé(s)))ds .

Using the method of Lemma 2. 2 one can prove that for given
¢_, ¢, (2.16) has a unique continuous solution wX(t),
wé(t) defined for t > 0. )

Let ¢_+ 9pe T X®moX. For t>0 let 6(t) =
= “w)_i(sO_ + @g, t) + Wz)((qo_ + g, t) - wX(g_ + ¢g, t) -
- Wz)(((p_ + ¢, t) ” Then from (2.4) and (2.10),

at
ot) <Killo_ - o_ll+e llo, - o, I+

E -a_(t—s) a (t-s)

+ 2kv(n) [ [e +e®  e(s)ds
0
- - aOt ta (t-s)
<K(llg_ - o Il + ““’0 - <p0|l)e +akv(\) fe B(s)ds.
0

Thus, by Gronwall's lemma,

(a0+4Kv (M)t

(2.17) o) <Kl +o, -0 -o,lle £>0.

Let x, beX, and for t >0 and fixed ¢_+ ® let
01(t) = lwX(t) + wX(t) - wl(t) - w‘g(t) . Then
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t a (t-s)
ot < [ 2kvive O [o(s) + lxwX(s)+ wXis))
(0
- wwdis)+ wiis) ]ds
t a_(t-s)

Sof 2Kv(\)e 0 [el(S) + Hx(W’_‘(s) + Wé(S)) &

- xw(s) + wiisn | + llx - wll}as

t a,(t-s)
2
<EEOL oyl +f akvoe O e (s)ds
0

g

so that, by Gronwall's lemma,

(ag+ 4Kv (W)t
(2.18) 0,(t) < —K—m— lx - wlle

%0

Now define the transformation Q on ¥ by

(Q)(e_ + o) {oT -5)T ) (WX(s) + wy(s) +
(2.19)

+ X(wi((s) + wé(s)))ds

From (2.4), (2.10) it follows that [[Qx || < ©. Next, using
(2L7),

l@x)e_ + ag) - (@o_ + o) Il <
- °0(a -a, + 4Kv(\))t

(2.20) 5
< 2K V(M||<p_+¢0-<p -¢O||fe dt.
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Since ag < a, it follows that for X\ sufficiently small
Q:%¥~% ., Butif x, pek

l@xte_ + 0y) - (Qulle_+ o) Il <

& -a s

Sf Kv(\)e * [291(5) + IIx - wlhds
0

& KV(M[a_ + —EAM— (a -ay - 4Kv(\)) ”x - 41”
+ 0

where we have used (2.18). Thus Q : X - X is a contrac-
tion for N sufficiently small. Hence there is a unique fixed
point p e ¥ satisfying (2.15). It is easy to prove that
w_(t) + wo (t) + p)\(w (t) + wO(t defines a solution of (2.11)
for t > 0. Furthermore [p¥(w_(t) + wq(t)) H is bounded.
Next we need the f ﬁlowing lemma, which is based
on ideas of Hale [17, compare his Lemma 3.1, Theorem 3. 2].

Lemma 2. 3. Let x, y be two solutions of (2.11)
which exist for t >0 and are such that

(2.21) x_(0) + x,(0) =y_(0) + y (0) .
Then for \ sufficiently small there exists o > 0 such that
-at
I, (0) - v, (0 <ke™ [Ix, (1) -y, (0 |

(2% 22)

for all t > 0.

In particular, if a solution w(t) of (2.1l) exists for t >0
and ”w+(t) |T is bounded, then w,(0) = p)\(w_(O) + WO(O)).
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Proof. Thelaststatementinthe lemma follows immedi-
ately from (2. 22). To prove (2. 22) note that x satisfies for t>0

t

(2. 231) x_(t) = T(t)x_(C) + {T(t—s)ﬂ_f)\(x_(s)+x0(s)+x+(s))ds,
t
(2. 2311) x,, () = T(t)x(0) +{T(t-s)ﬂof)\(x_(s)+x0(s)+x+(s))ds,
t

(2. 231il) T(-t)x, (t) =x,(0) + OfT(—s)Tr+f>\(x_(s) +x,(s) +x,(s))ds,

s
- - = b
a+ aO 2k

h(t) = [lx_(t) - y_ ) | + lxo(t) - yo®) ll, att) = lIx,(t) - v, (0)
Then from (2. 23i, ii) and their counterparts for y

and similarly for y. Let k =Kv(\), k'

l.

t ao(t-s)
(2. 24) h(t) <2k [ e [h(s) + g(s)]ds, t >0,

0
from which follows the estimate
t (2k+a0)(t—s)

(2.25) ht) <2k [ e g(s)ds, t>0.
0

But from (2. 23iii) and its counterpart for y,
-a t RGNS

(2.26) g(0) <Ke b g(t) + k f e * [h(s) + g(s)]ds, t>0.
0

Thus, using (2. 25),

-a t -a s
+

t
(2. 27) g(0) <Ke T gt)+ (ktk') [ e T g(s)ds .
0
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Letting y(s) = g(t-s), 0 <s < t, and applying Gronwall's
lemma to the resulting form of (2. 27) we obtain

-(a, -k-k')t
(2.28) Y(t) < Ky(0)e ,

which gives (2. 22) for \ sufficiently small. O

If we now take & =\, then since (2.5) and (2.11)
c01n01de in B (X) the ex1stence of S* is ensured with
p>{~ = p6. §* 1s clearly locally (+)-invariant, while any solb-
ution existing and remaining in Bﬁ(X) for t >0 lies on S™
by Lemma 2.3. The tangency of S' to X @n X at zero
is a consequence of (2.20) with g_ ¥ (po =005

Similarly we may construct U™ through q)\, the
unique solution of the system

0
% %
a0y + 0,) = {o T(-s)7_£, (q, (w,(s) + w,(s)) +
(2.29i)
+ wO(s) + w+(s))ds,
wo(t = E(t)e fT(t s)Tr f q;(wo(s) + w+(s)) +
(2..29i1)
+ wo(s) + w+(s))ds,
t
w, (t) = T(t)e, + ({ T(t-s)7, £, (@, (w () + w,(s)) +
(2.29iii)

- wo(s) + w, (s))ds,

for t < 0. Let y(t) = qi(wo(t) + w+(t)) + wo(t) + w+(t). Then
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£

(2. 30) T(-t)y(t) = y(0) + [T(-s)f, (v(s))ds, t<O.
0

Prom*Lemma 2.1 and (2.30) follows the local (-)-invariance
of U when (BU) holds. The other assertions*concerning
U" are proved in a similar way to those for S™. O

Theorem 2. 2. Given e, min(a_, a;) >e¢ >0, for
sufficiently small & >0 there exist sets
S ={peBgX) : llo_ll <6/2K, o)+ ¢, =pls )},

U = {eeBs(X) : ”<p+ | <8/2k, o+ 9o = dle, )},

termed the stable and unstable manifolds respectively, where
p, g are Lipschitz functions defined for |[lo_ [l < 6/2K,

llo; Il < 8/2K. If ¢eS then a unique solution w(t) of (2.5)
with w(0) = ¢ exists for t >0 and

-(a_-e)t
(2.31) lwit) || < 2Ke lw 0, t>0.

If (BU) holds and ¢e U then a solution w(t) of (2.5) with
w(0) = ¢ exists for t <0 and
(a, -e)t

(2. 32) lwiwy | < 2ke * llw ) ll, t<o.

Furthermore, S, U are tangent at zero to ™ X, T X
respectively.
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Proof. = We just treat S, the proof for U being
analogous. Throughout we assume A >0 chosen sufficiently
small. We solve for p, the system

t
w_(t) = T(t)e_ + { T(t-s)7_f, (w_(s) + p, (w_(s)))ds,

(2.33) t>0
0
P, (¢) =f°° T(-s)(Ty + 7, )f, (w_(s) + p, (W_(s))ds .

