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CONSTITUTIVE = INEQUALITIES AND EXISTENCE THEOREMS IN NONLINEAR
'ELASTOSTATICS

1 INTRODUCTION
In t,hese nox:esv_ I shall descnhe an approach to tbe proh‘lé'w ni proving the

'existgnce of ethbnum soh&tagns m nonlmear e]ast ty 'Hus pmb}em

:al case.

Cons:tder a one—dimensmna‘! eﬁastu; body fyou can thmk-v-f ! -ii as'd thin

:bar) ukuch nccupaes the umt autewal 0<X<1 in a mfemce cpaftgyratmn

(see E*xgure»la) Ina tymca‘l deformed conﬁguration (see Figure 1b) the
particle P with position X moves to the point P! having coordmate x(X) with

-respect_to some ﬁxed omgm.

e X P

“(a) reference configuration (b,;;‘;effg@@@ﬁ@ﬁag&'
£ ~ Figure 1 L
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Ee‘c,a_ué’é we a’fe"‘ ééﬂ's.i«deri"ﬁﬁ e]-astosvt'atics, X 48 assumed to be’vi'ndepeﬁdent of
time. . We are interested in deformations x(X) satisfying ‘the mvertunhty

~:9;n23t_wﬂ

-x"(’,‘f)::;)o,' P s v A Y

: ‘rime denotes 41fferenttatwn w1t’n respect to x Cond1t1on (1.1)

£ 'prevents mterpenetratmn of matter. We assume that the mechanical behav- :

iour of ‘the: material 1s characterized by a storsed-energy functxorr H(x.x Ys

- in’terms of which the total stored-energy is %

1.4

nga<b : A stable'_ :eqm 1_?1um szutwn
ct to(1.1) and- (1.5) : '




Whether or not a minimizer exists dépends on the form of W. Now it is
commonly .observed that a rod lengthens when subjected to a tensile force,
that is, stress incfeéses with strain. The one-dimensional stress is simply
o= %., whic}w means‘ that W sho;nd ‘be convex in x'. We examine the .consequ-
ences of a'sﬁuming this to be so. - A typical stress-strain curve for rubber
is sketched in Figure 2a, with the corresponding stored-energy function W,
assumed ind,ep‘,éndé‘nf of X, shown in Figure 2b.: The reference cqaﬁ_‘gm‘afion
is assumed ;tréss-free, s;) that o(1) = 0, and we have »takeg:'ﬂ(ii =0 without
loss ofvﬁéherality. Note,that W and o become largelin:mégnitﬁdetfor-both

Targe and small values of x'; this r_ef'lects,thé fact that.a large force is

ﬁtﬁess=c
3 S

" “Figure 2.
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required to effect a_large extension or compression. If we take the (some-
what unrealistic) view that any value of x' >0 is possible, then it seems

reasonable to assume that for each X € (0,1)
MXxt) = o as x! —> 0, . {5 12 )

Hopefully the first of these requirements will ensure that (1.1) holds.

The conVextty of W implies that equation (1.4) is- elliptic. Let us
sketch a proof of the-existence of a minimizer using the 'direct method' of
theAcachﬂqs of variations. We augment (1.6) by assuming that the growth
condition '

- HEGY) 2 €+ kvl | , | (1.7)
hol:ds, whiere .p"S‘ 1, k>0 and € are constants. Suppose als0, for simplic-
ity, tbat Wis continuous and § > 0. Define a class A of admissible funct-
ions by, ; :

4_\::»;{;'-& u“"P(o',»x; : x(0) = 4, x(1) = b, x' >0 almost everywhere}
Here H ’Pge.l} 1s the Sobolev space of all functwns x such-that

i de [Jﬂx(m“ + 1 o Prax) LN

~ the deHVative x4 bemg mterpreted m the generalized sense (cf Adams [1]).
’9(0,1) 1s 2 reﬂexwe Banach space. tlet {x } CA be a minimizing Sequ-

ence: for I. 3 Usmg (1 7) and the Poincaré mequahty we find that llx Il is

houndgd s#bthat ‘a smxsequeace {x } exists convergmg weakly in W '9(0,1) to

kly lower semicontinuous (swlsc), i.e.,




Kx,) < lim_in: I(xu).

: Hénce X, is a minimizer for I .in A. By (1.6), x(‘J > 0 almost e'verywhe,re; ; ?

To show that X, is smooth with x(', 26> 0 in (0,1} is a tricky piece of-.freg‘;'

u‘léri’t_y theory, requiring further hypotheses on W and y. ~ The reader 1sre- 4

ferred to-Antman [2,3,4] for details of how this can be done. j‘“ -
The above argument relies crbcially on the conyeiity of W, indeej'd.it;_,-?

has been known since the work of Ton_el'li that under suitable growth -c_ondi-}:-‘ S

jons E&ﬁvexify is essentially a necessary and sufficient ‘conditiéri for i3 to A

be swlsc. What is more, a simple argument shows that the convexity of W

. is a necessary condition for the existence of C! minimizers for all di;’ﬁ1’§cé'

‘ment BVPs of the above type. . Consider the case y = 0, and assume for sim

& - b 3 . E " @,
"p]ic.i’ty “that W is C2? and does riot depend explicitly on X. . Take a-=Q, b »_>1:0_.

~and suppose that x € ci(10,1} ) minimizes E(x) among atll functions \
 x.€CH([0,1]) satisfying x(0) = 0, x(1) = b, x'(X) > 0 for all X € (0,11,
For any y € 9(0,1), the set of infinitely differentiable functions v'n'th.-

compact- support in (0,1), we obtain

1

%Z, E(xotey)

ax’

j X (4 (0))y' (0)2x >0
€=0

o

Hence's 'g,—';!z'(xa(X)) >0 for all X €10,1].  But by the mean value theorem

~t'he,'\rgf¢§i-s,ts X € (0,1) with x{(X) = b. ﬂencsé_. %:—‘,t(?) >0 aqd the -arbvi_té::a-
riness of b implies that W is convex. : R y '
v 'Noté’that if W is not convex thén_ther_e may exist minimizers for I titiat"
are not C'. The assumption of convexity of Wcan be criticized on the gro”unds <
that it s ot generic, oo convexity is not preserved under small per-

‘turbations. Indeed, nonconvex W are of physical interest, since they may
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be associated with materials that undergo phasé transitions (Ericksen [12-14]).
Neilertheless-convexity p]ays an important rdle even for nonconvex W, since in
this case a ‘relaxation theorem' of Ekeland and Témam [10] shows .that, under
certain conditions, from any minimizing sequence for Ia subsequence may be
extracted converging weakly in.a Sobolev space to a minimizer for the funct-
ionai »

1 IR

I(x) = fﬁ(x'(xndx +}w(x(xndx,
: .

where W denotes the lower convex envelope of W (seg Figure 3).

x‘

Figure 3

He'w:'i"l not' consider. this interesting point of view further here.

Three-dimensional elasticity -

Consider an e}ast’lc body which in a- reference conhguratmn occupies - the
bounded open set @ CR?. In a typical deformed conf;guratwn the pa.rh cl;e
P wwh position vector X moves to the pomt L havmg posnaon ‘vector x(X) »
wtth respar,t to ﬁxed Carteszan axes (F]gure 4)
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_)_g='(x,‘-,x—’,x’)

Reference 'canfiguration : Deformed configuration

Figure 4

The deformation gradient F is defined by

R S
F X} B =R

We are iuterestéd only in deformations which are orientation preserving and -

globally inveft;ible. In particular. we require the local invertibil_ity con-

dition
detF>0 forall’x€a (8

to hold. By the polar decdimosiﬁop theorem F=RU for some proper ortho-
gonal matrix R and some positive definite symmetric matrix U. The positive

eigenvalues vi (i =1,2,3) of U are called the principal stretches of the

deformation.
The me,chanicalrproperties of ‘the material are characterized by a stored-

‘energy functiqn w(g,r) in terms of which the total stored-energy is

E(x) = [ uexmeooax.
Q
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If the material is isotropic then W has the form
“(!:F) = 0‘(.X.9V1’V25_V3): Sl ) i (1.9)

where ¢ is symmetric in the v, for eaéh X.
"If the body forces are conservative with potential |p()_() then the equilib-

rium equations are the Euler-Lagrange equations for the functional

16) = £ + futs0onex,

5
- namely
AR L) - X . . {1.10)
ax' % oF, : i -

(Repeéted ibdiées are summed fro_iri:-l ‘to 3). Let us consider a mixed BVP in

which 3 is preséribed on a portion 3aQ; of the boundary a8 of"n. so that
x(X) = X(X) for X€amy, e (1.11)

and in uhiﬁh the remainder of the l;ount'{a& of u_\'e body is free _of applied

» surface forces. We seek a minil’niier of lrsubj'ec’t to (1 8) and (1.11). We
do not need to worry about the Zero traction cond’t tion on an\afz,, since this
is a natm-a,! ‘boundary condition.: i '

