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Very few exact solutions are known to static and dynamic problems of finite
elasticity, particularly in the case when the material is compressible. General
theorems on existence of solutions provide reassurance that the theory is
mathematically sound; for example it is important to understand whether or
not solutions of the basic equations have singularities consistent with assump-
tions used in deriving the equations. But there are several other, equally
important, reasons for studying questions of existence of solutions. One such
is the establishment of convergence properties for numerical methods in
elasticity (in this connection it should be noted that finite-difference schemes
for certain partial differential equations may converge to solutions of different
equations). Experience with other partial differential equations has also
taught us that existence theorems are an essential prerequisite for the study of
various qualitative properties of solutions (for example, bifurcation, stability
and asymptotic behaviour). In a broader context, we today face problems in
elasticity similar to unsolved questions in other branches of mechanics and
physics, and the unifying nature of the theory of partial differential equations
can thus lead us to hope, as has been the case in the past, that advances in
elasticity will lead to corresponding progress in other fields. Here, however,
we concentrate on a more specific reason for proving, or attempting to prove,
existence theorems in elasticity, namely that it leads to information concern-
ing the relationship between constitutive hypotheses (i.e. assumptions on the
stored-energy function, or stress—strain law of the material) and smoothness
properties of solutions. We will, as much as possible, avoid introducing
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technicalities from analysis, referring for these to various articles which it is
the main purpose of this paper to summarize.

We confine attention mainly to static problems. In general the problem of
proving the existence and uniqueness of solutions for initial-boundary value
problems of elastodynamics is much harder, and the theory is far from
complete even in one dimension. Part of the difficulty in the dynamic case is
that solutions which are initially smooth may develop shocks (cf. MacCamy
and Mizel [1], Klainerman and Majda [2], John [3]). Short-time existence of
smooth solutions for smooth initial data for the case of an elastic body
occupying all space has been established by Hughes, Kato and Marsden [4]
under a strong ellipticity assumption (see (13) below) on the stored-energy
function, but little, if anything, is known about global existence of weak
solutions in three dimensions. For the static case we consider only conserva-
tive problems, which can be discussed within the framework of the calculus of
variations. We do not discuss local existence theorems (cf. Stoppelli [5], van
Buren (6], Marsden [7], and Valent {8]) in which solutions nearby a known
solution are proved to exist when the data for the known solution is changed
slightly. The applicability of such local theorems is severely restricted because
there are few trivial solutions around which to perturb, and also by the fact
that so far the methods have not been applied successfully to mixed boundary
conditions.

We begin by giving two one-dimensional examples in which no absolute
minimum for the total energy exists. The total energy I(x) is given by

0 16 = [ [WO6 R 0)+ @06 x (XX,

where x(X) denotes the deformed position of a particle with position X,
0= X =1, in a reference configuration, W(X, p) is the stored-energy func-
tion, ®(X,x) the body-force potential, and where x'(X)= dx(X)/dX.
[Throughout this article we consider deformations x(-) whose derivatives
may possess discontinuities. All derivatives of x(-) are to be understood in
the sense of distributions (cf. Adams [9]), but while this technicality is
important for the statements of the results to be correct, it can be safely
ignored at a first reading.] Consider the problem of minimizing (1) subject to
the boundary conditions

2) x(0)=0, x(1)=a>0.

Formally, a minimizing function x(-) for (1) subject to (2) will satisfy the
Euler-Lagrange, or equilibrium equation,

3) diX W, (X.x'(X)=d, (X, x(X)), 0<X<I,

where subscripts denote partial derivatives. W, (X,-) is the stress-strain
function of the material at X.

ExampLE 1 (cf. [10]).

wx.p)= L= S,

_ 23 _3
DX, x)=x 5 a=5.