Define G = {h:7 X~ m X®nX, [h(p_) - h_)ll <
= ”(p_ - W || for all ¢, be X, h(0) =0}. G is a complete
R} (¢_)-hy(e_)
metric space with metric p(hl’ h2) = su

9e lle _ )
0#0 -

By using methods similar to those of Theorem 1.1 it is easy to
establish for he G the existence of a unique w}_l(cp_, t) sat-
isfying

h t h
w (¢, t) =T(t)e_ +f T(t-s)m £ (W _(¢_, s) +
(2.34) 0
+ h(wr_l(go_, s))ds;t >0,

and the estimates

h h ~ ~ -(a_-2Kv(\)t
(2.35) llw (e ,t)-w (o _,t) [ <Kll¢ -¢ lle ,

hl h2 K -(a_-4Kv(N)t
(2.36) llw_“(o_,00-w_“(o_,t) <5 llo_lloth,h)e .

Define the transformation P on G through
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0

(Ph)(e_) ={o T(-s)(m, + T, )f

)\(W}}((p_, s) +

(2. 37T)

+ h(wr_l(q)_, s)))ds .

Using (2. 35), (2.36) it is now simple to prove that P:G -G
and is a contraction. For brevity we omit the details. The
ur%)ique fixed point p) satisfies (2.33), where w_(t) =

A
w_ (¢_, t). The estimate (2. 31) follows from (2. 35), and the
other assertions concerning S are proved in an analogous
way to those of Theorem 2.1. O

Corollary: Suppose Ty = 0. Any solution wi(t) of
(2.5) which exists for t >0, remains in Bs(X), and satis-
fies [lw_(0)] <&/2k lies on S. Any solution w(t) of (2.5)
which exists for t <0, remains in Bg(X) and satisfies
Hw+(0) | <e/2k lies on U.

Proof. When 7, =0 the functions pi, py con-
structed in Theorems 2.1, 2.2 are identical. [i5}

Remarks: Theorem 2.2 may also be proved using the
method given by Urabe [ 33, p. 77]. We could also prove
the existence of a 'centre' manifold (see Kelley [ 21]). In
some situations the stability of this manifold is known to
govern the stability of the zero solution (Hale [17], Kelley
[ 22]).

3. An Eigenvalue Problem in Hilbert Space

In order to state the main result of this section,
Theorem 3.3, we need some preliminary discussion. Let H
be a real infinite-dimensional Hilbert space with inner prod-
uct (, ) and corresponding norm || . Throughout, A and
B denote linear operators defined on dense linear subsets
MA and Mp of H.
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A is symmetric iff (Au, v) = (u, Av) for all u',VE MA‘
A is semi-bounded below iff there is a constant k with
(Au, u) >k [[ul[¢ for all ue My. A is positive definite iff
A is semi-bounded below with k positive.

The following result is due to Friedrichs (see Dunford
and Schwartz [ 14, Vol. 2], Mikhlin [ 26, 27] or Riesz and
Sz.-Nagy [ 30]) and is used in the proof of the existence of
a self-adjoint extension to a semi-bounded symmetric opera-
tor.

Theorem 3.1, Let A be symmetric and positive defi-
nite. Define for u, ve M, [u, v]p = (Au, v). Then Mp
can be completed by means of elements of H to form a
Hilbert space H, with inner product [ , ], and corres-
ponding norm “ IA'

A subset S of a Hilbert space V whose finite linear
combinations are dense in V is called a basis of V.

The proof of the next theorem is given by Mikhlin
[R261]F

Theorem 3.2. Let A and B by symmetric and posi-
tive definite with MA & MB' Suppose that the embedding
Hp © HB holds and is compact. Consider the equation

(3.1) Aw - \Bw =0,
in its weak form
(3. 2) [w, ¢]A-)\[w, q)]B:O for all (peHA.

Then

1S
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(i) (3. 2) has a countable set of real eigenvalues
{)‘j} and corresponding eigenvectors {wj},
where 0 <\ <Ay <..., N\j=® as j—>»,

(ii) {w;} is an orthogonal set in Hy, Hp and is a
basis of the spaces Hp, HB and H.

, w2
(3.3) (iii) A} = inf llwllA =—,
weHp flw, |
[lw [l ;=1 LB
B
while if j>1,
5 [|w ”;‘
(3.4) A, = inf el = —2 |
b wemy A7 Jlw, 112
i'B

[W)Wi]B =0, I<i<j,
I WlB=l

and (iv) (Minimax principle)
For k >1 and a set of elements {y7, ««., Yy _;}
in Hp define

. 2
Ny eees by ) = inf ||w”A .
we Hp
wllg =1

Then A\, equals the maximum of A(yj, «.., Yk_1)
taken over all subsets {yj, «+., Yp_1} of Hg.

Applications of the following theorem are given in
Lemma 5.1,

114



SADDLE POINT ANALYSIS

Theorem 3.3. Let the hypotheses of Theorem 3,2
hold and suppose that w;e Mp for each j. Define \j=-%,
Let N be a given number and let K be the unique positive
integer such that g1 < \ < )‘K' Then the equation

(3%:5) Ay - \By = py

in its weak form

(3.6) [y, o], - My, ¢]lg =uly, ¢) forall ¢eH,,

has a set of eigenvalues {u.} and corresponding eigen-
vectors {y;} € Hp such tha

(i) precisely K-1 of the b are negative

and (ii) {yi} is a basis of the spaces H and HA'

Remark. If A, B are self-adjoint with domains Mp,
Mg, and if the operator A-\A,B is self-adjoint, then it
follows (Mikhlin [ 27]) that we Mg.

Proof of Theorem 3.3. Let {Wj} be normalized by
”WJ “B =1, Define L =A - A\B. We begin by showing that
L is semi-bounded below on Mp. Let ue MA with ||u||=1.

o0 . .
Then u =r2=1ul_wr in H,, where u_ =[u, w.]g, and, if
K>1,

00 2 K-1 ’ K-1 >
(Lu, u) = ), (A -Mu > Y, ut™ N > -(x-xK_l)Z u .
r=1 E=1 r=1
But since {wj} C Mg, lurl = |(u, Bw,) | < ”Bwr ||, and
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henee (Lu, W) > (A=A HBw H Hence L is semi-

K- l r—
bounded below on MA' (The proof is similar if =1.) Since
we can apply the same argument to the operator > A - \B,
there exists a constant ¢ > 0 such that

(3.7) l = L+ cl
is positive definite on MA’ and in fact satisfies

(3.8) e ||u H (Lu, u) —; Hu H forall ue M

1 A’

for some constant c¢' > 0. The left-hand side of (3.8) follows
from the positive definiteness of B and Theorem 3.2 (iii).
Setting MLl = Mp it is now clear that HLI = Hp and that the

injection HLl C H is compact. The existence of {p;} and

{yi} satisfying (3.6) and (ii) follows from Theorem 3. 2.
From the definition of L; and from Theorem 3.2 (iv)
the following minimax principle holds:

Py = max ““"1""’%-1)’ where k >1
Woppeeesdy ()CH and
. 2 2
(3.9)¢ B eeeydy ) = min bl - i
(u,yj)=0
I<i<k-1
_ ueH HU =l

To prove (i) note that if K =1 then By 20, while if
K =2 then uj <0 (this follows from the characterization of

] as a minimum: see Theorem 3.2 (iii)). We next show that
K-1

if K> 2 then Mg_] <0. Choose u = Zl uw, where
=
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ur = [u, w,]g. These are K-2 equations for the K-1 un-
knowns uj, ..., ug_}. Therefore there exists a solution

with the corresponding u satisfying |[lul =1 and

K-1

2 2 2
hlly = nlhallg = 25 o -2

=1

But
- K-1
1 2.1 2
1= [ull 521 law I <5 21 (u” + = [lw I,

for any 6 > 0. Hence

K=1 K-1
202 Ul 2
ui>E-= ) lw (7.
el - & 62 =] g

By choosing 6 large enough we can find & such that
K-1
ur2 =100 >0

=1

Note that & is independent of u. Hence
2 2
- NS
l[u HA llu “B £ B 7NI8 <0,

and by (3.9) R, see, Ugop) < (N\g_1-M)8 <0 for any
{¥15 ++«, Ug-2} © H. Therefore pug_; <0.