Hhat hypotheses should we- make on H" Bearmg in nnnd our experience with
the one~d1=mnmonal case, the natpra’l fmrsp try is to assume that H(g, ) is
convgi; if we make this as'sunption"_then it is not hard to .generalize our
previous ana"tysi'-s from one ‘to three dimnsiods 'and"'fo Wvé 'Vérioué existence
* theorems.. The only trouble is that comtexlty of - H(X,-) is comp]ete]y un-
realistic. There are a number of ways m which tms can be seen. Suppose

for smphmty that W does not depend exphmt’ly on X, ‘and that w = 0 If
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W(F) were convex and C! on some open convex subset S of the space M**® of
3 x 3 matrices, then E(.’.‘) would be a Gdteaux differentiable convex function
of x on the relatively open convex set K={x€ cl(Q): X satisfies (1.11)
and Vx(X) € S for all X € Q). A result on convex functions (cf Ekeland and

Témam [10 Prop. 5.3]) then implies that the set of equilibrium solutions
{(x€K: E'(x) = o} -

is convex and consists of absolute minimizers for E on K. In particular,

W strictly convex implies the uniquenéss of equilibrium solutions in K.

Thus convexity rules out the multip]e solutions and instabilities commonly
observed in buckling. (For examples of nonuniqueness in elastostatics see
Rivlin [29;31], John [19,20}, Wang and Truesdell [>41] ). Similar consider-
ations apply in other function spaces. Convexity of W also conflicts with

the natural requirement that W be frame-indifferent 'i.e.)

H({,QF) = u()f,F) “for all proper orthogonal matrices Q. £1.12)

For details see Coleman andiNoH [81._Truesde11 and Noll [38]. Finally, the
inappropriateness of convexity as a constitutive assumption can be seen from
the following experiment. Take a homogeneol.:s, isotropic, rubber sheet and
subject it to a homogeneous deformation in which F p diag {vysv2, 1). Con-
" sider the stored-energy ﬁuhétion_w as a function of v; and v,.. As rubber is
almost incompressib‘le it takes a lot of energy to produce a deformation in
which Vx;lz differs greatly from 1.  Thus the contours of equal energy are
banana-shaped as in Figure 5 This is not consistent with convexity 6f_ W.
As an il!ust-ratiqn, deformations in which v, = 4, v, = %— or vy = %, vo = 4

" would be easy to produce with one's. bare‘ﬁands. but the case vy = v, = %, if

possibje to achieve at all, would 'requ*ire much more energy. Convexity of W
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would imply that W [381’17] < W(1,4).= W(4,1).

A

Fi'gui'e ‘5

Having disposed of con{/exity-we must search for a suitable substitute.

There is a large literature on vai;-i_ou‘s alternative convexity hypothéses pro-
posed more ﬁr less on ad hoc grounds (see Wang and Truesdell [41] for a sum-
mary), and':.the?e is no ge_ner;] agreement as to which is the most app‘ro_pria.tet
Whereas i;n',one diu;en,sion, the intuitive significance of stress increasing with
Vstrai'h;ijs’clvear.‘ in three dimensions it is not obvious precisely which combin-
ations Qf surface f"ofces_iw:'i"l’l: effect, say, an increase in volume of a unit cube
‘made of any elastic ﬁater;“al, and most of the ad hoc inequaljties are based on
plausibility arguments of tﬁis type. 'Arn example is the Coleman-Noll condit-
fon (ses Tolemdn and N611 [8] , Wang and Truesdell [41]).  In the cise of an

isotropic material it implies that #(X,vi,V2,Vvs) given by (1.9) is convex in

t The gegéral problem ',of‘:',f,inding suitable constitutive inequalities for non-
linear elasticity was originally posed by Truesdell-[37].
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the v;.  For rubber this is ruled out by Figure 5 (see also Rivlin [30],

Ogden [24]), and for this reason we do not adopt the Coleman-Noll condition.

An older and better motivated inequality is the Legendre-Hadamard or

ellipticity condition, which in the case of a smooth stored-energy function
requires that

W(X,F) . . :
—— Byig > 0 for all A, u €R’. (1.13)

igpd
aFaan

Hadamard's theorem [17,18] asserts that (1.13) holds in @ for any C' mini-
mizer of our mixed BVP. If we suppose that (1.13) holds for all X and F
then, as the name suggests, (1.10) becomes an elliptic system. Also B(X,-)
need not be convex, so that multiple equilibrium solutions may be possible.
Unfortunately, while there is a well developed existence and regularity
theory for linear elliptic systems, no such theory seems to be known for non-

linear elliptic systems. However it can be shown (Theorem 2.1) that if X

is a C! minimizer for our BVP then-another inequality implying (1.13) holds,

namely the quasiconvexity condition of Morrey. This states that

Iw(l(,nvE(!))dg > Iw.(g,F)d! = W(X,F) x volume of D - (1.14)

D D

for all X € , F = Vx(X), all bounaed open subsets D of R® and all ¢ € 9 (D).
If we turn (1.14) into a constitutive hypothesis by requiring it to hold for
all X€Q, F € M3%3 then under certain other growth and continuity conditions
1(5) is swisc and it is possible to prove the existence of equilibrium sol-
‘utions.  This follows from the work of Morrey [22]. .

The quasiconvexity condition has an iﬁteresting physical intgrpretation
that follows immediately from (1.14): For any homogeneous body made from the
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material found at any point of @, and for any displacement BVP with zero body
foke fbr such a body that:_admits as a possible deformation a homogeneous
‘strain, this homogeneous strain must be an absolute minimizer for the total
energy. Note that this interpretation would not be in accord with experi-
ence if inhomogeneous bodies or mixed BVPs were allowed, as we would ex’pecfc
certain buckied states to have lower energy than the homogeneous strain.
Consfder for example a disp]acemenf BVP for a solid cube consisting of a
steel bar imbedded in a rubber matrix. If the homogeneous strain is a com-
pression in the direction of the bar axis then buckling can occur. See

Figure 6.

rubber

steel wmp

rubber

Figure 6
Morrey's-existence theorem is very interesting, but one encounters difficult-
ies when applying it to elasticity because of the very strong continuity and
growth assumptions used for the proof. In particular w(§,F) is supposed to
be defined and continuous for all F. Tﬁis rules out any singularities of W

. such as the natural condition

W(X,F) — = as_ det F — 0. ST L)y
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(Note that (1.15) is not consistent with convexity of W(X,+)). Furthermore
the one-dimensional case suggests that we will need to seek a minimum for I

on a set of the form
A={x€ Wl’p(o) T ox= ?:‘ on 39, det Vx > 0 almost everywhere}

for some p> 1, and it is not obvious that such a set will be sequentially
weakly closed in N!'p(n). Similar problems arise in the important case of

incompressible elasticity, where we have to satisfy the constraint
det F = 1. (1.16)

A key to the resolution of these difficulties lies in the concept of a
_null lagrangian. A continuous function ¢: M¥? — R is a null Lagrangian
if the Euler-lagrange equations for the functional J@(vl((g})d)_( reduce to

Q
0 =0; i.e., they are identically satisfied for every x € C*(Q). Equival-

ently )
fotoxny + veenax - foxoina (1.17)
Q Q

for all.x € cI(R), CEN(Q). Clearly if ¢ is a null Lagrangian then

(1.10) is invariant under the transformation W ~— W + ¢. In particular,
all displacement BVP's for W and W + ¢ have the same solutions. -We will

show in Section 3 that ¢ is a null Lagrangian if and only if
_ a i a spyd '
¢(F) =A+ Ai Fo+ Bi (adjF )u + C detF, (1.18)

where A, A‘:, B‘:, C are constants, and where adjF denotes the transpose of
“the matrix of cofactors of F. For our purposes the importance of null

Lagrangians lies in various versions of the following result: if p> 3 and

[¢(F)| < c(1+ |F|P) for some constant C>0 and all F€ M3%3, then the map
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¢(vx(+)) : WHP(Q) — LY(Q) is sequentially weakly continuous (i.e., X, X

in Ws>P(Q) implies ¢)(V§n(-')) —¢(Vx(+)) if and only if ¢ is a null
.Lagrangian. Related weak continuity results have been studied in so far un-
'pub'lished work of F. Murat and L. Tartar (1974) and L. Tartar (1976).