In this case, an integration by parts shows that
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We are interested only in deformations x(-) for which x'(X)>0, so that
interpenetration of matter does not occur and the orientation of the specimen
is preserved; the behaviour W (X, p)— = as p— 0+, corresponding to the
requirement that infinite energy is required to compress a finite length of the
specimen to zero length, will hopefully ensure this. For such functions x(+)
the integrand in (4) is strictly positive, and so I(x)> 0. But I(x) may be made
arbitrarily small by choosing for x a zig-zag line with slopes alternately 1 and
2, approximating closely the line x =3X/2. In fact, by rounding off the
corners of such a zig-zag line one can show that smooth functions x(-)
satisfying (2) exist which make I arbitrarily small. Thus I does not attain its
minimum subject to (2). Examples of this type are classical in the calculus of
variations, seem first to have been discussed by Weierstrass, and are described
in the books of Bolza [11] and Young [12]. They occur whenever W (X, p) is
not a strictly convex function of p, that is, whenever stress does not increase
with strain. When W (X, p)— © as p — 0+ the construction of such examples
is possible only when either W or ® depends explicitly on X (cf. [10]).
Although a minimizer for I does not exist, one can think of there being a
‘generalized function’ (cf. Young [12]), which takes its place. This object
consists of the line x =3X with a superimposed ‘infinitesimal zig-zag’ of
slopes 1 and 2.

EXAMPLE 2.
1
) I(x)=f [i,+x'+x] dx.
o LX

In this case the strictly convex function W(x’) behaves linearly for large x'.
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We can think of the problem of minimizing I as corresponding to a vertical
bar acted on by gravity, whose lower end X = 0 is fixed, and whose upper end
is raised to a height x = a. Elementary calculations show that if « =2 there is
a unique minimizer x, () for I which is smooth for a >2 (x;(-) has a
singularity at X = 1). But if @ > 2 no minimizer exists. However, in this case
minimizing sequences for I tend to a ‘generalized function’ which consists of
x2(X) for 0= X <2 and the vertical line {X =1, 2=x = a}. (W. Noll has
remarked to me that an exactly analogous calculation holds for isentropic
equilibrium of a polytropic gas under gravity, this model predicting a finite
height for the atmosphere.)

In both Examples 1 and 2, no minimizer that is a bona fide function exists,
though in each case there is a corresponding ‘generalized minimizer’. By
assuming that W(X,-) is strictly convex and that W(X,p)/p —>® as p—>x
one can prove the existence of a bona fide minimizer and show that under
certain conditions it is smooth. For the details and precise hypotheses of such
results see Antman [13] and the references therein, and [10]. Antman treats
more general models of rods. For studies of one-dimensional elasticity and
viscoelasticity when W (X, -) is not convex (as in Example 1) see Ericksen
[14], James [15, 16], Slemrod [17], Andrews [18], and Andrews and Ball [19].

Turning now to three-dimensional elastostatics, we make the simplifying
assumptions, for ease of exposition, that the material is homogeneous and
that there is no body force.

The problem we consider is to minimize

(6) I(x)= f W(Vx(X))dX
subject to
7 x(X)=x(X) for X € 9Q),,

where ¥ is a given function. In (6), (7), x (X ) denotes the deformed position of
a particle occupying the position X in a reference configuration (2, which we
assume to be a bounded, open subset of three-dimensional space with
sufficiently smooth boundary d{). We suppose that d{) is composed of two
disjoint portions d€); and d£),, where (), has positive surface area. W(F) is
the stored-energy function of the material. If x (- ) minimizes (6) subject to (7)
then, formally,

d _
de I(x +ev) EZO-O

for any smooth function v which vanishes on d{},; that is

@8) L j—;Z(Vx(X)) o (X)dX =0,

If (8) holds for all such v we say that x is a weak solution of the mixed
boundary value problem in which the displacement of £, is specified by (7)
and 4, is traction-free. The reason for this terminology is that if x is a
smooth weak solution then integrating (8) by parts and using the arbitrariness
of v leads to the equilibrium equations

a_ IwW
©) = g (VX(X) =0,  X€EQ,

and the natural boundary condition

oW

(10) 'GT:, N, =0, X e,

where N = N(X) denotes the outward normal to 4 at X. Let M™* denote
the set of real 3 X3 matrices, and M3 consist of those F &€ M with
det F > 0. We introduce the following hypotheses on W':

(H1) W:M3?°—R is polyconvex, i.e. there exists a convex function
g : M7 x M? x(0,0)— R such that

W(F)=g(F,adjF,detF)  forall F€ M3",
where adj F denotes the (transposed) matrix of cofactors of F.