We now show that, if K>1, pg >0. Since
{w;j} € Mp and hence {Bw;} CH,
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pKz p.(Bwl, ooy BwK—l) = min Hu ||§ -\ Hu Hg i
ue Hp
flu =1
(U,Bwi)zo
I<i<K-1

But for all u with [u, w;]g = (u, Bwj) =0, 1<i<K-1, the
inequality

2 2
holds (Theorem 3.2 (iii)). Since \ < A it follows that

- pg > 0. Hence (i) holds. O

4, The Buckling Beam-Preliminaries

Let 2 =)0, £[, £ >0. Denoteby (,) and | |
the inner product and norm in the Hilbert space L2 = LZ(Q)
of real-vallued square integrable functions on €, so that

(Era)h= f f(x)g(x)dx. We shall use the Sobolev spaces

" = Hm(%m, Hp = Hg'(2), the spaces C™(@), C™(@) of
continuous functions, and the spaces LP(0, T; X), 8'(0, T;X),
where 1 <p <» and X is a Banach space. Definitions and
properties of these spaces may be found, for example, in [ 2].
Define G, = H%) N H2. For brevity derivatives (in general
distributional) are denoted by Bt ()=() and ﬁ( =)k
Weak convergence in a Banach space is written —~, while
weak star convergence is written € . Positive constants
are denoted generically by C and Cj (i=1, 2, ...). >
Throughout let V _denote one of the spaces G;, Hg.
The cases V= Gy, V= Hg correspond to beams with hinged
and clamped ends respectively. V' denotes the dual of V.
Let Z =VX LZ, which is a Hilbert space with norm given by

g, x} 2= el [2+ Ix |2
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By a reversible strong dynamical system on a Banach
space X we mean a function w : R X X - X satisfying

: t . ; s
(i) w : ¢—= w(t, ¢) is continuous for fixed telR,

s @ : s .
(ii) w” :t—> w(t, ¢) is continuous for fixed ¢e X,

(iii) w(0, ¢) = ¢ for all ¢eX,
(iv) w(t+7, ¢) = w(t, (T, ¢)) for t, Te R, o¢eX.

If pe X the orbit O(¢) through ¢ is defined by O(g) =

U w(t, o).
te R 2 ¥
The following existence theorem is proved in [ 3]:

Theorem 4.1. Let TeR, T# 0. If ¢ = {up, uj}e=
there exists a unique u=u(., ¢) with {u, 4}eL (0, T; )
and u(0) =ug, 4(0) = u; such that u is a weak solution of
(1.1) in the sense that

. " " ] 2 " :
(3, 0) + o(u", 8") - (B + klu'[“)(u", 0) + (0, 6) =0
(4.1)
for all 6e¢ V.,
u satisfies the energy equation
; 2
(4.2) E(t) + 6 [ lu(s)|“ds = E(0),
0

where E(t) = E({u(t), u(t)}) and

k
(4.3 E({w, x}) =3 Ixl+ AR T L T
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If we set w(t, ¢) = {u(t, ¢), (t, ¢)} then w is a reversible
strong dynamical system on X.

Clearly E is nonincreasing along orbits of w. Also
E is (sequentially) weakly lower semicontinuous on X,

We shall need the following extra continuity proper-
ties of w:

Lemma 4.1. Let t —~t in [0, T] as n— o,
(1)SIf e in X then w(tn, <pn)->w(t, @) in =,

(ii) If @ in ¥ then w(tn, qan) - w(t, ¢) in =,
Proof. Part (i) is immediate from the inequality
lott_, o) - wit, o) I < llott_, ¢ ) - ot , o)l
“w(tn, o) - w(t, o),
and the inequality (see [ 3, Theorem 2])

lott 5 o) - ot , o) | <exp(Ct)llo, - o

To prove (ii) let tp — t, ¢ ~ ¢. By (4.2), (4.3),
“w( , ¢n) ” is bounded in L% (0 T 2. Therefore we may
extract a subsequence w(s, ¢,) such that u(s, ¢,) =u(., ¢
in L (0, T; V), U(s, @,) = Ul+, ¢) in L (0 T li 2y (see
the proof of Theorem 5 in [ 3]) and thus, using (4.1),
a(-, (pp) U(-, @) in L%(0, T; V'). Since {ulty, 9)} is
bounded in V we can assume that u(t,, ¢,) = x, say, in
V. Thus ulty, ¢~ x in L2, But
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(4.4) ut,, @) -, ¢) = [ 4@, ¢ )dr,
2
and so for 6e¢ L we have

(ut , ¢ ),6) - (0,9 ),8) = (ar, ¢), 0)dr +
(O™ e 0
(4. 5) t
)
+ [ (e, a,), 0)dr, te[o, ] .
t

Let p = in (4.5). The second integral tends to zero by the
boundedness of (., (pp') in L°°(O, T LZ). Hence

it
(x,0) - (¢, 0) = [ (AT, ¢), B)dT = (u(t, ¢), 6) - (¢, 6).
0

Hence x =u(t, ¢). o
Now let e V. Since (d(., qol_L), y)eL (0, T) we
can write
t
. . p‘“
(4.6) @t,, 0,), 4) - (@00, o), ¥) ={ @, ¢ ), $)ar

and deduce similarly that u(t,, cpp) - u(t, ¢) in 12, Thus
w(tp, gap) —~ w(t, ¢) in X and hence the whole sequence
converges. O

We now consider the equilibrium positions of (4.1).
The following result is well-known:

Lemma 4. 2. There exist eigenvalues {\;} and
corresponding eigenvectors {vj} for the problem

(4.7) a(v', €") - \(v', 68') =0 forall 6e V.

2l
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{vj} is a basis of LZ, Hf and V.

4 2
gd—4 and B =z—i‘§z s If
V=_G let Mp = {ue i (Q) u=u"=0 at x=0,2}, while
i W= H let M —{ueC (Q: u=u" =0 at x=0,1L}.
Let MB={ueC () :u=0 at x=0, £}. Then Hp =V and
Hp = Hb The embedding Hp C Hp is compact by the Rellich-
Kondrachoff theorem. The result follows from Theorem 3. 2. O

Any solution of (4.7) satisfies ov" + Av" = 0. Thus

. , [iTx 2 2
if W = Gj, Vj(x)=Cj sm]T and )\]_Jrr/f £ V:H0

expressions for \;, v; can also easily be derlved (see e.g.
Timoshenko and Gere f32 p. 54]).

Let v = {v, 0}e¢ = be an equilibrium state for w.
Then v satisfies (4.7) with -\ = Bl =g +k [v* 2, Thus if
-B <\; the only equilibrium state is v = 0. If \j<-B<\p4
there are 2n+4 1 equilibrium states given by v = 0 and
v=tv,, 1<mZ<n, where we assume that v, is normal-
ized so that ﬁ +k lv The loads H, Hy mentioned
in the introduction sat1sfy H?HE -B/\.

Proof. Let H =L1%, A=

5. The Linearized Equations and the Corresponding
Exponential Decomposition

Let v be an equilibrium position. Setting u=v+y
in (1.1) we obtain formally

}'; +Gy"" _ ﬁlY" _ Zk(vl, yl)vll + 65; =
(5. 1)
2 2
- k[2(v', vy + Iy [Ty Dy [%vr] = o,

The corresponding linearized equation is

(5' 2) E 4 ahllll _ Blh" _ Zk(v|’ hl)hu A1 .6h =0,

122



SADDLE POINT ANALYSIS

Theorem 5.1. Let Te R, T # 0. Let ¢={ug,uj}e =.
Then there exists a unique function h satisfying
he L°(0, T; V), heL®(0, T; L?), the initial conditions
h(0) = up, h(0) = u; and equation (5.2) in the sense that

(h, 4) + ah”, y ") - B (h", ¢) - 2k(v', h)(v", ¢) +
(5.3)
+8(h, ) =0 forall yeV.

Furthermore h satisfies the energy equation
t . 2

(5.4) E(t)+ 6 [ [h(s)|“ds = E,(0)

1 0 a2

where E(t) = E({h(t), h(t)}) and

2

p
24 5 I 12+ ke, g,

1 2
(5.5) Ey({y, x}) =5 Ix|“+ 3 lo"

If we let T(t)p = {h(t), h(t)} then {T(t)} te R isa strongly
continuous group of linear operators on 2.