A simple constitutive hypothesis which is invariant under the trans form-
ation W — W + ¢ for évery null Lagrangian ¢ is the following: there exists
a function g : QxM3X¥xM3%3x (0,0) — R with g(X,5+,+) convex for each
X € Q such that

HQ(',F) = g(X,F,adj F, det F)

for a1l X € @ and all F € M3%3 with detF > 0. We call such functions W
polyconvex. It is easily shown that polyconvex functions are quasiconvex,
but a polyconvex function need not be convex in F, as the example W(F) = detF
shows. The results on sequential weak continuity mentioned above imply that
if W is polyconvex, then under sui tabTé growth and continuity assumptions
1(5) is swisc on Nl’p(ﬂ). Also, sets of the form A above are sequentially
" weakly closed. As in one d-imens_ic;n this leads quickly to a proof of the
existence of minimizers. ‘

We now turn to the question of what are appropriate growth conditions for
W.  In the case of compressible elasticity we assume that (1.15) holds.
Some condition analogous to (1.7) is'a]so required to restrict the behaviour
of W for large [F|. Consider a cube of side %— made from the material found
at X. For fixed F € M3 with det F > 0, imagine deforming the cube by a
homogeneous strain with deformation gradient AF. The shapé.and size of the
deformed cube is independent of A. A plausible requirement is that as

A — ‘the total energy of the defomation becomes unbounded, that is
1, HXAF) — = as A — =, : (1.19)
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The stronger condition

N(XF)

—+ © as IFI —_— @ (1.20)
IF|?

says that a line segment of positive length cannot be produced from an in-
finitesimal cube using a finite amount of energy. A sufficient condition

for (1.20) to hold is obviously that
HOGF) > 2(X) + k [FI>*E, | . (.21)

for some function a(+), and constants k> 0, € > 0. If (1.21) holds then
_for certain problems a minimizer x exists in the space WsdtE(Q).  The .
Sobolev imbedding'theorem then implies that x is continuous. This fits in
nicely with our motivation for (1.19) and (1.20), since these conditions
should prevent holes beiﬁg‘formed in the body. “In practice we wil{ use a
variety of growth conditions; in some éases one can prove existence under
conditions that do not fmply (1.20).

In the case of-incompressible elasticity we assume that N(E,F) is defined

for all F with det F = 1.  An analogue of (1.20) is that

W(X,F)
IFI?

— ® as |F|] — = withdetF=1. (1.22)

Conditions like (1.20) and (1.22) are especially important for pressure BVP's.
For example it is easy to verify that the total energy functional for a spher-
ical shell of Neo-Hookean material (W(F) = a(tr(FFT)-3), a>0), under con-
.stant internal and external pressures p >0 and zero respectively, is not

bounded below, so that no absolute minimizer exists.
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As has been indicated above, the existence theorems proved in these notes
are of a global type and abp]y to problems with multiple equilibrium solut-
jons. It is also possible to prove local results, in which the existence
and uniqueness of small solutions to BVP's with small body forces and bound-
ary data are established via the inverse function theorem. This has been
done by Stoppelli [35] and van Buren [39] (see also Truesdell and Noll [38],
Wang and Truesdell [41] ). The material response is assumed to be such that
existence, uniqueness and regularity theorems hold for the equilibrium equat-
ions linearized about the'iero data solution. Although these results are
limited in scope, they do only need assumptions about the material response
for deformation gradients close to those of the zero data solution.

The plan of the remaiﬁder of these notes is as follows. In section 2 we
discuss in detail the quasiconvexity, ellipticity and polyconvexity condit-
ions. In section 3 we prove the results concernihg sequential weak contin-
uity and null Lagrangians. The main existence theorems are given in section
4. In section 5 we comment on the problem of proving that minimizers are
smooth and indicate also how the ex{stence theorems in section 4 may be ex-
tended to apply to stored-energy functions of 'sTow growth' (this involves
the use of 'distributional' determinants). In section 6 the existence
theorems are applied to various models of rubber. Finally, in section 7 we
prove the existence of minimizers for semi-inverse problems of the type re-
cently introduced by Ericksen.

Much of the material pfesented here appeared first in [A]. Exceptions
are the conditions‘(1.19),'(1;20), Theorem 2.6 and the whole of section 7.
However the presentation is different (and I'hope more readable), and I have
tried throughout to use the simplest possible technical assumptions. For
example, the existence theorems are proved in Sobolev spaces, rather than in

the more general Orlicz-Sobolev spaces used in places in [A].
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2 CONSTITUTIVE INEQUALITIES

Let @ be a bounded open subset of &. Let M®*3 have the induced norm of
R?, and let U be the open subset of M®**® consisting of F with det F > 0.

Consider a continuous stored-energy function W:Q x U —R.

Definition {cf Morrey [22,23]) W is quasiconvex at a point (X,F)€ axU

if and only if

JH(X,FW;(Y))dY > W(X,F) x volume of D (2.1)
D

for every bounded open subset D C'R? and for every z € 9(D) satisfying
F + VE(!) €U for all !G Q. - W is quasiconvex if it is quasiconvex at everyA
(X,F) €q x U. _

If W is quasiconvex at (E,F) thenh an approximation argument shows that
(2.1) holds for any ¢ € C'(D) with £ =0 on 3D and such that F + vg(Y) €D
for al1 Y €D.

Let

E(x) = [uetmee)an,
Q
and let A = {x € C'(Q) : ¥x(X) €U for all X €Q}. For each x €A, vx(Q)
is a compact subset of U. Since W is continuous this implies that
E: A — R,
The following extension of Hadamard's theorem motivates the quasiconvexity

~condition by showing that the condition is satisfied at every point of a min- -
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imizer for a displacement.BVP with zero body force. A similar result is

stated by Silverman [34]; "see also Busemann and Shephard [7].
Theorem 2.1 Let SG A satisfy
E(x)>E(X)
s ke o N def -
for all x€ A with x-x €9 (2) and lIx-xl _ "= sup [x(X)-x(X)
= i ) R (7)) Z(EQ~“'~"

sufficiently small. Then W is quasiconvex at every point (X.V)—((E)), X€ Q.

Proof, Let D be a bounded open subset of R®, let XOG Q, and let t € 9(D)
satisfy VX(X_ ) +Vc(Y) €U for all YED. For e > o define X, 1@ — R by

RECRE: ["_’_‘_] it 2% ep
x (%) = : :
i x(X) otherwise.

For small enough € the set §°+eD is contained in Q, so that xe-iE D(Q).

Also
Vx(X) + Vg rf ..o} it X% € D
v (X) = .
vx(X) otherwise.
The continuity aséumptions therefore imply that _)_(EGA. Since lee-ill _—0

. . T c®)
as € — 0 it follows that E(fe)>E(§) for small enough €. = Making the

change of variables !:5'2(.0 and dividing by €® we obtain
. €

!u(‘)_(ong, VX(X, +eY)+vg(Y))dY > IN(X°+eY, UX(X, +eY))dY.
- D
Now let e — 0 to get the result. L 0
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It follows from the theorem that if the quasiconvexity condition (2.1)
holds for one bounded open subset D C R® and all (E,F) € Q x U, then it holds
for all such subsets. To see this one simply applies the theorem with
2 =D and x(X) = FX.

Note that in one dimension quasiconvexity is equivalent to convexity.

!
To be precise let W: (0,1) x (0,») — R satisfy

b
IH(X.F+C'(Y))dY > W(X,F) (b-a) (2.2)

a

for every bounded open interval (a,b), every ¢ € 9 (a,b) satisfying .
F+z'(Y)>0 for all1 Y € (a,b), and every X € (0,1), F>0. Lete>0,

H>0, A €[0,1], a = 0, b =1, and define

oY) =

(1-1)(G-H)Y for 0<Y <A
A(G-H)(1-Y) fora<y<i,

Setting F = \G + (1—>‘)H. we obtain from (2.2)
AM(X,G) + (1-A)H(X,H) > W(X,AF+(1-1)6, (2.3)

so that W(X,) is convex on' (0,»). (g ¢ 9 (0,1) but we can nevertheless
deduce (2.3) by approximation). Conversely, if W(X,-) is convex on (0,=)

and if ¢ € 9D (a,b) satisfies F + ¢'(Y) > 0 for all Y € (a,b) then
W(F+2' (Y)) = W(F) + A(F)c' (Y)

for some A(F) € R, and (2.2) follows by integration.

In contrast to the situation in one dimension, for homogeneous materials
quasiconvexity of W is not necessary for the existence of C'(R) minimizers
for 'all' displacement BVP's. : For simplicity we give a two-dimensional

205



example. Let @ = {X€ R* :1< [X|<2}. Let W:M?**> — R be defined by
W(F) =p(r), where r = [F| =[tr(FFT)]§, and where p(r)=0 for r =21, p(r) >0
for 0 <r <1. Consider the map 5(")()5) given in polar coordinates by

(R, 6)—> (R,0+2nw(R-1)), where R = X| and n=1,2,... . Clearly x(")(x) =X
for )~(ean and detv‘)'((")(i) =1for all X€ Qq. Also it is easily checked that
there are numbers a_, a — = as n — =, such that ]Vf(")()f)l >a for all
XER. Now let x €C!(R) satisfy det vx (X)>0 for all XE€Q.  The map
y™ =x_ox™ satisties y(M(x) =x_ (X) for x€20, detvy(M(x)>0.for all

€Q. But

1>

a, < 9™ = o (M o)y M x| < cry™ o)
for all )~(€ Q and some constant C > 0. Hence

Jw(vﬁ")‘(g))q o0
i Q
for large enough n, so that any displacement BVP has a C!(Q) minimizer.

