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Energy-Minimizing Configurations in
Nonlinear Elasticity

‘We discuss applications of the calculus of variations to nonlinear elasticity,
and certain related issues. We confine attention to problems in n >1
space dimensions. (A comprehensive account of one-dimensional problems
has been given by Antman [3].)

Consider an elastic body occupying in a reference configuration a boun-
ded domain 2 < R". We assume for ease of exposition that the body is
homogeneous; i.e. it is composed of the same material at each point z € Q.
In a typical deformation X: Q- R" the fotal stored-energy of the body is
given by the functional ‘

BE(2) = [W(aV(X))dX (1)

where W denotes the stored-energy fumction of the material. Let M™*™
denote the space of real n X n matrices. We suppose that W: M™**"* >R
is continuous and bounded below, and that W(4) = oo if and only if
det A < 0. (The last requirement is imposed with the intention of making
it energetically impossible to compress part of the body to zero volume
or to change its orientation.) We suppose that the body is subjected to
external body forces with potential ¥(X, ) per unit volume and for
simplicity we consider the case when ¥: R" X R"—R is continuous and
bounded below. We consider a mixed displacement zero traction boundary
value problem, in which it is required that

z(X) =z(X), ae Xedl, (2)

while the remainder #(82\462,) of the boundary is traction-free. In (2)
30, denotes a measurable subset of the boundary 02 of £ (which we
assume to be strongly Lipschitz) with positive (n —1)-dimensional measure,
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and 7: 60Q,—~R"is a given measurable function. (More general conserva-
tive boundary problems are considered in Ball [4].) We define the total
energy functional I(x) by

def

I(z) = B@)+ [¥(X,2(X))dX. 3)
Q

Corresponding to (2) we consider the set
o = {we W (Q; R"): = satisties (2), I() < oo} (4)

and pose the following problem.
ProBLEM. Does I (z) attain an absolute minimum on «?

In the case when 82, = 82 (pure displacement problem) a necessary
condition that I attains an absolute minimum for every smooth ¥ and
Z is that W be Whl-quasiconvexr (Ball and Murat [9]), i.e.

[ W(A+Vp(X))aX > (meas D)W (4) (5)
D

for any bounded open subset D = R" with meas 0D = 0, for all 4 e M"*"
and for all p € Wi'(D; R"). The weaker condition that (5) hold for ?Jll
@ e Wi*(D; R") was introduced by Morrey [16] and termed by him
quasiconvexity ; it implies in particular that for W e C*(M"*™) the Legendre—
Hadamard (or ellipticity) condition

W (4)

m aibaajbp> 0 (6)

for all A e M"** and all a,b e R" holds. Wl'l-quas.iconv.exi.ty is also
a necessary condition for sequential weak lower semicontinuity of E(-)

in W-(Q2; R"). . _
An example of a set of sufficient conditions ensuring that I attains
its minimum is given by the following result. Of course the hypotheses

imply that W is W"'-quasiconvex.

TrEorEM 1. Let n = 3. Suppose that W is polyconver, i.e. there ewists
a convex function g: M*>*® x M**® x (0, co)— R such that

W(A) — g(4,adj 4, det 4) for all A € MY, )
where M3Y® = {4 e M*3: det A > 0}. Suppose further that
W(A)> C+D(AP+adj A1) for all A e M3, (8)
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where D >0, C are constants, p =2 and q = p[(p —1). Then if o/ is non-
empty I attains its absolute mimimum on o7, and the minimiser v satisfies
det Va(r) >0 a.e X e Q.

Theorem 1 is proved in [9]; it is a slight refinement of earlier results
of Ball [4, 5] and Ball, Currie and Olver [8]. The proof uses the direct
method of the calculus of variations, the weak continuity properties of
Jacobians (Reshetnyak [18, 20], Ball [4], Ball, Currie and Olver [8]),
and an idea of Reshetnyak [19]. For some related semicontinuity theorems
see Acerbi and Fusco [2] and Acerbi, Buttazzo and Fusco [1]. For pure
displacement boundary value problems with appropriate boundary data
it can be shown (Ball [7]) that under stronger growth conditions on W
the minimiser # is a homeomorphism, so that interpenetration of matter
does not oceur. An analogous version of Theorem 1 holds for incompressible
materials, all deformations of which satisfy the pointwise constraint
det Vz(X) =1 a.e. X € Q.

