MATERIAL INSTABILITIES
AND THE CALCULUS OF VARIATIONS

J. M. Ball

1. INTRODUCTION.

The aim of the calculus of variations is to study the
minimization of integrals depending on unknown functions. 1In
continuum mechanics a common procedure is to minimize a 'free
energy' integral, the minimizing functions being interpreted
as equilibrium displacement and temperature fields. The
motivation lies in thermodynamics. Roughly, we seek an

appropriate Lyapunov function for the governing equations,

typically of the form
E(u) = [#(X,d%u(X,t))dx,
body

where u is a vector of field variables (displacement,
velocity, density, temperature etc.) and Jku denotes the set
of all partial derivatives of u with respect to X of all
orders r with O <r <k; that is, E(u(+,t)) is a non-
increasing function of time t along solutions. Often we add
the extra requirement that E(u(-+,t)) is constant if and only
if u = u(X) 1is a time-independent solution. In general
there may be many time-independent solutions, infinitely many
in the case of some problems involving phase transitions,
leading to complicated behaviour of solutions as t —> %,
Some solutions may have atypical asymptotic behaviour, con-
verging, for example, to unstable time-independent solutions.
However, in the presence of a Lyapunov function E we expect
that such exceptional solutions will lie in a negligible
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2 J. M. Ball

subset N of the phase space X of admissible functions. We
further expect that the remainder X\ N of the phase space is
the disjoint union of 'larger' positively invariant sets S

o
and that solution paths u in Sa are minimizing for E,
i.e.

limE(u(-,t)) = inf E(v).

t>e VGESa

In particular, if tj —> % then vj(x) = u(x,tj) will be a

minimizing sequence for E in Sa, i.e.

E(v.) V inf E(v).
J vES
a

In especially favourable cases there may be just one Sa =X

with N empty and all solution paths minimizing for E in X.

In general a particular Sa might contain a number of time-

independent solutions with the same value of E, or no time-

independent solution at all.
For specific problems the following natural questions are
important:

(Ql) Do the governing equations admit one or more nontrivial
Lyapunov function E ?

(Q2) Given an appropriate subset S of X, does E attain a
minimum on S ?

(Q3) What conditions does a minimizer satisfy?

(Q4) Do all minimizing sequences for E on S tend to
minimizers? If not, what happens?

(Q5) When is u(-,tj) a minimizing sequence, and what special
properties do such sequences, realized by the dynamics,
possess?

(Q6) What can be said about the structure of the decomposition
x=nxulUs 2

o .50

These questions are particularly interesting formaterials
which can undergo phase transitions; typically the governing
equations can then change type (cf Ericksen [20]). In this
article we make some remarks concerning the first four
questions but say nothing about the last two, about which
little is known. (Some partial, but inconclusive, information
about (Q5) was obtained in a model problem by Andrews & Ball
[21.)
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2. LYAPUNOV FUNCTIONS IN NONLINEAR THERMOELASTICITY.

We address (Ql) - (Q3) in the context of a nonlinear

thermoelastic material. The results are taken from joint
work with G. Knowles [6] that is still in progress. Some of
the calculations are formal, and no attempt is made to make
precise all the hypotheses concerning regularity etc.

We are concerned with a thermoelastic material occupying
the bounded strongly Lipschitz open subset Q C R® in a
reference configuration. At time t the particle occupying
the point X € @ 1in the reference configuration has position
x(X,t) € R" and temperature 6(X,t) > O. For simplicity we
suppose that there is no external body force or heat supply.
The governing equations are then

X = Div T (2.1)

Pgr R’

o . y u
pRU - tr(TRF ) + Dlqu = 0, (2.2)

where pR(X) is the density in the reference configuration,
TR is the Piola-Kirchhoff stress tensor, U is the internal
energy density, F = Vx(X,t) 1is the deformation gradient, and
qR is the (reference) heat flux vector. The constitutive
relations are given in terms of the Helmholtz free energy
A(X,F,6) and specific entropy n(X,F,8) by