However W is not quasiconvex, as can be seen by setting 3(_0()5) =3 X in the
above argument.

Curiously, if @ is a cube quasiconvexity of W is a necessary condition
for the existence of C!(Q) minimizers for certain displacemént BVP's (see

[A Thm 3.2]).

Definition W is rank 1 convex if for each X€ @, W(X,+) is convex on all
closed line segments in U with end points differing by a matrix of rank 1

i.e., if X€ Qthen
H(GF + (1-1) 2@b) < AW(X,F) + (1-1)W(X.F + a®b)
for all Fe U, € (0,1}, E'Ee Ras with F+u §®Ee U.for all p€(0,1]. Here

(aep),

a.i'b s
a
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The geometric significance of matrices of rank 1 is the fo]]owiﬂg: if
5(5) is continuous and if Vx takes the constant values F,G on opposite sides
of the plane X.n =k, then F-G=2®n for some A€ R3,

The 'next theorem is a consequence of standard results on convex functions.

For details see [A].

Theorem 2.2 The following conditions (i), (ii) are equivalent
(i) W is rank 1 convex

(i1) for each X€ q, F € U there exists A(X,F) € M3%3 such that
W(X.F +asb) > W(X,F) + A% (X,F)a'b_

whenaver F+2) agb € Ufor all A€ [0,1].
If W(X,*) is c? fér each X€ Qthen (i) aﬁd (ii) are equivalent
to the ellipticity condition
L WXLF) j
(1i1) aa bab

T3 >0 for all XEQ,F€EU, a,bE R3,
a B

B

If HQ(’,-) is C? then the next result is simply Hadamard's theorem. For
proofs of Hadamard's theorem see Graves [16] and Morrey [22,23]. .A proof of

Theorem 2.3 assuming only continuity of W is given in [A].
Theorem 2.3 W quasiconvex implies W rank 1 convex.
Let E = M3X3 xM3*3 x (0,0). We regard E as a subset of R!®°,

Definition W is polyconvex if there exists a function g:QxE — R such
that
(1) MW(X,F)=g(X,F,adjF,detF) for all XEQ,FEU

(ii) 9(X,*5+,) is convex on E.
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Theorem 2.4 The following conditions (i) - (iii) are equivalent
(i) W is polyconvex
(ii) for each X€ , F € Uthere exist numbers a?(X,F), b?(X,F), c({,F) such

that
= o gl i a I ey £
W(X,F)=> H()’E,F) £ ai(F'a- F“_) + bi((ada F)a- (adj F)a) +c(detF -detF)

for all Fe U.
(iii) for each X € @, FE Uthere exist numbers A‘;‘q,r), B‘;‘(g,r), c(X,F) such
that ‘

W(XF + 7) > W(KF) + A%n] + B3 (adj =) + c(F)det =
for all F+rE€ U,

Proof. That (ii) and (iii) are equivalent follows immediately by setting
F=F+ « and rewriting the right hand sides of the inequalities. That (i)
implies (ii) is a direct consequence of the convexity of g(X,+,e,<). It

remains to show that (ii) implies (;'). Define g on §XE by
9(X,6,H,8) =sup [H(X,F) +a‘;(X,F)(Gi-Fi) +b3(X,F) (- (adj F) )+ (X,F) (6-det F).
~ Feu ~ ~ a o 1~ a o ~

Fix X€ Q. As g(g,-,-,-) is the supremum of a family of affine functions it

is convex. By (ii),
g(X,F,adj F, det F) =W(X,F), FEU.

The only thing to check is that g(X,G,H,8) <« on@ xE. Since g(X,*,*,*)
is convex it suffices to prove that the convex hull of the set
{(F,adj F, det F): FE U} 1is the whole of E. For k> 0, define _VkC M3%3 x M3%3
by

V= {(F,adj F) : FEM™?, det F=Kk}.
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It is enough to show that the convex hull of V| is M3%3 xM3%3_ Suppose not.

Then (cf Rockafellar [32 p 99]) there is a closed half-space
= 3. isa iy
% ={(F,A) € M3%3 x M3%x3 ; FaG‘i +AuH'i < ul,
(G,H)# 0, with V, Cw.  If Ry, R, € M3%3 are proper orthogonal then
Fled e AlHY = tr [(RyFRy) Ry GR, T) + (Rg AR, 1) (RyHR; )] -

Since adj(RiFR;) =R, ' (adj F) Ry, det(RiFR,) =det F, we may without loss of

generality suppose that H."is diagonal.  Suppose that H#0 and assume without

loss of generality that H] #0. Let F =diag(kN~'sgn H},N’sgn Hi, NQ). Then

- adj F = diag(N sgnH}l, kN'!.sgn Hi, kﬂ-i) and det F=k. Hence (F,adjF)€ Vk’

but for N> 0large enough (F,adjF)¢n. If H=0 then we can assume that

G} #0, let F =diag(kNsgnG}, N"!sgn G}, N'é) and proceed similarly. Thus

Vk ¢x and this contradiction completes the proof. u]
Another equivalent condition for po]yconvexity'is given in [A] using work

of- Busemann, Ewald and Shephard [6]' on convex functions defined on nonconvex

sets.

Open problem

1. Give a physical interpretation .of polyconvexity.
The following formulae, which express adj Vx and det Vx as divergences, are

fundamental to the rest of our.work:

oy def aBy . J k_ aBy J K
(adj Vf)i éeijke X,BX,Y (3 €15k° X X,Y).B (2.4)
def , oBy 1 .3 k _a i " o
det Vx = TE5E x’mx’ex‘Y (5 x (adj vf)i),a' . (2.5)

Clearly (2.4), (2.5) are valid if x is C2.
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Theorem 2.5 (Morrey [22}) W polyconvex implies W quasiconvex.

Proof. Fix X€ Q. Let D be a bounded open subset of R®, let FE U, and

let £ € D(D) satisfy F+vg(Y) € Ufor all YE Q. By _(2.4) and (2.5),

JciadY % I(adj vg)ldy = Idet vgdY = 0.
0 D D

Thus by Theorem 2.4(iii),

ﬁ:q,r + vg(Y))dY> qu,F)d!
D D

o
as required.

Let us call W convex if w(§,-) is convex on all closed line segments in U.

Then we have the following situation:

W convex

= = C =
«+ W polyconvex « Wquasiconvex _ W rank 1 convex
?

W(F) =det F is an example for the first nonimplication; for the second see[A].

Open problems (see [A] for discussion)

2. Does W rank 1 convex imply W quasiconvex?

3. -Does W quasiconvex imply W polyconvex if W satisfies (1.12)?

My guess is that the answer to both questions 1is no.

Consider next a pure displacement BVP with boundary condition §=Z<Q() for
X€ 3q, where Z:Q —> R® is globally one to one. Under assumptions like
(1.15), one can hope that any minimizer x for this problem will be globally
one to one. Let )~(=)~§"(-), so that Zzg(ﬂ) — Q. It seems reasonable to

expect that X will minimize
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0= [ Rx@amines [ et wxe
x(2) x(@)

in a suitable function space, subject to the boundary condition 5(5) =Z<"(5)

for x€ 3x(R), where f:@xU — Ris defined by
H(X,F) =W(X,F~1)det F.

Note that * is an involution, i.e., §=H. We now ask which constitutive in-
equalities are invariant under the transformation W+~ W : it would be
disconcerting if a constitutive inequality used as a hypothesis for an exist-
ence theorem did not possess this invariance, since then it might be possible
to find a minimizer for I but not for T (or vice versa). " The example W=1

~
.

shows that convexity of W is not invariant under

i

Theorem 2.6 Quasiconvexity, rank 1 convexity, and polyconvexity are all in-

~

variant under

Proof.  Without loss of generality we take W independent of )~( Let W be
quasiconvex, D be a bounded open subset of R?, tE€ 2(D), FEU, and let
F+Vs(!) € U for each YE€D. Define 5(!) = FX +§(!). Clearly det Vf(!)>c>0
for all YE€D. Also 5(!) =FY for Y€ 3D, so that X coincides on 3D with a
globally one to one function. Hence there exists an inverse function
Y:x(D) — D, and ¥(x) =F")~(+Q(5) € 9(x(D)).