(H2) There exist constants C>0, p=2, g =p/(p—1), r>1, s >0 such
that

W(F)z C(1+|F|F +|adj F|* + (det F) + (det F)™)
for all F € M.
Tueorem 1. Let (H1), (H2) hold, and suppose that

def

A= {x: Q>R :detVx(X)>0a.e., I(x)<®, Xjp0, = Xjs0,}

is nonempty. Then I attains its minimum on .

(The abbreviation ‘a.e.’ stands for ‘almost everywhere,” meaning ‘except
possibly on a set of zero volume.’)

The theorem is a slight refinement due to Ball, Currie and Olver [20] of a
result proved in [21, 22]. These papers can be consulted for a slightly more
precise definition of & and for the detailed proofs. Before discussing the
meaning of (H1) and (H2), we show that, at least, these hypotheses are



satisfied by some reasonable models of natural rubber. To this end we
consider an isotropic material, i.e. one for which

W (F) = ®(v,, 03, 03)

is a symmetric function @ of the principal stretches v, > 0. We suppose that

M
= a (v +vsy+vy—3)
i=1
+ 2 b,‘ ((UZUJ)B' +(UJDI)/3’ +(Ulvz)6’ _3)+ h(U|UzU3).
j=1

Then (H1), (H2) are satisfied (cf. [21, 22]) if
a1>"'>aMZl, B|>>ﬁN§1, a,'>0, b,‘>0, a1§2,

B ;a“_'l , h:(0,9)—Ris convex,
1

h()= k(6" +6°), for all 6 >0,
and
k>0, r>1, s>0.

This class of stored-energy functions is a slight modification of a class
introduced by Ogden [23]. We remark that the verification of (H1), and other
such convexity conditions, is somewhat simpler when W (F) is expressed in
terms of principal stretches than when expressed in terms of the principal
invariants of B = FF".

For incompressible materials a corresponding version of Theorem 1 holds
(cf. Ball [21, 22]) and is satisfied by the above material with & =0. Thus we
obtain existence for a Mooney-Rivlin material (M = N =1, a, = B, =2), but
for a single term stored-energy function

d=pu(vi+ovs+ovi-3),

@ >0, we obtain existence only if « = 3. The Neo-Hookean material (a =2)
is not covered by the theorem.

The polyconvexity condition (H1) is a kind of convexity condition, but it
does not imply that W (F) is convex (as the example W (F) = det F shows). It is
well known that convexity of W (F) is unacceptable physically. There is no
direct physical interpretation of polyconvexity known to me, but it is a natural
mathematical condition, and, as we shall see below, implies other inequalities
having an interpretation in terms of material stability. The mathematical
significance of the arguments of the function g in the definition of polycon-

vexity can be described in several equivalent ways, one of which is the
following.

PROPOSITION.  The Euler—Lagrange equations for

| w@xexnax

are satisfied identically for all smooth functions x(X) if and only if
W(F)=A +AF.+ Bi(adj F): + C detF,
where the coefficients are constants.

The earliest proof of (a more general version of) this proposition known to
me is that of Landers [24]. For other references and equivalent properties of ¢
see [20-22].

To describe the relationship of polyconvexity to other inequalities we make
the definitions

DEerINITION 1 (Morrey [25]). W is quasiconvex if
j W(F+V¢(Y))dY§f W(F)dY = (vol D)X W(F)
D D

for all bounded, open sets D C R’, all F € MY, and all smooth functions ¢
vanishing on the boundary of D and such that F+V¢(Y)E M for all
Y €D.