32 _ _ 9A

Te = Py 55 v - =, U=2A+n6,
R R 3F 96 (2.3)
dp = qR(X,F,e,GradG).
The second law of thermodynamics requires that
qR-Grade <o, (2.4)
and we shall assume that this inequality is strict for
Grad 8 # O.
We impose the following boundary conditions:
Mechanical X = xo(x) on 891 i
(2.5)
TRN = 0 on 30\ 891.
Thermal 6 = eo(X) on 892 x
(2.6)

‘N =0 on 3N\ 3Q,.
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Here SQl, 892 are given subsets of the boundary 3@,
N = N(X) is the unit outward normal to 232 at X, and

xo,eo > 0 are given functions.
We define & = #(X,x%,F,0) by
12,2
F = pR[_z'lxl + U = ¢(X)rﬂ ’

where ¢(X) 1is specified later.
A standard computation using (2.1) - (2.3) and (2.5)

yields
d - 9 _ ;
¢ JFax = f[—e- l]DlqudX
Q Q
- [ [¢ ] ¢ a
= [|&-1|g,-NdA - IH godX. (217)
39[6 R a 0 - R
Provided that ¢ = eo the surface integral vanishes
892 892

by (2.6).

Special cases
1. Suppose So is independent of X. 1In this case we choose

o = 60 and (2.7) becomes, using (2.4),
qR-Grad 0

< 2
- [#Fax =0 | dx < o.
dt 5 °a e

The result is well known; cf Duhem [16], Ericksen [ 18],

Coleman & Dill [11], for example. The function

F = DR[%IQ]Z + U - Goﬁ] is known as the equilibrium free
energy.

2. Suppose that ap = qR(X,e,Grade), and let ¢ satisfy the
stationary heat equation

Diqu(x,¢,Grad¢) =0 in Q (2.8)
with the same boundary conditions as 6, namely
o = SO(X) on 892 =
(2.9)
qR(X,¢,Grad¢)-N =0 on 30\ 392.

(In the examples considered below ¢ is unique.) By (2.7),
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[#dX is a Lyapunov function provided
Q

1y S8t f[%} qg(X,S,Grad 8)dX = O
Q o

’
for all © > O satisfying (2.6). It is easily verified that
6 = ¢ 1is a solution of the Euler-Lagrange equations for I.
Since I(¢) = O we are faced with a classical question in the
calculus of variations, to decide if the given solution ¢ is
a global minimum of I. The problem is not trivial because
¢ 1is only known implicitly and because the integrand may be

negative. One interesting case which can be handled is when
g = -k (6)Grad 6, with the thermal conductivity k(8)

’
assumed positive. In this case I(6) =20 if Q%Tégl is a

’
nonincreasing function of 6; conversely, if 9%7%%1 is non-

decreasing and not constant then there exist domains § and
boundary conditions (2.6) for which I may be negative. For
the proofs and further results see [6]. To illustrate one of
the methods for analyzing I consider the anisotropic linear
case

g = -K(X)Grad 6 ,

where the matrix K(X) is positive for each X. Then letting
w = log6 - log¢ we obtain

i= [%] P ax

Q ,0 !

é{%Kqu.GW,B < Ka8¢,8w'é}dx

I(8)

of - afB _ o.B
>§f21< ¢'Bw'adx-sf2[(1< ¢,BW),a w (K ¢’B),de

I
(@]

] kB

3o ,BWNadA =

In particular, setting TR =0, U=06 we see that

da - =
€ gfsz(e ¢ log9)dx <O (2.10)

for positive solutions 6, satisfying (2.6), of the linear

heat equation
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= = Div(K(X)Grad 6). (2.11)

If (x(+),v(*),06(+)) 1is a local minimum of
1
E(x,v,0) %" IpRBIv]2 + U(X,7x,0) - ¢(X)H(X,Vx,9):ldx
Q
subject to the boundary conditions (2.5),(2.6) then formally
we have that

v =0, (2.12)
U onl
ox(35 - # 53] = o e
and
i oU _ oan| _
Div pR[§§ ¢ BF] 0z (2.14)