Proof. This is omitted since it is a straightforward
application of Lions' method similar to the proof of Theorem
4,1, 0

In order to study the exponential decomposition in-
duced by {T(t)} we need two lemmas:

Lemma 5.1. Let V= H2 and let {\.}, {v:} be as
; X 0 ] ]
in Lemma 4.2 with Ay = -,

(i) Let K be the unique nonnegative integer such

that Ag < -B <\g;). Then there exist eigen-
values {pj} and corresponding eigenvectors
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{rj} for the problem

ar" - Br" =pr in Q,
(5.6)
r=r"=0 at x =0, £ .

2

{rj} is a basis of L™ and Hg Precisely K of the {pj}

are negative.

(ii) Let m be a positive integer. There exist eigen-
values {p,, ;} and corresponding eigenvectors
{rj} for the’problem

ar™ - 2k(r' , v\ )v" + N r" =pr in Q
m m’ m’ m mm m

(5.7)
=i =0 Bl e =, L ¢
m m

{t, ;} 1is a basis of L2 and Hg Precisely m-1 of the
{pm’ j} are negative and p, . is positive.
) ’

Proof. We just prove (ii) as the proof of (i) is simi-

lar. Define Am by

(5.8) A= au™ - 2k(u', vV,

with Mp = {ue C°°(§) tu=u'=0 at x=0, £}. Let
B, = —dz/gxz with Mg, = {ue CP(@ :u=0 at x = 0, &1},
If ue MAm,
2 2
(5.9) (Amu, = alu"i + 2k, v;n) -
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so that A_ is positive definite on Mp . From (5.9)

" 2 2 " 2
clu"1“< Il <c,lu"|* forall uem,
m m

. Clearly HBm = H1 Consider

It follows that HAm = H2 0°

0
the eigenvalue problem:

to find ve HA such that
(5.10) m
[v,qo]A - v[v, qD]B =0 for all pe Hy
m m m

For each j > 1, Vj is an eigenfunction of (5.10) with eigen-
value vy =X\j+ 2k(vj, vp). Since {v;} is a basis of L2
there are no other eigenfunctions of (5.10). Also it is clear
that {v.} € Mg _. It follows from Theorem 3.3 that the
{rm,]-} eéxist and form a basis of L% and H%, and that pre-
cisely m-1 of the p_ ; are negative.
. m, .

Finally, suppose pgyn m = 0. Then setting r, =1,

we have from (5.7) that ’

(5.11) ar - ZK(c!, vi)vr 4Nt =0,

Taking the inner product of (5.11) with v we see that
(tms Vo) = 0. But then, by (5.11),

or™ 4+ X " =0

rll
m mm

so that r = Cv_ contradicting (r', v') =0, Thus p 2z 0
m m m’> m m,m
]
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We remark that the conclusion B >0 is connected
with the absence of secondary bifurcation for the equilibrium
problem for (1.1).

The proof of the next lemma is left to the reader.

Lemma 5. 2. If o >0 and
p a b\ [r

= ’
q c d/\s

where p, q, r, s arereal, a, b, ¢, d complex numbers,
then

op?+a’<(lalf+albl®+ [c|¥o + [d[}@er? + 2.

Theorem 5.2. An exponential decomposition holds
for {T(t)} with corresponding projection operators m_, To,
m, defined. The dimensions or codimensions of the corres-
ponding invariant subspaces are given in Table 1.

codim T X dim TTOZ dim Tr+>3
v=0 xn< -B < )\n+1 n 0 n
n>0 -B = )‘n+l n+l 1 n
v =1V, m-1 0 m-1
Table 1
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Given e >0 there exists K >1 such that, for all ¢e Z,

(5.12) Iz ol <k ™" i o, t>0

(5.13) It yell = Imoll, teR, and
byt |

(5.14) Ity ol <e™* lm oM, t<o.

The exponents b_, b, are given in Table 2.

+

b b

- +
Re—;[é - '\/52-4pN+1] undefined if -B < xl
v=0 |where N >0 is defined by =-§ [»\/62-4pn - 6] if
M 2P <P A P E Ry, 021

" 1 Js2 1 /62 -
v= |Re  [6-N&"-ap, ] 2 [No-ag, - 8]
tVm

Table 2

2
When V = Hy, {pj}, {PAm j} are defined as in Lemma 5. 1.
If V=G then ’

(5.15) b, = alin/! * + s’

and
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422 2 .
(5.16) pmj=a("/1)1 G°-m%), j#m
)

5.17 =2, .
oo T

Proof. @ We shall do the entire proof for the more
difficult case V = Hg and then indicate the modifications
necessary if V=Gj. Solet V=Hy and v =+ v, l<m<r.
Let {r, ;} be defined as in Lemma 5.1 and be normalized

m, J 2 _ ¢
by Irm’jl = 1. Define Um by

2
(5.18) U y=ap™ - (R+k lv;nI " - 2k(v, W

. (2 :
Since B +. k |vm| = -\, it follows that Umrm,j = pm’jz}n_’j
for each j. Alsoif ¢ > -ppy | then

(5.19) o I = U, 0+ clol?

defines an equivalent norm on HZ. Denote the corresponding
inner product by (( )). Thus we can and shall norm =

by H{q;, 0} (2 = ||¢u nlz + |6 |2. Define the projection opera-
tors o by

5e 20 T.o={u.r_ ., u,r .
( ) ]‘P {0] m,]’ lj m’]}

for ¢ = {'UO’ ul}e Z, where Ugj = ((uo, o j)), ujz(ul,rm j).
Note that ? ’

2 2 2
(5. 21) o 17 = ug sl 5+ ©) +uy
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Since {r j} is an orthogonal basis of Hg and L? we can
¢

0

write ¢ = .21 Trj<p for any ¢e¢ £, convergence holding in Z.
]:

Setting ¢ = I'm_j in (5.3) we can write, using Theorem 5.1,

5.22 . = @ =[5 S

( ) ™ T(t)e = T(t)Tj9 {S]mrm,j, Sj‘t”}n,j}'
where

5.23 S, + 88, + S, = 0.

( ) j i Pm,i%

The solution of (5. 23) is

5- 24 5 t = 0 t +

( ) 8;(t) A]exp(ijr ) Bjexp(vj_t) ’

provided 62¢4p ., where
m,]

2
-5+ Jé ~dop 4

(5.25) v, =

Jt 2
and
(5.26) 5.(t) = (C, + D.t)exp(- > 1)
j i 2 7
: 2 .
if 8" =4p .. A, B,, C. and D; are arbitrary constants
m,j Jji ) ] ]

and
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N 'y "+ %05 Y
= s By = s
j v, =V, j v, -v
(5. 27) JtE = JEE
8
C. = D, =u

., = u_, . .+ —Tu »
j 0j° 7j 1j 2 0j

Define Sp = {¢e Z :A; =0 all j with p < 0}.

Let Up be the orthogonal complemént of Sy in Z,
so that = = U GBSA and let Ty, T be the projectmn op-
erators such that Up = =m2, Sp =m_Z. Since by Lemma 5.1
(ii) precisely m-1 of the {pm } are negative and py, >0,
it follows that dim 7, = —codlm m_% =m-1, Clearly Wi’l‘(t
T(t)my for all te R. We now prove the exponential estimates
for m,. First note that it is sufficient to prove the following:

Given ¢ >0 there exists K, >1 such that for all j

(5.28) Iy 7ol < Kee'(b-'E * lr 7 oll, t2o,
and
(5.29) ey, m ol < e 7 oll, t<o0

. + j — + j b -_— L
For it then follows from the orthogonality of } that
(5.12) and (5.14) hold when ¢ is of the form ¢ _JE! ]qo.