DEerFINITION 2. W is rank 1 convex if

(1) W(F +(1-1)G)= W (F)+(1—-1)W(G)

whenever 0<t <1 and F— G has rank 1 (i.,e. F—G =A Q u#0; where
A @u)=A'u, and a, b € R*). W is strictly rank 1 convex if the inequality in
(11) is strict.

(Note that the properties of the determinant imply that if F, G € M1 with
rank(F—G)=1 then tF+(1-1)G € M} whenever 0=t=1, so that
W(tF + (1 —1t)G) is defined.)

By differentiating twice with respect to ¢ it is easily shown that when W is
twice continuously differentiable rank 1 convexity is equivalent to the
Legendre-Hadamard condition

*WwW
dF,dF

(12) (F)A ‘e /g =0 for all A, u ER’,

and that the strong-ellipticity condition
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(13) dF,0F}

(F)A 't ’'pg >0 whenever A, u € R are nonzero,

implies that W is strictly rank 1 convex.
We can now state the implications

W polyconvex = W quasiconvex = W rank | convex.

The proofs of these implications and further discussion can be found in
[20-22].

To understand the relevance of matrices of rank 1 in elasticity, consider a
plane in the reference configuration with normal w. Then a function x exists
such that Vx = F = const. above the plane, Vx = G = const. below the plane,
and x is continuous across the plane if and only if F— G = A @ p for some
A € R’. Furthermore, such a function x is a weak equilibrium solution if and
only if

oW o W .
aF; (F)I'Lﬂ - aF:, (G),LL(,, L= 1’2’37

which expresses the balance of forces acting on the plane. Suppose now that
there exists a natural state F, € MY, so that

W(F)= W(Fo) for all F € M.
Then we have the following result.

THEOREM 2 ([26]). Let W be continuously differentiable. Then W is strictly
rank 1 convex if and only if all weak equilibrium solutions of the above type are
trivial (i.e. F = G).

Thus strict rank 1 convexity is necessary for the smoothness of all weak
solutions. Nontrivial piecewise affine weak solutions can occur in the
twinning of elastic crystals; and, as has been discussed by Ericksen [27], the
stored-energy functions for such crystals are not rank 1 convex. For other
work on finite elasticity where rank 1 convexity is not assumed see Knowles
and Sternberg [28].

A natural question is now whether strict rank 1 convexity is sufficient for
the smoothness of weak equilibrium solutions (presupposing, of course, that
W and the other data in the problem are smooth). The answer is negative,
and this brings us to a discussion of the growth hypothesis (H2). Note first that
(H2) implies that W(F)— « as det F— 0+ . (We could equally well suppose
that W (F)— « as det F— b >0, and a modified version of Theorem 1 holds.)
If F is confined to a bounded region of M3* having positive distance from the
surface {det F = 0}, then by adding a suitable constant to W we see that the

inequality in (H2) imposes no restriction on W at all. Indeed if we add to the
properties of the set & of admissible deformations the constraints

0< k =detVx(X), WEx(X)=I ae,

where k, [ are constants and W is polyconvex, then Theorem 1 holds without
assuming (H2) and with W(F) defined only for F satisfying the above
constraints. (However, in this case a minimizer x cannot be expected to be an
equilibrium solution since in general, for some values of X, Vx (X) will lie on
the boundary of the constraint set; i.e. detVx(X)=k or W(Vx(X))=1)
Thus the growth condition (H2) restricts W only for arbitrarily small det F or
arbitrarily large |F|, whereas for real materials one expects such F to be
outside the range where elasticity is a good model. Nevertheless the be-
haviour of W (F) for small det F and large | F| has important consequences
for the existence and smoothness of solutions within the context of pure
elasticity theory; we have already seen that this is the case in one dimension.
Quantitative estimates in terms of the growth behaviour of W and the
magnitude of the boundary data of, for example, the size of the set of points X
where Vx (X) lies outside a given range might lead to a better understanding
of this situation.

Note that (HI) allows, but (H2) excludes, the case of an elastic fluid, for
which W(F)= h(detF); in this case W is rank 1 convex if and only if & is
convex. A study of the equilibrium problem for elastic fluids, formulated in
material coordinates, and concentrating on the case when h is not convex, can
be found in Dacorogna [30].