(While intuitively obvious, this step is not trivial and requires use of
the Brouwer degree. The set >_((D) is open by the invariance of domain theo-

rem.)  Thus
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Jﬁ(F +7g(Y))dY =IW(F" +7n(x))dx> Jw(r“)m_( =

0 x(0) x(D)
=W(F? )Idet(F +0g(Y))dY = jﬁ(p)dx,
D D

where at the last step one has to use (2.4), (2.5). This proves that W is

quasiconvex.

Let W be rank 1 convex. Let F+y a®b€ Ufor all u€[0,1). Since

(F+a®b) ' -F'=-(F+a®b)™ a®b F~' is of rank 1, it follows from Theorem
2.2(ii1) that

WN(F+a®b) =W(F"1 + (F+a®b)™! - F !)det(F +a@b)
SLH(F) - A(F)(F +3@b) 1% ab (F1) 1 det(F +a@b)
=R(F) +1(adj F) G FA(F))1(aeb)].

S~
Thus ﬁ is rank 1 convex by Theorem 2.2.

Let W be polyconvex. Let F,F€ U. By Theorem 2.4(ii),
H(F) > (W(F™1) +af(Ft) (F7- F");+b?(F")[adj F-');- (ad; F-’);] +
+c(F ' )det F~! - det F~1))det F
= H(F) +b‘§‘(F")(F—F);+a‘;(r°!)(adj F-ade);- (det F)"'[W(F™)det F +
+a%(F) (adj F)] + bI(F™1)F) + ¢(F1)] (et F - det F).

Hence W is polyconvex by Théorem 2.4. ]
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The reader may find it interesting to see what “neorem 2.6 says in one
dimension. Most of the results in this section can be carried over to the

case of functions x: 0 — &", oC &™, with 1ittle change in the proofs.
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3 NULL YUAGRANGIANS AND -SEQUENTIALLY "UEAKLY CONTINUOUS FUNCTIONS

Let  be a nonempty bounded open subset of ®?®,
Definition Let ¢ : M¥® — R be continuous. Then ¢ is said to be a
null Lagrangian if

focoxtn + veoax = focoxen)ax (3.1)
Q Q

for all x€ C}(R), L€ D(R).
Theorem 3.1 The following conditions (i) - (v) are equivalent

. (i) ¢ is a null Lagrangian

(i1) I¢(F+v§(§))d§ =¢(F) xvolume of Q
& :

for all FEM¥?, r€2(Q). (i.e., ¢ and -¢ are quasiconvex on M**?)

(ii1) ¢ is rank 1 affine, i.e.,
$(F + (1-1)28b) =29(F) + (1-1)8 (F +a®b) (3.2)
for all FE M3, (€ [0,1],3,b€ R?
(iv) $(F) =A+A%F! +8%(ad; F))+ Cdet F (3.3)
for all F€ M3*3, where A, A?, B?, C are constants.

(v) ¢ is C! and

a

ﬁg(vygncf“(g)dpo (3.4)

Q
for all x€ C'(Q), € 2(q).
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Proof,  Putting x(X) =FX in (3.1) shows that (i) implies (ii). Let (ii)
__hold.  Then, by an obvious modification of Theorem 2.3, ¢ and -¢ are rank 1
convex on M3*3, ji.e., (iii) holds. To show that (iii) implies (iv) assume

first that ¢ is C2, so that (c.p. Theorem 2,2 (iii))

320(F) Jiad b b, =0 for all FEMX?, apE R. (3.5)
3F 13F3 Ll =
a

A result of Ericksen [11] shows that (3.5) holds if and only if ¢ has the
form (3.3). (See also Edelen [9]). For a general continuous ¢ one can use
a mollifier argument to reduce the problem to the case ¢ € C%; for details
see [A].

To prove that (iv) implies (v), note first that by approximation we may

without Toss of generality assume that x€ C*(Q).  Then, if £ € 9(Q),

- (VX(X))Ci (X)dX = - i (VX(X))XJ !
. - zldx.
JaF‘ e aF 3Fy " " L

a B

3% 3%

But (3.5) implies that — =-—3—- This gives (v).
oF 3FY  3FaF)
a B B a

Finally let (v) hold and let x€ cH(a), EGQ(Q). For t€[0,1] define
9(t) = [o(7x(X) + £ (X)X
: 3
Then, by (v), 9'(t)=0. Hence g(1)=g(0), which is (i). - a

Theorem 3.2 Let ¢ : M**® ~— R be continuous. Let p> 1and suppose that
[6(F)| < C(1+ |F|P) for some constant C>0and all FE€ M3, If the map
x = 9(Vx(+)) :WHP(Q) — L} (Q) is sequentially weakly continuous then ¢ is

a null Lagrangian.
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Proof We use an argument of Morrey [22]. Let D be the unit cube 0< X <1.
let FE M3, r€9(D),e>0. Tesselate R? by cubes of side e with faces
perpendicular to the X* axes. Let D(r) =X(r) +¢eD be a typical cube, and

define X 10— R? by

x(r)

Fx+e;[“ ] if xep(Mcq
x(x) = 4 “U¢ .
- FX otherwise.

Then
gyt

vx_(X) = F"VS[———" . ] if xe (M cq

F otherwise.

Hence |V§€(X)| is uniformly bounded for all X and e. Since x (X) — FX

uniformly in Q@ as ¢ — 0, it follows that xe(') — FX in W'HP(Q) as ¢ — 0.

But if 0{") ¢ g then

fotmx mex =2 fo(F +agnner.
p(r) D

As the number of cubes D(r)c Qis of order 23 X volume of @ we obtain
3
€

“'“Jﬁt’(vfg(f))d)f =f¢(F +9g(Y))dY x volume of Q.
€0 D
Q D

Since ¢(Vx(+)) is sequentially weakly continuous it follows that

o e vevner = focerar.
D D

Hence ‘¢ is a null Lagrangian by Theorem 3.1. 0O
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The study of sufficient conditions for sequential weak continuity hinges
on the identities (2.4), (2.5). First we give a distributional meaning to
these identities. (For the definition of the dual space 9'(Q) see Schwartz

1331.)

Lemma 3.3 (a) If x€ WH?(Q) then adj Vx€ L! () and formula (2.4) holds in
2' (). (b) If x€ WHP(R), p> 2, and adj Vx€LP' (2), (where %+% =1) then

det VXxE€ L'(Q) and formula (2.5) holds in 9'(Q).

Proof. (a) Let x€ W'+?(Q). Clearly adjVx € L’(). Formula (2.4) holds

in 9'(R) if and only if

& o _ . aBy Jj k
J(adJ Vl()i‘pd)f' Ii €45k € X X:Y° Bd)~( for all ¢ € 9(Q). (3.6)

But (3.6) holds trivially if x€ C7(q), and C7(Q) is norm dense in W'+2(Q).
Since both sides of (3.6) are continuous functions of x€& W1>2(Q) the result
follows.

(b) Let x€ w‘»P(Q).adj.Vi(eLp'(Q).' Then det vx€ L (R) by Holder's inequality.
For fixed i define w () by ¥, = (adj vx)%.  If x€ C°(q) then

B def o _
Dwg(i) = w(i)'u-o. Thus

jw‘zi)¢’udl(=0 for all ¢ € a(q). (3.7)
Q

Since C7(q) is dense in W'sP(Q) and p> 2 it follows that (3.7) holds for
X€WP(). Let
' peﬂ)(R’),p?O,Jp(X)dX=1,
R!
‘and define the mollifier p. in the usual way by Py (X) =k’p(k§); Extend r‘w"’ﬁv)

by zero outside .  Then the convolution py ¥y € C7(R®) and



Per H(gy — i) LD (W) as k — e Fixp€9(@). If k is large
enough, then by (3.7),
Div (pk*w(_.))(X) = ka u(X Y)ws (i )(Y)dY =0 (3.8)
R? ‘
for all X € §upp ¢ Let SC R® be an open ball containing supp ¢, and

let g(k)e C™(8), X() — X in WHP(R).  Then, using (3.8),

[ixiey o ugay® 096 = [oivoagyy oy e
Q S

- Jro ety ™o, 9
Q

- 13 1 a
= [ o)) 00
Let k — «. Then

i«
j x' w(1)¢dx=-I;x "(i)d’,dd’.(’
f b '
- which is (2.5). R

The main result of this section is

Theorem 3.4 (a) Let p> 2. If Xry ™ % in W'sP(Q) then adj vx, , — adj Vx

~(r)

in 9'(q). (b) Let p= 2. If X(r) — x in WeP(Q) and adj Vx(r) — adj vx in
]

LP (@), then det oy = det Vxin 9' (2).