Then (5.12) and (5.14) follow by Theorem 5.1.
Consider first (5. 29). Write Vip =V for simplicity.
Then from (5. 24), (5.27)

(5. 30) T(t)TT+'|Tj(p = eXp(V+t)TT+TTj(p

and (5.29) follows.
Now suppose that ¢e Sp. Since p ) + 0 there are
three possible cases
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2
a >0, & 4 .
(@) p , e

Case (a). It follows from (5.24), (5.27) that

S, (t) 1 U
(5. 31) ) = [exp(v t)K, - exp(v t)K ][ |,
. vV -v Gl TRE = =
S.(t) + - U
) 1)
-V.l-_ 1
where Kt = . Combining (5.21), (5.31) and
-V VvV v
+ - +

Lemma 5.2 (with ¢ = + ¢), and using the inequality

pm,j
2 2 7 2 2 2
o(p; +p,) + (q; + q,) < 2(op +q +op, * qz),
we obtain, for t >0,

2

2
Ity o 1% < > [ lexp(zv )| +

v -V
+

2 2
+ lexp(2v t) (1] |v+| + v | +pm’j +c+

2 2
+ v | /(pm’j +¢)] ||"j<p|| <

2

-2b_t p2
< e [62+ |62-4p |+p .+C+—m"‘j_]“".</’”2
|62‘4p | m,j m, j P j+C j
m,j ' - -
-2bt 52 1+c/py j 1
=4e ¢l ey > ]||ﬂj¢|
6%-4 5 -4 +o)ls =2
| pm,j| | /pm,] | (l/pm,] ol /pm’j |
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Thus

00

(5.32) I o 1% < ga 2Pt I 12,

Case (b). In this case

Sj(t) . 1+ 6t/2 t Uos
(5. 33) exp(—‘z't) ’
) -6%t/4 1- st/2 ;

and thus by Lemma 5.2, for t >0,

=

2
Iztermo ) < o™ lir o P10+ 5t/2)% + 5 40t +

4
+——§——+(1 = é;_—t)?‘] .

4(6" + 4c)

Thus

2 -(6-2¢)t .o ”2

(5.34) HT(t)TTj<p 12 < Cle ol t>o0.

Case (c). In this case

(5. 35) T(tme = expl_HT ¢

j

so that
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-b_t
(5.36) ||T(t)ﬂj<ollse llnj<p|l, t > 0.

Combining (5.32), (5.34) and (5.36) we obtain (5. 28) and
hence (5.12), (5.14).

Next consider the case v =0, In the preceding anal-
ysis replace {p ;} by {pj} and {r, j} by {r;}, where
{p;} and {r.} are defined as in Lemmd 5.1 (i) with Irjlzzl
each j. If -B# \p;;, any n >0, then the analysis holds
with the indicated modifications to codim m_2  dim T,z and
b,. If -p=Xy,;, some n>0, then pyyy = Vinsl)+ = 0
and rp4) =+ vpp)/ IVn+1 . Define S, as in the preceding
proof and let ZA be the subspace of Z spanned by the ele-
ment {rn+1, 0}. Let Up be the orthogonal complement of
Zp ®Sp in X, andlet m_, m,, m,  be the projection oper-
ators such that Sy =7 _Z, Zp =mgZ, Up =72, Itis clear
from (5. 24) that T(t)Tge =Tpe, any te R, and thus (5.13)
holds. The proof now proceeds in a similar way to before.

Suppose now that V = Gy. Throughout in the above
replace ry ; and rj by N2/1 sj, where s;(x) =sin(jmx/1).
{sj} is a basis of V and L2 (see[2] or apply Theorem
3.2). Defining Um as in (5.18) it is easy to see that

(5<37) Umsj

= Pm, 355 2

where the P i are given by (5.16) and (5.17). It is clear
that p, > 0’ while Pm, j <0 if j <m. Also, if A\ <-B<

(5.38 s" - Bs" =p,s,
) as;” = sy = pySs,

then p, is given by (5.15) and p;< 0 for j<m, p .5 >0.
The proofs for any v are now straightforward adaptions of
those for V = H% O
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6. The Variation of Constants Formula

We can write (5.3) in the form
4 0 I
(6.1) at (T(t)e) = T(t)e,
-B -61

where B : V- V' is defined by

(BO)(p) = (07, @) - (07, §) - 2k(v', 8°)(V", {)

(6.2)
for 8, Ye V.
Let
0 I
(6.3) AR= 3
-B -61

Then A is a continuous map of X into L'2 X V'.

Lemma 6.1. Let T>0andlet g:[0, T] = Z be
continuous. Define G :[0, T] - Z by

t
(6.4) G(t) = [ T(t-s)g(s)ds .
0
Then
6.5) G=AG+ag,
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both sides being continuous functions from [0, T] into
LEX ¥,

Proof. Suppose, for example, that V = H0 and
+ Vi, o l<m <n., We again norm X by ”{4;, 6} ”2

vV =
= l %+ IOTZ Define for te [0, T] the functions
(6.6) g (t) = Z m(t)
t
(6.7) Gr(t) ='({ T(t—s)gr(s)ds,
2
(6.8) F(t) = llg - g %)

¢ [0, T] = = is continuous. This implies by (5.12) and
(5.14) that Gy : [0, T] = = 1is well-defined and continuous.
Also, since there are explicit formulae for T(t-s)g.(s) (see
the proof of Theorem 5. 2), it is easy to verify that

6.9) G, =AG_+ g, .

Now since {rm’j} is a basis of Hg and LZ, F (t) de-
creases to zero as r -~ © for fixed t. But each F, is con-
tinuous on [0, T]. Hence by Dini's theorem (see e.g.
Dieudonne [13, p. 129]), F.(t) = 0 uniformly in [0, T] as
r - o, Therefore, for te [0, T],

t
e - G | IIOfT<t-s><gr<s) - g(s)ds ||

C sup ”gr(s) - g(s) |l s
se[0,T]

IA
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so that ||Ge(t) - G(t) | = 0 uniformly in [0, T] asr-oo.
Since A : - L&X V' is continuous, it follows that
AGy -~ AG in L%0, T; L2X V'), Also gy —g in LN0, T;
L2 X V'). But (‘31-—> G in 8'(0, T; £). Hence by passing
to the limit in (6.9) we obtain (6.5). The cases v = 0 and

V = G are treated similarly. O
Define f: X - X by

f({e, x}) = {0, k[ 2(v', 8")0" +
(6.10)

+ lo' 1% + o' |%v"]) .

Lemma 6,2, There exists a continuous, real-
valued, nondecreasing function n on [0, ©) with 7(0)=0
such that

(6.11) (o) - £  <nn) llo - wll, e ll, llull <r.
Proof. Let ¢ = {<pl, 9p} and ¢ = {y, ¢2}. Then
I£te) - £@) [ = k[2(v, o](e] - 4)) - 2(v, o) - 4y +
1 2 n n " n "
+lop %o = wp) = (o) + 4y5 @ - by -
" " " 2
- (og + 4y, 9 - UV l<cie+rlle -l

for lloll, lull<r. O

136



SADDLE POINT ANALYSIS
Theorem 6,1. Consider the equation
t
(6.12) w(t) = T(t)p + [ T(t-s)f(w(s))ds .
0
Then w is a (continuous) solution of (6.12) if and only if
w = {y, ¥}, where {y, ¥} is the unique weak solution of

(5.1) corresponding to initial data w(0) = ¢.

Proof. Suppose w :[0, T] = X, continuous, is a
solution of (6.12), Clearly w(0) = ¢. From (6.1)

d 0 2 .
at (T(+)p) = AT(+)ep belongs to L (0, T; L= X V').
Let g(t) = f(w(t)). By Lemma 6.1,
c 0 2
(6.13) w =Aw - f(w(-)) in L (0, T; L XV')
If w={y, z} it follows that

(6.14) z in L°(0, T; L%,

e
]

Ne
i

2 1 2 "
-By - 8z - k[2(v', y)y" + ly' [y + |y [%v"]
(6.15)
0
in L (0, T; V').

This means that w = {y, ¥} and that y is the unique weak
solution of (5.1) satisfying w(0) = ¢.

Conversely, suppose that w = {y, ¥} is the weak
solution of (5.1) satisfying w(0) = ¢. Define w:[0,T] ==
by
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. t

(6.16) w(t) = T(t)p + [ T(t-s)f(w(s))ds .
0
By Lemma 6.1,
2 — 0 2

(6.17) w=Aw + f(w(s)) in L (0, T L NS
But w satisfies (6.13). Letting u =w - w we see that
(6.18) u=Au.