The stored-energy function W is said to be isotropic if

W(A) = D (vy, vy, v) for all A e MI*® (9)

for some symmetric function @ of the principal stretches v, = v;(4), that
is the eigenvalues of (A7 A)"* Following essentially the work of Ogden
[17] on stored-energy functions appropriate for natural rubbers we consider
the case

M
D(v1, 02, 7) = D (0} +03+05i—3) +

i=1

N
+ 3 &((0300)% + (230)% + (0,00 —3) £ h(vy000),  (10)
i=1
where M >1, N>1,¢>0,d;>0,0,>... Zay>1,4>...2y>1

and & is convex, bounded below, with lim k() = occ. Note that v,v,v,
t->0

¥
=det A. Then the hypotheses of Theorem 1 hold provided e, > 2 and f,
> a;/(a;—1); a special case is the Mooney—Rivlin material, for which «,
=f,; = 2. For the function

D (Vy, Vay Vg) = €(V] +05+05—3) +h(v,9,7), (11)

with ¢ >0 and & as above, the hypotheses of Theorem 1 hold provided
a>3.
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A modification of the Saint Venant-Kirchhoff constitutive law satis-
fying (7), (8) has been proposed by Ciarlet and Geymonat [10].

There are physically interesting stored-energy functions W which
are not W'!-quasiconvex and in particular do not satisfy the hypotheses
of Theorem 1. We distinguish two ways in which this may occur. The first
is when W fails to be quasiconvex, i.e. fails to satisfy (5); this case corre-
sponds to materials which may change phase (see Ericksen [13], James
[14, 15]). An example is furnished by an elastic fluid, for which

W(A4) = h(det ). (12)

In this case (5), (6) and (7) are equivalent and are satisfied if and only
if 7 is convex. For a van der Waals fluid, for example, % is not convex.
Results proved by Acerbi and Fusco [2] and Dacorogna [12], for integrands
taking finite values only, suggest that under strong growth conditi?ns
on W any minimizing sequence for I(-) has a subsequence converging
weakly in W"!(Q2; R"™) to a minimizer for the “relaxed problem” obtained
by replacing W by its lower quasiconvex envelope. The corresponding
result for an elastic fluid is proved in Dacorogna [11].

A second way in which W can fail to be W!-quasiconvex is due to
its growth properties for large |4|. As an example, consider the isotropic
stored-energy function (11) with ¢ > 0,k € C*(0, o), &' >0 and lim A(?)

>0
= lim M = co. If a > 1 this function satisfies (7), and if « > 1itis strongly
t

t—o0

elliptic, i.e. (6) holds with strict inequality if a, b are non zero. However,
if 1 < a<3 W is not W"'-quasiconvex. This can be proved by choosing

det o

D =B ={XeR’ |X|<1}, A =171, and showing that for su_f_ﬁclenifly

large 1 > 0 one can violate (5) with an appropriate discontinuous ra.dlal

function ¢. The problem of minimizing #(-) among radial deformations
7(R)

2(X) = B X, R=|X] (13)

subject to appropriate displacement or traction boundary data is considered
in Ball [7]. For example, for the stored-energy function (11) under the
above conditions with 1 < a < 3 it is shown that for any 2 > 0 the absolute
minimum of F(-) among radial deformations (13) satisfying »(0) > 0,
#(R)>0 and (1) = 4 is attained. Furthermore, there exists a critical
value 4, such that for 2 < 1, the minimizer is trivial and given by 7(R) = AR
(i.e. # = 2X), whilst for 1 > 2, the minimizer satisfies (0) >0, so that
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a cavity forms at the origin. The nontrivial minimizers are discontinuous
weak solutions of the full set of 3-dimensional Euler-Lagrange equations
for (). The reader is referred to [7] for analogous results for more general
compressible and incompressible materials, for a discussion of the relevance
of discontinuous minimizers to the phenomenon of internal rupture of
rubber, and for comments concerning the relationship of the analysis to
the literature on discontinuous solutions to nonlinear elliptic systems.
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