Proof. (a) Fix ¢e9(Q). By Lemma 3.3(a), for ‘e_ach r we have

J;(adj Vg(r)')‘.’i‘-w d)_('=-iseijke (r) (r) LS
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Let Q' be an open set with 22 Q' Dsupp¢ and such that Q' satisfies the cone
condition (cf Adams [1}). Since X(r) — x in W'sP(Q') it follows by the
Rellich-Kondrachov theorem that X(ry — X% in L%(Q').  Hence

J

k J k 3 1 '
— xx _ in L'(Q'), so that
X(r) X(r)oy y B

. o8 T < Q
j(ad‘} Vf(r))i¢’d).( J(ad,) V)_()i¢d§.
Q
(b) This is proved similarly using Lemma 3.3(b). i O

Corollary 3.5 (Reshetnyak [27,28]) (a) If p> 2the map x +— LP/?(q) is
sequentially weakly continuous.  (b) If p> 3the map x +— det Ux : WP(Q) —

Lp/3(n) is sequentially weakly continuous.

Proof. (a) If Xp) ™ 3 in W':P(Q) then adj vf(r) is bounded in LD/Z(Q).
Therefore a subsequence adj Vf(u)—. H in Lplz(n). By part (a) of the
theorem H =adj x. Hence the whole sequence converges weakly to adj vX.
(b) If X(r) — x in W'sP(Q) then we have just shown that adj vf(r)—‘

adj vxin LP/2(q).  Also detvx

X(r) is bounded in Lp/3(9), so that a subsequence

det \75(“)—— § in Lp/3(ﬂ). By part (b) of the theorem § =detVx. Thus
det 7x ) — det Vx in LP3(q). | o

An amusing illustration of the sequential weak continuity of det Vf can be
given in two dimensions. If Q 1;5 a bounded open subset of R?, and we con-
sider functions x:Q — R?, then identical arguments to the above show that
X +— det Vx: WHP(Q) — Lp/z(n) is sequentially weakly continuous for p> 2.
Take Q to be the unit square, and consider the sequence of maps f(r) 1N —R?
shown in Figure 7 obtained by folding Q into four along the dotted lines, into
four again,. and so on, keeping the origin fixed. Clearly |V§(r)»l(§)| =1Vf_or

all ryi,a and almost all X€ Q.. Hence some subsequence x(u)»éx'-in WhP(Q) -
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for any p>1. Obviously X, —+ 0 in L7(R).  Hence X( — 0 in W:P(q).

r)
The sequence det Vx(r)must therefore converge weakly to zero in any space
Lp(n). That this is indeed the case can be seen from Figure 7, where

det Vx(r) takes the values +1, -1 in the unshaded and shaded regions respect-

ively.
1 T
...... e ,E
: :
0 ; @ e e

det V)_c(z)

Figure 7

The results of this section carry over in a natural way to the case of

maps X : R™"— R", m,n>1.  See Ball [5] for details.
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4 EXISTENCE OF MINIMIZERS

We confine attention to mixed displacement zero traction BVP's. A variety
of other boundary conditions are treated using similar methods in [A].
We make the following hypotheses on the stored-energy function W:QxU — R.
(H1) W is polyconvex, and the corresponding function g: QxE — R is
continuous.

(H2) There exist constants K>0,C,p =2, q >=B?T.r > 1, such that

9(XF,H,8) > C + K(IFIP+ 1%+ ]6]")

for all X € @, (F,H,8) € E.
(H3) g(g,a) —+ © 35 3 — 9E.
Remarks: The continuity hypothesis on g may be weakened (see [A]).  (H3)
corresponds to (1.15). ‘ -

We define g(X,a) to be += if a € 3E, so that by (H3) g: @ x E — R is
continuous. We suppose that the body force potential y: R® — R and is
continuous, that the boundary 3Q of Q satisfies a strong Lipschitz condition,
and that 3@, is a measurable subset of 3Q with positive measure. We seek a

minimizer for

1(x) = M) + fuxoxex , (8.9
Q Q
subject to
x(X) = 5(5) for X € 3q;, (4.2)

where 3: 3y —+ R¥is a given measurable function. We require (4.2) to be
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satisfied in the sense of trace.
Define the admissibility set A by
A= {x€ W':P(q) :adj Vx € LI(0), det Vx € L"(q), det vx >0 almost

everywhere in @, x =X almost everywhere in 3Q,}.

Theorem 4.1  Suppose there exists x; € A with I(x;)< =, Then there exists

xoe A which minimizes I in A.

Proof. Since 99, has positive measure, a result in Morrey [23p 82] implies

that there exists k; > 0 such that

Jlflpd)£<k, Ulvypdu[ Ilglds]p] (4.3)
Q Q

I

for all x€ WP(Q)with 5:3 on 3Q;. Hence by (H2) we have for arbitrary

X€E A,

I(x)>C (volume of n)+KU|V§|de+J|adj vx| 9 dx +f(det Vx)rdx:l
‘ Q. @ Q

> const. + Ky IIxi® +KU|adj Vxlqu+f(det Vx)rdx]. (4.4)
-~ Hl'p(ﬂ) Q -~ -~ n -~ -~

where K; > 0 is a constant.
Let 5(n) be a minimizing sequence for I in A, It follows from (4.4) that

some subsequence x(u) satisfies
—_— i 1,P :
X(w) X, in W¥(a), 5(u) — almost everywhere in Q and 3Q,,

adj vx, , —= H in L9 —§inL”
J -)-((u) in L7(Q), det Vg_((u) § in L (Q).
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By Theorem 3.4, H=adj Vi(o and § =det Vfo. Hence,
bl j 9 ! B ’ j ’ i Ll Q .
(Vf(u) adj Vi((u) detVf(u)) (Vi(o adj VX, detV)~<o) in LY(Q)
Since g()~(,-,-,-) is convex, it follows by a lower semicontinuity theorem of
Ekeland and Témam [10 Thm 2.1 p 226] that

I(§O)<%I(§(u)).

But clearly x0=>_(0 on 3Q;. Also, as I(xo)<w we must have detho>0

almost everywhere. Hence xoé A. This completes the proof. a

Incompressible elasticity

We retain the same hypotheses on @, 3R, ¥ and x, but replace (H1) - (H3) by
hypotheses (H1)', (H2)' below.
Let V={FE€ M3*X3: detF =1}.

(H1)' W:Q@xV — R and there exists a continuous function

g: QxM¥3 xM3*3 — R, with g(X,+,+) convex, such that
W(X,F) =g(X,F, adjF) for all XE Q,F€ V.

(H2)"'" There exist constants K> 0,C, p=2, q= p/p-1, such that
g(X,FsH) > C+K ([F|P+|H|Y) for all X€ Q, F,HE NP3,

X

Let A" ={x€ W'sP(Q): adj Vx€ LY(R), det Vx=1almost everywhere in Q, X =

almost everywhere in 9Q;}.

Theorem 4.2  Suppose there exists x; € A' with I(x;) <e. Then there exists

xOE A’ which minimizes I on A'.

Proof. Let 5(n) be a minimizing sequence for I from A'. Since det Vf(n) =1
almost everywhere in Q, we have in particular that det Vx(n) is bounded in
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L2(Q), say. Proceeding as in the proof of Theorem 4.1, we obtain a minimiz-

ing sequence 5(11) C A' with the properties
M) i 1,p 3
_)5(“) X, in WP (Q), 5(u) —+ %, almost everywhere in Q and 9Q;,
. S - - q _— . 2
adj Vl((u) adj vx,in L (Q), det V»)«((u) det vx in L (Q).

Thus det Vi(o:la]most everywhere in Q.  Hence 1(06 A' and we obtain the
theorem as before. O
Note that in the proof of Theorem 4.2 we made essential use of the fact
that the pointwise constraint detF =1 was weakly closed. The only other
homogeneous constraints of this type, as we have seen in Theorem 3.2, are

of the form
¢(F) =A+ASF +B (adjF)] +DdetF =0,

where A, A?, B? and D are constants. One can easily show that the only

frame-indifferent constraints of this form (i.e., ¢ satisfying ¢(QF) =¢(F)

for all proper orthogonal Q) are those with A?=B?=O, so that det Fis spec-
ified. Note that the constraint of inextensibility (Truesdell and Noll [38
p 72]) is not included. This makes one wonder about the mathematical status

of inextensible elasticity.

Note also that if 3Q; =802 and Z(G C!(Q) then a necessary condition for A'

to be nonempty is that

Jdet Vx(X)dX = volume of Q. (4.5)
9 .

Open problem

4. Let x be a diffeomorphism satisfying (4.5). Does there exist a volume-
preserving diffeomorphism x with x=x on 3Q?
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5 REMARKS ON REGULARITY AND STORED-ENERGY FUNCTIONS OF. SLOW GROWTH

Open problem
5. Prove that under suitable hypotheses the minimizers in Theorems 4.1 and

4.2 are smooth.