Since u(0) = 0 and solutions to the linear equation
(6.18) are unique by Theorem 5.1 it follows that u = 0. Hence
w satisfies (6.12), O

7. Application of the Saddle Point Analysis

Theorem 7. 1. Let v be an equilibrium state for
w. Given e >0 there exists R =R(¢) >0, R>R'>0, and
subsets of =

* *

S (v, R)= {v+¢o: ||¢_+¢0”<R, ¢, =P (¢_+¢O)},
*,R) = (v+e : lo. + o, <R A

U (V,R)={v+te :lle,+e lI<R, ¢ =a (egte)},

S(v, R) = {v+oeeB(v, Z): llo_ll <R/2K , o) + o, = 0o )},
U(v, R) = {v+¢eBp(v, Z) : llo, [< R/2K , o_+ o) =ale,)},
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where p*, q*, p, g are Lipschitz functions defined on
BR(T_.Z & m,Z), BRr(myZ D), BR/ZKE(TT_Z), BR/ZKG(“+Z)

respectively. Any orbit of @ which remains in BRt(V, >) for
t >0 lies on S*(v R) and any orbit of w which remains in
BR-(V %) for t <0 lies on u* (v, R).

If yeS(v, R) then

(7.1) llo(t, ¢) - vl < 2K giPme lg-vIl, t >0
If ye U(v, R) then
(7.2) llo(t, ¥) - vl < 2K g PRl ly-vll, t<o.

S*, U*, S, U aretangentto ™ Z @7, X, T X ®m I, T_IZ,
m,Z respectivelyat v. If V=%V, l<m<n, orif v=0
with - #Xj;; any j >0, then S and S (respectively
U* and U) coincide in a sufflc1ently small neighborhood of
V.

Proof. This is a direct application of Theorems 2.1,

2.2 (and its Corollary), 4.1, 5.1, 5.2, 6.1, and Lemma 6. 2.
O

It is clear from the theorem that, for example, the
projection operator m_ + 7, is a homeomorphlsm of S*(V R)-v
onto BR(T_Z ®TmyXZ). We therefore define codim S*(V R)=
codim (v_X EBTrOZ:), dim U* (v, R) =dim (T7(Z &7, %) and
similarly for S, U. These dimensions and codimensmns may
be obtained from Table 1.

8. Stability and Instability of Motions of the Extensible
Beam

We begin this section by defining some well known
stability concepts, for an exhaustive treatment of which we
refer the reader to the article by Knops and Wilkes [ 24].
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The orbit 6 of w is (positively) Lyapunov stable if
for any ¢e ® and € >0 there exists & >0 such that
”Lp-q;” < & implies ||w(t, ) - w(t, @) H <e forall t>0.

® is asymptotically stable if & is Lyapunov stable
and if for any ¢e & there exists 61 > 0 such that “Lp—(p H <{51
implies Hw(t, ) - w(t, @) [ ~0 as t— .

® is Lyapunov unstable if it is not Lyapunov stable

Let v be an equilibrium state of w. The region of
attraction A(v) of v is defined by

A(v) = {pe Z :w(t, ¢p) > Vv in T as t—-o},

The region of backwards attraction A (v) is defined

by
A (v) ={¢peZ :w(t, ¢) >V in T as t— -0},

The following theorems are proved in [ 3]:

Theorem 8.1. If ¢e = then w(t, ¢) ~-v in = as

t - o, where v is an equilibrium state. Equivalently

(8.1) Z = A(0),

if -p<\;, and

n
(8.2) z=a0) U Y [Aw)UAGv)],
=l

if )‘n<'65)‘n

+1
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Theorem 8.2. If A\ <-P then v;, -v) are interior
points of A(vy), A(-vj) respectively.

In the case \; < -P it is clear from Theorems 8.1,
8.2 and the continuity of « that A(vy), A(-v;) are arcwise-

connected open sets.
We state without proof a lemma containing the main

point of the proof of Theorem 8.1.
Lemma 8.1. Let ¢e = be such that both Hw(t, ) I

t
and £ Iﬁ(s, ®) lzds are bounded for te [0, ©) (respec-

tively te (-, 0]). Then w(t, ¢) =~ v, an equilibrium state,
in ¥ as t—- ®© (respectively t —-%),

Part (ii) of the next lemma supplements Theorem 7.1
by restricting the possible behaviour of any orbit in a neigh-
bourhood of an equilibrium state, irrespective of whether or
not it lies on one of the manifolds S%*, U*, Sy U

Lemma 8.2. Let v be an equilibrium state.

(i) Suppose {yp} € Z, t, >0 are such that, as
n — OO’

(@) E(yp) =~ E(v) and (b) w(tp,, Yp) = Vv in Z.
Then y, - v in Z.

(ii) Given e >0 there exists 6, ¢ >6 >0 such
that if ”q)-v ” <6 and Hw(T, Q) -V H <& for
some T >0, then Hw(t, @) -V H <e for all

te [0, T].
(iii) Define for ¢ > 0 theset Y = {yeAv): “y-v ” =e }.
Then
(8.3) inf E(y) > E(v) .

ye Ye
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Proof. To prove (i) let {y,}, t, >0 satisfy (a)
and (b), but y, 4 v as n - ©, Then o 0, a
subsequence {t,} of {t,}, and sequences {SH}, {z,}
such that for each p there holds 0 <s w(sp, V., ),
”z - VH = ¢ and ||w(t, zpL - v||< € foraﬁ te [0,t, -5
Without loss of generality we may suppose e small enough
for v to be the only equilibrium state in B, (v, Z).

Since {z,} is bounded we may extract a subsequence,
again labelled {z,}, suchthat z, -z, say, in Z. We
show that z = v. Thls is obvious if {tp. - s,} is bounded
since we may suppose that tf NSNS S SO that
w(t )~ w(T, z) by Lemma 4. l(ii but w( ,zp)z
w(tp, Yy ISL-» v, and hence z =v. If {t -s,} is unbounded
we may suppose that t, - s, = . Smce fgr any t >0,

w(t, zp.) -~ w(t, z) as p — o, it follows that

(8.4) llo(t, z) - v <lim inf [lot, z ) - vl <e.
= o0 B

By Theorem 8.1 w(t, z) - v, an equilibrium state, as t— %,
Thus and hence v = v. We deduce from (a) and
the weak lower semicontinuity of E that for t 20

E(v) < E(w(t, z)) <lim inf E(w(t, z )) < lim inf E(z ) <
b~ "
(8.5)
< lim inf E(yp.) = "E(v)s

P,—»OO

It follows that E(w(t, z)) = E(z) for all t >0 and hence
Z =V,

Let z = {zl s Since z, - v, lziu |2~ |v' |2
as p—> o, so hm mf (z ) = E(v). Thus
M= 00
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| 2 B 2,k |, 4 _
lim mf[2 HZH 1< + 5 Izlpi + . |le| ] =
o>
_—l 2 E 1 2 E 1 4
N A
L 2 2
and so lim inf Hz"L ” = llvl . Thus a further subsequence

—

z, tends strongly to v in X, which contradicts |z -v ||=
= e¢. This proves (i). ¥
Suppose (ii) is false. Then there exists ¢ >0 and
sequences &cpn} C Z, 7,20 such that H<pn~v | < l/n,
“w('r, ®n)-v |< 1/n and, for some Sp€ [0, Tn], Hw(sn, onl-
-v| 2e. Let Y = @(Sp, @4), th =Tn - Spe Then E((pn)z
2 E(y,) 2 E(w(Tp, ¢,)) and so, by the continuity of E,
E(yn) - E(v). Clearly w(ty, vp) = v. Thus by (i) A
contradicting ”Yn - v ” >e. Thus (ii) holds.
Suppose (iii) is false. Then there exist {yn} C Y.,
th 2 0 such that (a), (b) hold. Thus y, -~ v. This contra-
diction proves (iii). O

Remark: It is possible to prove that for ¢ > 0 small

enough inf E(y) > Ce 2 4 E(v). This improves (iii) but is

yeY.
unnecessary€ for our purposes. A tedious computational proof

is given in [ 4].
Lemma 8.3, If v is an equilibrium state and r > 0
small enough
sk
(8.6) A(v) N B (v, Z) €S (v, R) N B (v, Z),

sk
(8.7) A (v) N B.(v, Z) CU (v, R) n B.(v, 2).

If v=tv,, 1<m<n, orif v=0 with 'B*)‘j+1 any
j 20, then for small enough r >0
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(8.8) A(v) N B (v, ) =S(v, R) N B (v, Z),
(8.9) A (v) N B (v, %) =U(v, R) N B (v, ) .

