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Consider the problem of finding a functicn u: @ -+ £° minimizing

I{u, Q) = [f(f,}}(f).Vg(f))df (1)

In (1) 2 is a bounded open subset of ], £:0 x & x M*™™ 4, g

\ Xm .
(where M denotes the linear space of real nxm matrices),
x o= (xl,...,x }) and dx = dx _...dx .
~ m ~ b m

In the direct method of the calculus of variations it is custom-
ary to scek conditions on £ such that I(E’Q) is segquentially
weakly lower semicontinuqns on a subset K of a suitable Banach
space X (i.e. ur —3 u in K implies I(B’Q) < lim inf I(u;,ﬂ)).

) r = o
X is usually a space of Sobolev type. If I is bounded below
on K and certain growth concditions are satisfied then the exis-

tence of a minimizer is asscred. .

)

‘he purpose of this paper is to show that the study of sequent-

lal.y woeskly contiruvovs maps leads guickly to conditions on f

guarantzeing lecwer semicortinuity of I(u,R), and thus to new
existerce theorems for nonlinear elliptic systeas such as those

arising in nonlinear elasticity.

Koy e £ = . D
Notation: The spaces L¥(Q), wk’P(Q) aze dcfined in the usual
Ay

\

- \

We deal throughout with vector and matrix

way (cf Adams [1]).

functions w = (wi)l < i<z If Y iz a Banach space and r a
by ; & <.

r
equipped with th2 norm [lwli =z fw i .
~Y . iy
r i=1
Ve employ the summation convention th.oughout.

- ©
2. The L case

To gain intuition we first consider maps between R spaces which

arisc from vointwise evalvation by a function. Corollary 1.1

characterizes maps of this type which are sequentially weakly

continuous.

Theorem 1
Let ¢: & + R satisfy ¢(u('))eL’(Q) whenever u € L:(Q). Then

J(w 9 f¢(5(§))d§

Q
© :
is sequentially weak * lower semicontinuous on LP(Q) if and

only if ¢ is convex.

Proof
Suppose J is sequentially weak * lower semicontinuous. Let s
a,b e ®" and A e [0,1]. Let Q be the unit cube {isﬂm: 0 < |x, |< %}
and define YSL:(Q) by Y(;) = a if §EA1, Y(f) = ? if xer,, where

Q=2 VUna,, ¥{ay) =i, u(A) = 1-X, and u denotes m-dimensional

- 5 . a0z ] z
Lebesgue measure. Tesselate f°© by disjoint congruent open

‘cubes Qj with centre b and side 1/k. For i = 1,2 let Ek g =
3 ; o

U(x, + 2 A). Define a sequence u, eL>(R) (k = 1,2...) by

Lo~ ki ~k n

u, ( If E C Q@ is measurable and

J
X) = v(k(x—xj)) if X € Qj oQ.
c ¢ ®&" then :

foree xgtarax B = WIEE,
9]

a, NE s
y13:¢ + u(EE, L)b.c,

li
Y
[ 3S
»~
1Q

which as k » = tends to \

w(E)[Aa+(1-A)blc = J[ Aa+(l-2)bl.c Xa(f)d’f\
n N

B R




Since finite linecar combinations of functiens of the form

¢ x. are dence in L!(Q), and since [lull is bounded, it

E n ~ Il°° ()
n

follows that u, =2x Ja 4 (1~A) B in L7(R).  Hence

6(a + (i-A)b) < lim inf ﬁm J(,’;(uk(x))dx
e ks Kk = o - =
: 2

= 11:3 ) [ﬂS‘zﬂEk,l) ¢(a) + u(QﬂEk'%) <>(13)]
5 T MO

Ag(a) + (1-1) ¢(b),

so that ¢ is convex.

Conversely, let ¢ be convex, so that in particular ¢ is con-
<

tinuous.
L)

is closed in L;(Q) (by the bounded convergence thecorem) and convex,

hence weakly closed. Thus J is scequentially weak * lower semicontinuous.