A necessary prerequisite for solving the regularity problem is presumably
to show that the minimizers are weak solutions of the equilibrium equations.
In the case of Theorem 4.1 the problem is very delicate due to the pointwise
constraint det F>0and the associated growth condition (H3). Even the sim-
pler case of Theorem 4.2 presents serious difficulties; formally one could
regard det vx=1las a Banach space valued constraint and apply an appropriate
Lagrange multiplier theorem, identifying the Lagrange multiplier with the
familiar hydrostatic pressure of incompressible elasticity. However, satis-
fying the hypotheses of-standard Lagrange multiplier theorems is not straight-
forward because it is not a priori obvious that the minimizer X is invert-
ible, even in the case of a pure displacement BVP. One could minimize in a
class of invertible functions, but then other difficulties arise. The only
result on weak solutions I know of avoids these problems by assuming that

' they have already been overcome.

In addition to the hypotheses of Theorem 4.1 we suppose that p> q= r and

(H4) W(X,+) € C'(V) for each X € @, and for each d>0there exists a
constant C(d) such that

W(X,
PED <oy (1 1F1P+ fads 719+ (et

for all X€ q,F€ M3*3ywith det F > d.
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Let ¢ be C!, and if p<3assume that there exist constants C, and v,
1<y < 53-_%. y2 larbitrary if p=3, such that

3¢ <co ety
for all x€ R3,

Theorem 5.1  Let X, be the minimizer of Theorem 4.1. Suppose that
det on(x)> d, > 0almost everywhere in some open subset E of Q.  Then x =Xy

satisfies the Euler-Lagrange equation

J [JﬂLvi4.£ﬁLv‘ } dx=0 for all v€ 9(E). (5.1)
3 7,0 =~ i

ax oF

* a

3

Proof. Let vE 9(E). Since p2q=>r it follows that x°+cv6 A for small
enough [e|. Also there exists a constant d such that det V(x_ +ey)(X)>d>0
for almost all X€ Eand all small enough [e|.

0exists and is given by the left hand
E=

We must show that a%l(5°+ ev)

side of (5.1). But

gy ven) - 10) [Pz +erX) -9k, 8)

-

€ €
E

B

[w(x,on(x) +eW (X)) - H(X,0x (X))

Bl o e Sl
€

£

Using the mean value theorem, hypothesis (H4) and the dominated convergence

theorem, it is easily proved that the second integral tends to

[—%‘,—(x, on(x))v1u(X) dX as ¢ — 0.
o s ST

E o
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The first integral is treated similarly, using the facts that 5°€5C(supp!)
it p> 3, x,€ LP/(P) (supp v) 1f p<3,x € LY (supp ¥) for any y> 1 if p=3.
o <

No regularity theory seems to be known for nonlinear elliptic systems of

the type encountered in elasticity. Such a theory would probably require

strong growth conditions on W such as (1.20) to prevent the formation of

‘holes'. This is certainly what is indicated by an example due to Giusti

and Miranda [15] of an analytic integrand f(g,f,VE) with f(§,§,-) convex,

such that the function

Q a bounded open subset of R", n> 3, is a solution of the Euler-Lagrange

equations for

J(x) =Jf(X,x,Vx)dX.
%)
For large enough n, xO(X) is in fact the unique minimizer for J subject to

x=x,on nN. In Giusti and Miranda's example f is quadratic in Vf, S0
that (1.20) is not satisfied.

Let us say that a stored-energy function'w(g,F) is of slow growth if
(1.20) is not satisfied. W may be of slow growth and still satisfy the
hypotheses of Theorem 4.1. However, it is possible to treat other such
stored-energy functions by refining the sequential weak continuity results
of Section 3. We first observe that the right hand sides of (2.4), (2.5)

can have meaning as distributions when the conditions of Lemma 3.3 are not

3
satisfied. To be precise, let x€ W2 (Q); then x€ L]’oc(n)by the imbedding
theorems, and hence xjkaG L{oc(n). Thus (note the capital letter)

: o def aBy J .k
(Adj V_’f)i = (leijkc XX.Y),B
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is a well defined distribution. Similarly, if x€ W!sP(Q) and Adj VX € Lq(Q)

1

for p>1, q>1,3+a< 3 then

def 1 i,44:0,10
Detvx "= (3x (AdJV.’.‘)i),a

is a well defined distribution.
Lemma 3.3 says that if x€ W's2(Q) then adj vx =Adj Vx, and if x€ W!:P(q),
adj vx € Lp' (), p>2, then det Vx=DetVx. It is not always true that

adj Vx = Adj Vx, det Vx=DetVx. As an example, consider the map

X
3= ezl dor fH1<2.

This map produces a spherical hole of radius 1 at X=0. One can check (see
[A])that x€ WisP(Q) for 1<p <3, adjvx€L%(@) for 1<q <. But
Det Vx# det Vx since Det Vx has an atom of measure T at X =0.

u
3

Open problem
6. Need det Vx=DetVx if Det x is a function (and a similar question for
Adj Vx)? )

It is obvious that the arguments of Theorem 3.4 carry over to the distri-
butions Adj 28 Det vx under weaker conditions on p.  Thus one can prove the

existence of minimizers for functionals of the form

I(x) =Jw(x)d§ + Ia(x, vx, Adj VX, Det Vx)dX
Q Q
with GQ(,-.',-) convex, under coercivity conditions on G weaker than the

corresponding conditions on g in (H2). The reader is referred to [A] for
details of these results. The minimization is carried out in a class of
functions X such.that Adj Ux and DetVx.are functions, but the relationship
of the integrand GQ(, X, Adj VX, Det v5) to N()~(,F) & G(Z,F, adj F, det F) is
i'unc’lear because the open problem & is unsolved.
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6 APPLICATIONS TO SPECIFIC ELASTIC MATERIALS

We now investigate to what extent the hypotheses of our existence theorems
are satisfied by accurate models_of real elastic materials. We confine

attention to isotropic materials. For an isotropic material W has the form
W(X,F) =@(X,v1sV2sVs), (6.1)

where v; are the eigenvalues of /FFT and where ¢ is symmetric in the vy
Because the transformation F = (v,,Vv,,v;) is nonlinear, it is by no means
obvious under what conditions on ¢ the stored-energy function W is quasicon-
vex or polyconvex. The corollary to the following result gives some suffic-
ient conditions. For the proof of the theorem see Thompson and Freede [36]
and [A]. ' '

Theorem 6.1 Let ¥(V1,V2,V;3) be a symmetric real valued function defined nn

Ry ={v; >0}. For FE&M*? define
o(F) =¢(Vvi,V2,V3),

where the v, are the eigenvalues of \/FFT .  Then o is convex on M**? if and

only if ¢ is convex and nondecreasing in each variable Vi

Corollary 6.2 For j=1,2 let ¢j i xR: — R be continuous and such that

'¢j(§,',-,-) is symmetric, convex and nondecreasing for each X€ Q. Let

®3 : 2x(0,0) — R be continuous and such that ¢(X

+) is convex for each

XE Q.
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Let
d(X,Vy,V2,V3) = ¢1(?S,V1:V2:V3) + ¢z(§aVzVa-V3V1,V1Vz) + %()_('»VleVa)-

Then W, defined by (6.1), is polyconvex.

Proof, By the theorem ¢1()~(,v1,v2,v3) is convex in F for each 5 Also, since th
eigenvalues of \/(adj F)@adj F)T are vavs,v3vy,vyvy it follows from the theo-
rem that ¢, (§,V2V3,V3V|,V1V2) is a convex function of adj F.  Since
det F = v,v,v; we obtain the result. a

We consider a slight modification of a class of stored-energy functions

introduced by Ogden [25]. < For a 21,8 >1,let
pla) = ¥+ v§ +v§ - 3, x(B) = (vavs)P + (vav1)® + (iv2)® - 3.
Consider first incompressible materials, and let
M . M o2
= " % Z b, i .
WQS‘:F) 11__31 a,(f)?(al)*‘j:l JQ()x(ﬁa): (6.2)

where o; = ... >°‘M 21,8, =2... 2 BN =1, and where g, bj are continuous

functions on { satisfying

3;(X) >0, b;(X) >0, for 1<i<M,1<j<N X€Q,
a(X) k>0, by(X) >k>0, for X€@,

where k is some constant.