Proof. By Lemma 8.2 (ii) there exists r >0 such
that ¢e B (v, Z) and «(T, ¢)e By(v, Z), 7 >0, implies
w(t, ¢)e Bri(v, Z) forall te[0, 7]. If @eA(V) N Bp(v, =)
there exists T >0 such that w(t, ¢)e Br(v, ) forall t >T.
Therefore* w(t, ¢)e Brr(v, Z) forall t>0. Hence by Theorem
7.1 ¢S (v, R) N B(v, =) which establishes (8.6). The
conclusion (8.7) is proved similarly, and (8.8), (8.9) are
simple consequences of Theorem 7.1, O

In the following theorem '8' denotes 'the boundary

oft

Theorem 8. 3.

(1) If -p <\; then any orbit converges to zero and

is asymptotically stable.

(ii) Let X} <-B <\,. Then

(8.10) aA(v)) U dA(-v)) = A(0).
<-g< >
(iii) )\n ﬁ_an, n =1, Then
ud

(8.11) 3A(v)) UbA(-v) = A(0) i=2[A(vi) U A(-v))].

(iv) Let X} < -p. Any orbit in A(v;) or A(-vp) is
asymptotically stable. If v # vj, -v; then any
orbit in A(v) is Lyapunov unstable.
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Proof. If -p <\; then any orbit converges to zero
by Theorem 8.1. Let v=0 if -p<\ and v =+1v, if
\] < -R. We show that any orbit 6 in A(v) is asymptoti-
cally stable. Given ¢ >0 let & >0 be given by Lemma
8.2 (ii). If ¢e 6 thereexists T>0 such that [w(T,¢)-v| <
< 6/2. Since A(v) is open, by Lemma 4.1 (i) there exists
6] >0 suchthat |[y-¢| <& implies ye A(v), llo(T,y)-v (<
<6 and [lw(t, ¢) - w(t, @) || <e forall te[0, T]. By
Lemma 8, 2 (ii) such an (s satisfies Hw(t, d) - vl <e for
all t>T, and hence Hw(t, U) - w(t, @) | < 2¢ forall t>0.
This proves Lyapunov stability of & and asymptotic stability
follows.

Now let A\ <-B <X .y, N > 1. By (8. 2) the I.h.s.
of (8.11) is included in the r.h.s. We thus need the reverse
inclusion. Let v =+ vy and ¢e A(v), Choose r >0 small
enough. There exists T >0 such that «(T,¢)e A(v) NB(v,Z),
and so by Lemma 8.3 (T, ¢)e S(v, R) 1 B (v, Z). Let my
be the projection operators associated with v. Consider for
lel | small enough (e;#0)

(8.12) w =T, ¢) +e,x,
€ 1

where x # 0 is an element of 7, Z. Then e B.(v, Z)
and Tr'(w‘l -v) =7 _(w(T,¢)-v). But w€l¢ (T, ¢) and hence
wel/S(v, R). Therefore by Lemma 8.3 wel ¢ A(v). Hence

W, € A(v) for some equilibrium state v # v with E(V) <E(wg )s

By choosing r small enough we can ensure that E(wel) <
<E(+ v3) (if n >2) or E(w,) <E(0) (if n=2)., Butif r is
small enough, by the continuity of E and by Lemma 8. 2 (iii)
applied to -v it is clear that V # -v. Hence w ¢ A(v)) U
UA(-vj). Let e¢]—~0. Then «(-T, we ) =~ w(-T, «(T, ¢)) = ¢.
Thus ¢e 9A(vy) U 9A(-v;). This proveslthat

(8.13) A(v,) U A(-vz) - aA(vl) U aA(-vl).
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Applying the above argument to + Vg (in case n > 2) we see
that

A(v,) U A(-v,) C 8A(v)) U 8A(-v)) U BA(v,) U OA(-v )
C 9A(v)) U 9A(-v}), by (8.13).

The proof of (8.11) is completed inductively. At the final step
we of course use (8.6) instead of (8.8). The proof of (8.10)
is easier and is omitted. If A} <-p and v # vy, -v} then
(8.10), (8.11) clearly imply that any orbit in A(v) is
Lyapunov unstable., 0O

9. The Case of Three Equilibrium States

In this section we suppose that A} < -g <\, so that
there are only three equilibrium states 0, v and -vj. By
Theorems 5.2, 7.1

(9.1 dim U(0, R) =codim §(0, R) =1,
(9..2) dim U(J_rvl, R) = codim S(a_Lvl, R) =0,
Let ¢, # 0 belongto A (0). Clearly -¢pe A_(0). Since

<p0,(A((9) we can without loss of generality suppose that
®q € A(vl) so that -¢q € A(-vy). Thus by (9.1) and (8.9),

(9.3) A(v) N A _(0) =O(¢),
(9.4) A(-v) NA _(0) =0O(-¢) .
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There is thus just one orbit 'connecting' v, and 0, and
just one orbit 'connecting' -vy and 0. For V=G these
P i
£ /i
shown in Figure 4 of Reiss and Matkowsky [ 29]. The situa-
tion is illustrated pictorially in Figure 1, in which A(0) n

N B.(Z) is shaded.

orbits are of the form {Tl(t) sin s 'i‘l(t) sin } and are

Figure 1

The figure suggests the physically appealing result

Theorem 9.1,

(9-15) 8A(Vl) = BA(-Vl) = A(0)
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Proof. Let L be the projection operators associ-
ated with v = 0. Since dim m, = =1 there exists x # 0 in
Z with ™ 2 = {ax : a¢ lR} Let ye A(0). Then there exists
7 >0 such that w(t, ¢)e ,(0, Z) N s, R) forall t>rT.
Define by (t) = w(t, ¢) + ax. If a >0 is small enough
axe B.(0, E) and (_(t) eB(O Z) for t >7. Now ax(A(O
since m_x =0, andaso we can suppose without loss of gen-
erality that axe A(v ), which is an open, arcwise-connected
set. Since m_yg(t) =T _w(t, ¢) it follows that y_(t) )¢ S(0, R)
for t >T. As ¢za(t) — ay as t— ®© we can conclude that
P ( and ay are joined by an arc lying wholly in A(vy) U
UaA( -vy)e Therefore Ug(m)e A(vy). Since -axe A(-v vy) we
also have that §_,(1)e A(-v}). Hence w(T, §)edA(vy) ) N oA(- ).
By backwards contmulty Ye dA(V;) N aA(- v)) and (9.5)
follows. O

We now establish a very strong stability property of
the connecting orbits.

Theorem 9.2. Given € >0 there exists 6 >0 such
that if ¢e Bg(0, Z) then one of the following conditions
holds:

(i) ¢@eA(0),

(ii) sup Hw(t, @) - w(t, U) H < e for some
t>0
e A(vl) N A_{0),

(iii) sup Hw(t, @) - w(t, 6) H < e for some

t<0
6cA(-v)) NAa_(o).

Proof. It is enough to show, for instance, that if
{en} ©CA(v)), ¢~ 0 in X as n—o, then

(9.6) sup llw(t, ¢ ) - w(t, x )| =0 as p—>w
£>0 m "
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for some {Xp} C A(vy) N A _(0) and some subsequence {(pp_}
of {¢,}.

Let such a sequence {¢,} be given. Since the weak
topology on X is Hausdorff (Simmons [ 31]) there exist dis-
joint weakly open (and hence open) sets Uy, U; with 0eUg,
-vie Uy and vyeUj. We can suppose that {¢,} < Uy. For
each n there exists a largest time t, >0 such that
w(tp, ) = Yn belongs to the complement of U; in Z. Since
{Up} is bounded we may extract a subsequence {L,LJH} with
¢, =¥, say, in Z. Clearly ¢ # 0, v;. Hence {t } s
unbounded, and we can thus suppose t:HL - 0 as K ¢
By Lemma 4 I (i) w(t, 4; ) —~ w(t, ¢), teR. Since w(t, )
belongs to the weak closure of U, for B 05t follows
that yeA(vy). If T >0, by weak convergence and Fatou's
lemma we have that for te R

f lu(s q;)l ds <f lim inf lu(s q; | ds <
_T p.—.w

(9.7) < lim 1nff Iu(s L|J |ds<l1m1nff |u(s q; lds=

P> -T -0 -t
. m

= lim inf [E(¢ ) - E(w(t, ¢ ))] = -limsup E(w(t, ¢ ))
> 0 B (o > 00 B
0
Hence f_oo U

lwt, ) ll < lim inf Jot, o) ll, teR, OW) is bounded.
[V — 00
Thus by Lemma 8.1 w(t, ¢) =~ v, an equilibrium state, as
t—~ -0,
Suppose for contradiction that v =+ vye Define

Since

H(t) = 24 alut, w) 1%+ gluce, v |2+

(9.8)
+ k |u'(t, v) |4 .
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Then H(t) = 2E(w(t, {)) +— lu'( t ¢)[2>2E(¢ +— lu'(t, ¢)l4.
Therefore 11m inf H(t) > ZE(qJ +—— lv IZ = 2E(v ) + = k |v IZ 0.