Corollary 1.1

Let ¢ be as above. Then ¢: (L:(Q), weak *) — (L'(Q), weak).

is sequentially continuous if and only if ¢ is affine i.e.

¢ (u) = o + k.u for constant a, k.

Proof

If ¢ is affine the stated continuity property holds trivially.

The converse follows by applying Theorem 1 to ¢ and -¢. ]
Remark: Theorem 1 is closely related to many known lower semi-

continuity results. Note, however, tnat no assumption is

made about continuity of ¢.

3. The W!'’® case
Consider now a function ¢: MR . R satisfying ¢(¥{+)) ¢ L' (Q)

c m n . -
whenever FeLm“(Q). For u: & - &' we posc the question: For
= \

which ¢ is tlie map u > ¢(Vu(+)) scquentially continuous from

\

b gl SN

For c,de® the set K(c,d) = (gaL;(Q): fall o < e, J(< d}

* 1,
: i in W Q).
¥ satisfy (3) and let u_ — u in W, (2)

7,0
VL' ()

(W), weak *)— (L'(Q), weak)? (By the weak * topology cn Wy

3 P Y 1 : ) s «© o £33t
we moan the topology induced Ly the cancnical embedding of w'r®(Q) inte a finite
. n

o .
product of L (Q) spaces, each beinyg endowcd with the weak *

topology). Bearing Corollary 1.1 in mind one might think

that only affine ¢ are possible. However this is not the

The actual sitvation is char-

case unless m =1 orn = 1.

acterized by the following result of Morrey [6].

Theorem 2

Let y: Q x " x M™™ 5 ® be continuous. Define

J(u) = Jw(x,u(x), Vu (x))dx.
“ 1
@
Then J is sequentially weak * lower semicontinuous on Wn' Q)

if and only if ¢ is quasiconvex i.e. for each fixed

n nXxr . e om
X ,€Q,u e, F e M “, and for every bounded open subset D of &

the inejguality
Jw(§°,uo,Fo+V5(§))d§ = Js’»(fc,go,b‘o)df = u(Dyxo,uo,Fo) (2)
D D
holds for all ceC%(D).

Corollary 2.1

Let ¥:0Q x & x M™*®

+ & be continuous. The map u =~y {+,u(),

1
Vu(-)) is sequentially continuous from (Wn' Q), weak *)—
(L} (Q), weak) if and only if for each fixed xosﬂ,ucaﬁn,
FoeMnxm, and for every bounded open subset D of &%,

wa (::' 0o/ F otV (x)ydx = u(Dy (x 0rWosF gl - (3)
4-

for all ;eCi(D).

-Proof of Corollary

Suppose u++ P (+,u(+),%(+)) has the stated continuity property.
Applying Theorem 2 to i'P we obtain (3). Coaversely let
Then the seguence

¢(',ur(-),Vur(-)) is bounded in L°(R), so that in particular



there exists a subseguence uu cf u such that ¢(-,5u(-),
gu (+}) e @ in Lm(Q). Let a: @ - ® be continuous, and’
Pt ; ]
define ¥, (x,a,F) = + %(X,E,F)u(f). Then ¥, is quasiconvex,
so that by Theorem 2

Iw(x,up(X).Vuu(X))a(x)dx + J¢(X,u(§),V3(x))a(§)d§.

Q
he arbitrariness of « implies that 0 = w(-,g(-),VE(-)), and
hence )

X . @
p a0y Va (+)) —> y(+,u(),Vul(-)) in L (Q)

which is stronger than the required conclusion. O

'

For the relationship of guasiconvexity to ellipticity see

[z,6].