A sufficient condition for (H2) to hold is that

(14) W(F)= C(1+|F]P +(detF)*)  forall FE M

where C, >0, p >3 and s > 0; this follows from the facts that adj F and det F
are quadratic and cubic functions of F respectively. A simple calculation (cf.
[22, 29]) shows that a cube of infinitesimally small side ¢ can be deformed by
means of a homogeneous deformation into a parallelepiped having a given
finite diameter, with total stored-energy bounded above independently of &, if
and only if

W (F)
[FP
(Note that (14) and (15) cannot hold simultaneously.) When (15) holds the
above calculation suggests the possibility of the existence of weak solutions in

which voids or cavities form where none is present in the reference configura-
tion. Such weak solutions exist, and a detailed study of some of them in both

(15) #©  as|F|—>x
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the case of compressible and incompressible materials will appear in [31].
Here we give an informal argument exhibiting such solutions in the incom-

pressible case.
We consider radial deformations

x()="B®x|X|=R, |x|=r

of an incompressible, isotropic material which occupies in the reference
configuration the unit ball {|X|<1}. We suppose the boundary of the
deformed body to be subjected to uniform radially outward dead load
tractions of constant magnitude P. The only kinematically possible deforma-
tions have the form

(16) r=R+A°,

A representing the radius of the cavity formed in the interior of the body. The
total energy I can be expressed in terms of A using (16). Thus

w [(A)_ ' o (f_’ _.’_) _ 3y1/3
17) E(A)E 2 —LRQ) rog ) AR = P(1+ A",

where the last term represents the potential energy due to the surface
tractions. Substituting v = r/R we obtain

E()=A"| @@ o u)d—P(1+AY)",
(1+A3H)A3 (l) _])
and thus
> 1 do P
’ . 2 e, P, . JUNY
(18) E'A)=A [ f =1 do W (1+A’)2"}

The condition for equilibrium is that E'(A)=0. Thus there are two pos-
sibilities; either A =0 and r = R, or

(19) P=(1+ A-‘)Z’»‘f L 4%

(1+AH UJ— 1 dv

The integrals in (17), (18) may or may not converge, depending on the growth
properties of ®. In the special case

(20) d)(v], U, v3)=u(v‘f'+v‘2’+u§‘—3),

where u > 0, these integrals converge provided —3 < a < 3. Note that by (19)
the solution with the cavity bifurcates from the trivial solution at the critical
traction

_ (1 do
(21) [’cril_‘,'l U3_1 dl) dU.

11

In the case of the Neo-Hookean material, given by (20) with « =2, we obtain
P =5u and in this case it is not hard to show that the solution with the
cavity minimizes I(A) and is stable, while the trivial solution r =R is
unstable for P > P.;. The calculation leading to (21) gives the same result as
that of Gent and Lindley [32] in their study of internal rupture of rubber
under tension. The reason for this is discussed in [31].

We next turn to the question of whether the energy minimizers whose
existence are guaranteed by Theorem 1 are invertible, so that interpenetra-
tion of matter does not occur. The following result for a pure displacement
boundary-value problem is proved in [33].

THEOREM 3. Let 98}, be empty. Let (H1), (H2) hold and suppose further
thatp >3, q >3, s >2q/(q —3). Let x € A be one-to-one in Q and suppose
that x (1) satisfies the cone condition. Then the minimizer x is a homeomorph -
ism (continuous with a continuous inverse) of ) onto x(Q).

The cone condition is a mild restriction on the irregularity of the boundary
of ¥(Q) (cf. [32] for details).

We conclude with a list of three open problems related to the subject
matter discussed here.

1. Are the minimizers whose existence are established in Theorem 1 weak
solutions of the equilibrium equations?

2. Are they smooth (provided W and the boundary data are smooth)?

3. Does a version of Theorem 1 hold with a weakened version of (H2)
allowing for the possibility of cavitation?
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