— - 00
However, 1t is easy to show by setting 6 =u in (4.1) that

f H(s)das is bounded independent of 7 < 0. This contradicts

ﬁm inf H(t) > 0. Hence v = 0. We now have that
t— -0

0 = E(0) < lim inf E(w(t, ¢)) < lim inf lim inf E(w(t, q; )) <0,
t—-> -0 t—>-0 IJ,—»OO

which implies that E(w(t, ¢)) - 0 as t — -, Hence
w(t, y) = 0 as t—-% and YeA(v;) N A_(0).
From (9.7) we deduce

(9%9) E(w(t, ¢)) > lim sup E(w(t, 4; ), teR.
g 0

But

(9.10) E(w(t, ¢)) < lim inf E(w(t, LIJ ), teR,
‘J,—>00

and thus E(w(t, ¢, )) = E(w(t, &)) each te R. Therefore
. w(t, qJP_) - w(t, ¢), te R. In particular ¢, = y.

Given € >0, by Lemma 8.2 (ii) there exists 6 with
e/2 >8>0 suchthatif [ ¢l <& and , ol <8, 7 >0,
then ||w(t, o) | <e/2 forall te [0, 7]. Let T >0 be large
enough so that w(-t, y)e Bé(o, %) for .t >T. Since
w(-T, LIJP.) - w(-T, ¢), by Theorem 8.3 (iv) there exists N
such that if @ > N then

(9.11) sup  flot, ¢ ) - w(t, §) Il <e.
te[ -T, ) b
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Let N) be such that if p > N; then ¢ e Bg(0, =) and
w(-T, q; € Bg(0, Z). Then if p >N1, iF <tp, by the choice
of 6 we have

(9.12) sup lott, & ) - wt, §) Il <e.
te[-t,,-T] i

Combining (9.11), (9.12), if p > max (N, Nl) then

(9.13) sup  lw(t, ¢ ) - wlt, Yl <e.
te[-t ,) .
€8
Let Xy = w(-tp, ¢). Then (9.6) follows. O

10. Global Structure of the Regions of Attraction and
Backwards Attraction

Consider the case \p < -p <\
7.1, dropping the dependence on R,

n+1+ By Theorems 5.2,

(10.1) dim U(0) = codim S(0) = n
(10. 2) dim U(+ vm) = codim S(+ vm) =m-1, 1<m<n,
Clearly (10, 2) holds for - also. In particular

dim U(+ v,) = 1. Let y, eA (vzl and let yqe A(v). Clearly
v = 1vy. §ince vy is antisymmetric and v is symmetric it
follows that the reflectlon q; of Yy in x = 2/2 belongs to
A_(-vp) N A(v), while 4; eA_(v,) N A(-v). Since

eA_(-vy) NA(-v) it follows that (now we take v =v,;
wit out loss of generality)
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A_(vz) ﬂA(vl) :O(Lpo),

A_(-VZ) n A(—vl)

1
O
1
=
o

(10. 3)
A_(-v,) A(v)) =0(,),

A_(v,) n A(-v)) =0O(-y,

Hence there is just one orbit connecting, say, v
and vj. A slight refinement of the proof of Theorem 9.1 now
shows that

(10. 4) A(VZ) U A(-—vz) C aA(vl) N BA(-vl) .

Consider the case of hinged ends, when V = G;. Let
Y be a proper subset of the positive integers and define
S(Y) = {sj+ je Y}, where sj(x) = sin(jmx/2). Let G(Y), L(Y)
be the subspaces of G, L2 respectively which are spanned
by S(Y). The existence and stability theory for (4.1) with
zZ=G X L2 now adapts to the case = = G(Y) X L(Y) in the
obvious manner. (This is because the approximating solu-
tions in the Galerkin method used to prove existence are ac-
tually solutions to (4.1) if the basis {sj} is used - no sim-
ilar property holds for the clamped beam.)

Firstlet Y={j: 1<j<n}. Then G(Y) X L(Y) is a
2n-dimensional space. The relations (10.1), (10.2) hold in
both the cases T = Gy X L2 and = = G(Y) X L(Y). Therefore
the A_(v) are the same set in both cases, and thus all solu-
tions connecting equilibrium states are composed of the first
n modes. By considering sets Yij = {i, j} we can establish
the existence of orbits connecting any two equilibrium states.
Considerations like these lead to the following conjecture
(for V=G or H(Z)) which is illustrated in Figure 2.
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Conjecture. If v and Vv are two equilibrium states
with v having energy m levels higher than v (e.g. m=3
W = =y then
A (v) n A(;) is an m-dimensional manifold.

Furthermore

n
(10. 5) dA(v)) = 8A(-v;) = A(0) U iszZ [A(v,) U A(-v,)] .

11. Concluding Remarks

Consider first the rate-of-decay estimates. In prac-
tice the only estimates of interest are those concerning con-
vergence to a stable equilibrium state. By Theorems 5. 2,
7.1 these are

_(b__

(1. 1) lot, o) - vli<Me™®P-"ov || for ge A,

where

(11. 2) b =Re%[6-462-451,

and
(11. 3) Ezpl if -p <\, V=0,
(11. 4) p= pl 1 if )\1 < -ﬁ, v =-i>Vl .
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Figure 2
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Key to Figure 2

Figure 2 is a schematic diagram of the Hilbert space Z .

one-dimensional manifolds connecting

equilibrium states
----- >---- orbits in A _(-v,) N A+ v))
— N erbitsiin A(v3)

—-—->-— orbits in A(+ v)\8A(+ v,).

Arrows point in the direction of increasing time. Shown
shaded are the intersections of 8A(+ v;) with the various
Br(v, Z). The 'energy' axis is not rigidly adhered to.
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b_ attains a maximum of &2 when 6 = 25 . We there-
fore tentatively suggest that 6 = 2\/? gives optimal damp-
ing. The estimates (11.1) improve those obtained by Dickey
in [12]. If B =X, v =0, then we know of no rate-of-
decay estimates. If V=G and w(t, ¢) = {Tl(t)sl’ Tl(t)sl}
then T;(t) satisfies the ODE

(1. 5) il + 8T + le3 =0

for some k; > 0. We know of no rate-of-decay estimates
even for this equation.
Finally consider the equation

(1.6) G+ ou™ - (B +klu'[Du" + ya™ - o(u', 4 )u" + 60 =0

where y, ¢ > 0. The existence of dynamical systems gener-
ated by (l1.6) was established in [ 3]. There are, however,
difficulties involved in extending our analysis to (11.6).
Consider, for example, the linearization of (11.6) about zero:

(11.7) ﬁ A qu”" - ﬁu” L Yﬁ”" J 61..1 =0 .

Solving this equation under clampedend conditions leads to
the nonlinear eigenvalue problem

2
)\ AL )\(Yu"“ L 6u) £ aullll _ [3”.“ = 0

(11. 8)

B = nl = e el = (U
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The corresponding problems for (1.1) are effectively linear.
Some information about (11.8) would presumably be required
in any proof that an exponential decomposition holds for
(11.7). Were we to have such a proof then the saddle point
analysis of section 2 would give local stability results for
(11.6). It may be possible to tackle (ll.8) by extending the
work of Eisenfeld [15]. The absence of an obvious 'a priori'
estimate for (1l.6) suggests that the corresponding dynamical
systems are not reversible. Thus global stability results
would be harder to obtain than for (l.1). Quasi-reversibility
techniques might be useful in this regard (see the conference
proceedings [ 23] for references).
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