4. The null-space of the Euler-Lagrange operator

Let ¥: & x 2 x pre be ¢t We say that ¥ belongs to the

Py
-

null-space N of the Euler-Lagrange operator if and only if

{[i&. gh e Yt ] ax = 0 (4)
J

i au“ O ~ .
su 0

for every bounded open set D C &™ and for all ueC‘(B),CEC?(D).,

Theorem 3~

Let $: 0 x & x M™*™ 5 & be continuous, and suppose that for
cach fixed fosQ, Bceﬁn, W(forfcr «) is c!'. Then the map

U g~ ¢(-,E(-), VE(°)) is sequentially continuous from

(w{’w(ﬂ), weak *) — (L'(Q), weak) if and only if for each

fixed x, e2,uy e®", ¥ (x,,15,+) € N.

3
Proof
Let u ¢(~,E(-), VE(')) have the stated continuity property.
Let foeﬂ,goeﬂ“ and define ¢(F) = ¥ (x,,u,,F). By Corollary
2.1 we have that \

i \

f¢(F°+V§(5))d§ = p(D) ¢(Fy) : ToA {5
D
for all bounded open subsets D < &*, FoeM

P, e, (D).

Let peCy (™) satisfy p =0, p(F) = 0 if |F| > 1,

J P(F)dF = 1. For e > O let p_(F) = e ™ p(F/e). ‘Then
nXm 3 . 4 . .
M ;

¢£ agf Pe * ¢ is c® and satisfies (5). Hence (cf for

example Morrey [7 p 11])

3%¢_(F)
—E& _ Iy, =0 . ;
ariard a’B s P s 2
& B a2 2
3¢ _(¥) 3%¢_(F)
for ‘all FcMnxm, AeR™, pe®. Thus L = - £,
N - AF.3F3 3F,oF)
L a B 8 a

A

so that (4) holds for ¢e. Letting € — O we see that

$eN.

.. e = < % s e, we A d® Amiv i ®

'The converse follows by noting that if ¢eN then (5) holds

for all Fy ,C. R

T

The null—space N has been characterized for arbitrary m,n
5y Edelen [3] (see also Ericksen.[4]). Edelen assumes
that the functions u in (4) are C?, but his results hold_
for u that are C! by approximation. By Theorem 3-we are
interested only in elements ¢ (F) of N which do not depend
on_x,u. These are given by linear combinations of 1 and
all r x r subdeterminants of F for 1 < r < min {m,n).
Th@s, for example, if m =n =1, 2 br 3 then ¢(F) e N if and
ocnly if ¢ has the form

(n=1 $(F) = a + bF

(n =2) ¢ (F)
(n = 3) ¢ (F)

a + A%F! + Bdetr
1a

I

. a sy L -
a + ALFa + Bi(adj‘)a + Cdetr,

a

L Bi, B, C are constants.

where a, b, A

.



}

5. Sequentially weakly continuous functionals on W!/P(Q)

Corollary 2.1 and Theorem 3 show in particular that if
is continuous and such that for some 1 < p < «» che map
0 : ur— P (+.u{+),7u(+}) is sequentially continuous from

”:,p(g), weak) — (L' (Q),weak),than 0(50,50,-) € N for all

xocﬁ 5 uocﬁ . In this section we investigate to what

extent the converse holds.

Lemma 1
Let K> 2, m > 2, n > 2, and suppose that yie w'/P(Q) for

1 €1i <K, where p 2 py = min (m,n). Then the formula

i 1 K X
QJX;L;;;LXEL = 3 (_l‘s+l O (18 (¥ isissssvssnmsnsss 'Y )](6)
3(x1,...,xK) .y ‘ astra(xl, "’Xs-l’xs+l""xx)

holds in the sense of distributicns, where
1 K o1

d(y s...,v ) def det [8( ]_
J

a(xl’.."xl’.) 9x

Proof -
First suppose that each yicCZ(Q). Then the right hand side

of (6) equals

K. A2 X
5 (—l)s+l y? :(y e s e R CIRL LY sv Y ) .
s=1 '3 o(xl,...,xs l,As_l_l,..,,x‘()
X
. oyl T (St At il e,y
=1 Bxs a(xl,...,xs l,xs+l,...,xx)
The second term is zero bv Morrey [7 Lemma 4.4.6], while the

K
EICARTRRT A

first eguals
- (X ysevesxy)

as required.