By Corollary 6.2, W is polyconvex, the continuity of W following from the
convexity of p(“i)’ X(Bj) as functions of £, adj F respectively. (The spec-
ial case of Theorem 6.1 used here is due to von Neumann [40]). The contin-
uity of p(w,), x(B,) also implies the existence of positive constants a,b
such that
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. B
plar) > a[F|™", x(8y)> bladj F|™’

for all F € M**3_  Therefore hypotheses (H1)', (H2)' of Theorem 4.2 are

satisfied, provided

a>2, 8 > S (6.3)

As a special case, consider the inhomogeneous Mooney-Rivlin material, for

which M = N =1, a; = 8; =2, so that
W(X.F) = a1 (X) (15-3) + b1 (X) (114-3),

where XB and IIa are the first two prinqipa] invariants of B = FFT. Clearly
(6.3) is satisfied, so that the Mooney-Rivlin material is included in the
existence theory. An application to buckling of a rod made of Mooney-Rivlin

material is described in [A]. The incompressible Neo-Hookean material
W(X,F) = a1(X) (15-3)

is not covered by Theorem 4.2. To-illustrate this, consider the single-term

stored-energy function
W(F) = p(ay).

It is not hard to show that (Hy)' is satisfied if and only if a; = 3. By
use of Adj and Det one can reduce a«; to 2}, but this still does not cover
the Neo-Hookean material.

Ogden curve-fitted a stored-energy function of the form (6.2) with three
terms (M =2, N = 1) to data of Treloar for homogeneous vulcanized rubber.

The values of the various constants obtained by him were
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Qy = 5.0, A, = 1.3, Bl s 2,
2.4 x 107*, a, = 4.8, b; =0.05 kg cm™2.

U

a

Similar values are given by Jones and Treloar [21]. Clearly (6.3) is satis-
fied.  Furthermore, since a; > 3, condition (1.20) holds. If 3Q satisfies a
strong Lipschitz condition then by the imbedding theorem of Morrey [23] the
minimizer in Theorem 4.2 belongs to 60'0'4(5).

In the compressible case Ogden [26] considered the effect of adding a
term I'(det F) to (6.2). (Actually he replaced the term x(2) by
vi% + v32 + v3? - 3, but the difference is negligible experimentally since

for rubber v,v,v; ~1). Suppose that
I‘(t)>c+dtr for all1 t> 0,

where d > 0; r> 1 and c are constants. Assume that T' is convex on (0,),
T(t) — = as t — O+, Then the modified-stored-energy function satisfies

hypotheses (H1) - (H3) of Theorem 4.1, provided (6.3) holds.

Open problem

7. Find necessary and sufficient conditions on ¢ for W(X,F) to be polyconvex.
A generalization of Corollary 6.2 is given in [A], but it does not solve

the above problem.



7 EXISTENCE OF SEMI-INVERSE SOLUTIONS

In this section we prove the existence of minimizers for semi-inverse prob-
lems of the type discussed by Ericksen in [14] and in his article in this

vo'lume.‘r

Let D be a bounded open subset of R*. We denote coordinates in R? by

xr, I = 1,2. Consider an elastic body which in a reference configuration
xz
4 :
} ]
¢ :
\ :
i ‘L i
D ‘\ ‘V’ B
. . X : :
‘\\\ 3

Figure 8

We make the following assumptions on W.
(A1) h is independent of X*, so that W:DxU — R.
(A2) W is frame-indifferent (see (i.lZ».
(A3) W is polyconvex and the corresponding function g:DxE — R is

continuous.

+I would like to thank Professor Ericksen for some useful discussions con-
cerning the material in this section,
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(A4) There exist constants K >0, C, p > 2, q > 1, such that
Q(XF,F,H,ﬁ) 2C +K(]Flp+ ‘qu)

for all (X',X2) €D, (F,H,8) €E.
- (AS5) -g(Xr,a) —+ @ as a — 9E.

- For sfmplicity suppose that there is no body force. The semi-inverse sol-

utions have the form
x(X) =k +Ry(X) <k +aX3el, (7.1)

where g‘E R is a unit vector, k€ R%, R(X?) zeYﬂx’, a,y are constants, and
Y] is a constant skew-symmetric matrix satisfying ng =e.v for all vE RY.
Clearly R! =¥aR, Re ;S‘ Qe=0, and x = Z(Xr)vat X3 ;o. In the deformation
(7.1), straight-1ines parallel to the X® axis go to helices about the line
thfough‘f =k parallel to e.  The deformation for a thin rod thus looks

roughly as shown in Figure 9.

K ’”‘\\/,f"\\/,f“*\\/,f“‘\\
il A U O twist axis
0 e

Semi-inverse deformation for a thin rod

Figure 9
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If X has the form (7.1) then X = R(VX’Z)' where z = oe + Yg*(Z'E)' Hence

by (A2)

w(xh,x) = WXt y,2). (7.2)
Note that

detVx=z- (y,14,2). . ' (7-3’

Consider the functional

J(y) = IW(XF.Vg.g)ds; ds =dx*dx2. (7.4)
5 , .

The Euler-Lagrange equations for (7.4) are

M _ (W) B

u [a!’r]'r 0. | TSy
. i R

It is easily verified ysing (A1), (A2) that if (7.5) holds then, formally,

so do the equilibrium equations

L [—3-‘1.‘—] - 0, (7.6)
X X

where x is given by (7.1). We therefore consider the problem of minimizing
J('Z)' We will only consider the case when the curved surface of the cylin-
der is traction free; this is a natural boundary condition, so that for the
purposes of minimization it can be ignored. Let A = {ye WaP(D):

adj (vy,0) € L9(D), z * (¥,1 ~ ¥,2) > 0 for almost all (X',X?) € D}.

Theorem 7.1  Let D satjsfy the cone condition. Let e,k,a and y be fixed,

and assume a® + y* #0.  Suppose there exists Y1 € Awith J(y,) <«, Then
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there exists 8 € A which minimizes J on A.

To prove the theorem we need the following version of the Poincaré

inequality:

Lemma 7.2 -Let D satisfy the cone condition, let p > 1, and let e €R? be a

unit vector. Then the inequality

Ilglp ds < const.[(Ij_/.g,dS)p +J|g.!|pds +le§_/|p ds] (7.7)

D - D D D
holds for all y:D — R® belonging to W!sP(D).

Proof of lemma. Né use a similar argument to Morrey [23 p82]. Since D
satisfies the cone condition and is bounded, it ﬁas only finitely many
connected components.  Hence without loss of generality we may assume D to
be connected. ‘Suppose the lemma is false. Then there exists a sequence
RUNRS W!»P(D) such that thulp dS=1 and

D :

j;vatP dS+I|§A¥N]pdS+(JZN.gdS)p ‘}17' (7.8)
D D D '

Thus N is bounded in W!*P(D), so that a subsequence y,, converges weakly in
W»P(D) to some y- Since the imbedding of WHP(D) into LP(D) is compact,

it follows that !u -y in Lp(D). Hence

lelpds= 1, (7.9)
)
and by (7.8) and the fact that J|Vy|p ds <1i

lim
Yoo
D D

IlVZu!pdS, we have that
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Vy=0,e.y=0 for almost all (x',x?)€D,
and

Je.! dS=0

D

Since D is connected, y is constant, and hence y =0. This contradicts (7.9).

Proof of theorem. Suppose first that y #0. Then N(Xr,v!,g) is invariant
under the transformation y +=— y+le. Hence we may without loss of general-
ity seek a minimum for J on the Set A={y €A: I_!.gds=0}. Let L(n) be a

D ]

n_n’nimizing sequence for J in A.  Then by (A4)

J]v_y(n) |P ds < constant, . Jlg ~¥(n) |P dS< constant,
D

I[adJ(Vy( )°2(n ))l dS<constant. where z(n)’“?,*'Yf"(l(n)' k).
D

Hence by the Temma "-l’(n)"N‘:P(D)< constant, and so there exists a subsequence

Z(u) of -Z(n) satisfying
— i 1,p —_— i r
x(u) Yo in W'sP(D), Py Y, in L' (D) for any r > 1,

adj (VY y) — Hin L80).

(u
Arguments similar to those in Section 3 show that H=adj(\7yo,zo), where

- Z,=0e +ye,.(!0 - 5). Hence also

. = i ] .
) o, ~ Yo, )20 29y O

Z
“(u .
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converges weakly to z+(yo,1~Yo,2) in L¥(D). Hence by the same argument as
S0

in Theorem 4.1 we find that ¥, © A and Iy,) = ‘%ér_\ d(g:/).

If y=0, a0, then H(XP,Vg_/,E) is invariant under the transformation
'y y+a. Hence it is sufficient to minimize J on the set
R={y € A:Iy dS=0}. This is done in the same way as for y#0 by using
: g .

the Poincaré inequality

. IL’.'IP aSs< const.[}Jz d5,|P +_J|VZ|P ds)
0 . D D
forall y € WhP(D). . =
Note that because D is two-dimensional we get existence under thg growth

~condition (A4), which is weaker than the corresponding hypothesis (H2) for

the full three-dimensional problem. ;
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