Kow suppose y'e w"“’Q) for 1 < i <K and let « & CG(Q).
There exists a sequence yi of C?(Q) functions such that

yi —- y* in W''P(2') for some ' D supp «.

. ' p
If p > po then ¢(Vu } is bounded in L

Then

a(y’r,...,yf)

vl 5
Ty a(k‘,...,y ) °h ~

-
) u___~\

e E T o(x)dx = 5 (-1)°
a(xl,...,xx) - - l,xs+l,...,A
Q
Note that y; — y! in L9(Q") for g > 1 % > %o - %, and

that % - % < 1. Using the HOlder ineguality we obtain (6). 3
0

Theorem 4 .
Let l K < p, = min (m,n), 1'<i; <3, < L.0 < ix <n,

1< 3, € 43 € sen < jx < m, and define

iy i
o(Vu) = (U ....u )
~ ( . pseee X, ).
Ja JK

Let p > p, and let u — uin h Py, Then ¢(Vur) —_—
¢ (Vu) in the sensc of distributions.
P/Po
if p > p, then ¢(Vur) —> $(Vu) in L (Q).
Proof

Suppcse K 2 2, m = 2, n = 2, since the other cases are

trivial. Let a € C;(R). Then u_—> uin LZ(Q') for

some Q' D supp a and for q = 1, é > é T - %. Hence
- i, LK 9 iK
8(u premsumwse s e s wwes gl ) a(u ,------------------ e )
X —u
ra(x ,---,xj ¥y reeseXy ) 3(X. ,e..,X. SX. peeesX. )
s=-1 s+1 K 21 Js-1 Js41 Jx

in LY(Q') as r + . The result follows from Lemma 1.

0
{?), so that a
o/Po
subsequence ¢(Vup) — 0 in L (). By the first part



— -

0 = ¢{Vu) and thus the vhole sequence converges to ¢(Vu). O

Note that the right hand side of (6) may have meaning as

"a distribution when P < Py In fact we just aeed that

the. products

g B einmsssdrisgsnas g 2
a(xl,...,xs_l,xs+l,...,xx)

Y

are in L' (Q) when yia W!'vP(Q) for 1 < i <K, and conditions
on p,m for this to hold are easily derivable from the im-

bedding theorems. In fact, one may go further and define

the Jaccbians in (7) under correspondingly weaker conditions, .

Rather than give a complete inductive definition of these
generalized Jacobians we here restrict ourselves to an

illustrative example.

Let m =n = 3. Define the distributions

(ui+Zui+l

( i+2 i+l
satl’ ,a+2

a+2° 0+l ,

I

(Aégj va) ¢
there the indices are taken ﬁodulo 3, and
Det Vu = {u! (adj Vu)i],_.
= -~ J

Note that if ngglp(m, p = 2 then Adj Vu = adj Vu, where

(@dj Vg)gs the matris of cofactors of Vu, and that if uewl’p(Q),

L}
p = 2, and Adj Vu ¢ Li (Q2) then Det Vu = det Vu. In general,
however, Adj Vu # adj Vu, Det Yu # det Yu. The following
thcorem may be proved by similar methods to Theorem 4

{cf [ 2] for details).

Theorem 5
(i) Let p > ¥2. If u —u in w;'P(Q) then Adj Vu_—

Adj Vu in the sense of distributions.

(ii) Let 1 < p<w, 1 <qg< e, % + % < %. If v, —u in

w;'P(m and if AQj Vﬁr — adj Vu in LZ(Q) then

Det Vu —+ Det Vu in the scnse of distributions.
~X ~

Remark: Results analogous to Theorems 4,5 can be proved

in aa Orljicz-Sobolev space setting (see [21)s

6. Lower scmicontinuity theorems

}l\ —
Let ¢,(F},...,¢K(F) belong to N and let g: £ X% /" x & + &

satisfy the conditions

(a) for almost all 7eQ, g(f,',-) is continuous on " x ﬁx,
(b) for all Eeﬂm,gcﬁx,g(-,g,e) is measurable, .

(c) for almost all geQ and for all gsﬁn,g(f,g,-) is convex,
(@ glx,u,a) > alx) + ntlah,

where aeL!(Q2) and n(t) is a real-valued, continuous,cven,
convex function of te® satisfying n(t) > O foxr t > O,

n(t)/t — 0 as t —+ 0, n(t)/t — @ as t — =,

pefine £: @ x & x M”*® — R by
£0x,9,F) = g(x,u,¢,(F)s....¢,(F)) (8)

and let I(u,Q) be given by (1).

Theorem 6
Let u, —> y in W;'P(Q), where p > p, = min (m,n). Then

I(u,?) < lim inf I(ur,Q).
< s b=

Proof
For i = 1,2;... let Qi be the union of all open balls con-
tained in Q of radius less than 1/i. Each Qi saﬁisfies the
cone condition, so that by the imbedding theorems a sub-

sequence u, — u almost everywhere on Qi. A standard

'diagonal argument shows that we may assume that gu — u

almost everywhere on each Qi and thus almost everywhere on Q.
Since each ¢i(F) is a finite linear ccrbination of subdeter-

minants of F of order less than or egual to p,, we may



- 1], -

suppose without loss of generality that ¢i(Vuu) - 01 in

L' (Q), and hence,by Theorem 4,0, = ¢i(7u). By a known
thecorem [ £ p 226] '
I(u,%) < lim inf I(u ,Q),
i u')'m "“

ancd the result follows. O

Romwks: L. If g: @ x &" x & — & is continuous, then by

Theorems 2 and 6 it follows that f is guasiconvex.

2. Other lower scmicontinuity theorems can be proved

using Theorem 5 and analogous results,

Intc§rands of the form (8) occur in nonlinecar elasticity.
An example is the Mooney-Rivlin strain-energy function.
W(F) = A(I-3) + . B(II-3), '
where A > O, B > O are constants, and where I = tr(FF%,
II = tr ((ade)(ade)T]. Theorems 4 and 6 can be applied
simply to prove the existence of cequilibrium solutions for
various boundary value problems for the Moonecy-Rivlin
material subject to the pointwise constraint of incompress-
ibility
det VE =1 almost everywhere in 0. (%)

¥ore general existence theorems are proved in [2].

7. TConclusion
The method in this paper would seem to have the following
advantagesr
(1) It enables the cxistence of minimizers for integrands
of the form (8) to be established under significantly

weaker continuity and growth conditions than those of

Morrey [5 Thm 4.4.5], and the proofs are much simpler.

(ii) It can treat 'weakly continucus' pointwise constraints
such as (9).
(iii) It can be extended to eguations which do not arise
from the calculus of variations.

{(iv) It can be extended to higher order eguations.

On the other hand, there are examples of quasiconvex inte-
grands which cannot be written in the form (8), so that

Morrey's theorem applies but Theorem 6 does not.

We end with a few examples illustrating (iv)+. We consider

integrands depending only on second derivatives of u. In

the case m = 2, n = 1, the only nonlinear element of the

null-space of the.corresponding Euler-Lagrange operator is
U,i1 Y22 = iz = (WaW,52),1 = (U,U,12) 42 (10)

while if m = n = 2 the basic nonlinear elements of the null-

space are

ufxx uflz - foz fox 7 u}22 ufzx == “512 Uezz , ulxxulzz‘(h::z

: 2 2 1 2 1 2 2 _
u:ll u%zz = uf:z Uri12 » Y531 Uy22 — Uh,2 u:{: ¢ UT 12— (u712

Results analogous to Theorems 4, 5 and 6 may be proved. We
remark that expressions of the form (9) occur, for example,
in connection with the Monge—-Ampére equation and the veon Xarman

plate equaticns.
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