Using the thermodynamic identities (2.3) we obtain from (2.13)
that

(6-¢)20 = o,

which, assuming that the specific heat %% is positive,
yields
6 = ¢. (21.15)

(This is what motivates the choice of ¢ in the special
cases above.)
From (2.3),(2.14) and (2.15) we obtain

Div TR =0, (2.16)

the usual equilibrium equation.
Special care has to be taken in the case when 392 is
empty, since then

1,22
é% pr[ilxl + U]dX =0
Q
for solutions of (2.1),(2.2),(2.5),(2.6), so that setting
v = x we have

11,12 &
épR[EIVI + U]dx = E, (2.17)

where Eo is a constant given by the initial data. Taking
¢ = 1, it follows that —prndx is a Lyapunov function. A
19)

local minimum of —prndX subject to (2.17) and the boundary
Q

conditions (2.5),(2.6) formally satisfies
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pR[% =53 -g-g] =0, (2.18)

ApgV = 0 4 (2.19)
and

Div pR{—g% - n %] -0, (2.20)
where A 1is a Lagrange multiplier. If %ﬂ > 0 then (cf

Ericksen [18]) we deduce from (2.18) that

6 = = constant ,

>l

and thus v = O and (2.16) again holds. Similar considerat-
ions apply whenever the governing equations of a system
possess conserved quantities (e.g. the mass constraint (3.8)
below), and reinforce the need for a complete knowledge of all
such conserved quantities.

Given appropriate existence theorems for minimizers (see
[3,9]) it is not altogether obvious how to establish rigor-
ously necessary conditions such as (2.16); some information

on this question is given in [5].

3. MINIMIZERS AND MINIMIZING SEQUENCES FOR INVISCID FLUIDS
WITH HEAT CONDUCTION.

In this section we consider (Ql) - (Q3), and especially
(Q4), for an inviscid fluid with heat conduction. The results
are taken from joint work with G. Knowles [6] that is still in
progress and to which the reader is referred for a more
detailed description. The fluid is assumed to be homogeneous
and to occupy the spatial region w C Rn, where w 1is
bounded and open. At time t and position x € w the fluid
has density p(x,t) > O, velocity v(x,t) € R™ and temperat-

ure 6(x,t) > O. For simplicity we assume that there is no
external body force or heat supply. The governing equations
are then
ov = - gradp , (3.1)
o+ pdivv = 0 , (3.2)
oU + pdivv + divg = 0 , (3.3)

where dots denote material time derivatives, p is the
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pressure, U 1is the internal energy density and g is the
(spatial) heat flux vector. The constitutive relations are
given in terms of the Helmholtz free energy A(p,6) and
specific entropy n(p,6) by

ng_zg,YW:‘%:U:A“"ﬂe,
(3::4)

q(p,0,grad 6).

]

q

The second law of thermodynamics requires that

gegrad 6 <O, (3..5)
and we assume that this inequality is strict for grad 6 # O.
We impose the boundary conditions

ven

oW

s, =6, an =0
awz Bw\awz

where 3w is a nonempty subset of the boundary 38w, n=n(x)

2
is the unit outward normal to 3w at x, and 60 > 0 is

constant.

As in the previous section, solutions of (3.1) - (3.6)
satisfy

é% I %]vl2 + U - eon]dx =0, fgig%;é—gdx <0 (3:7)

W w 0

(cf [11]). We also have the mass constraint

Jpax =M , (3.8)

w

where the constant M > O 1is determined by the initial data.
Corresponding to (3.7) our aim is to study the absolute

minimizers and minimizing sequences of

1 2
E(p,v,0) %" [o|Z]v]? + Ue,0) - 8. n(o,0)]ax (3.9)
w

subject to the constraint (3.8). We make the following
hypotheses on A(p,0):
(i) A: (0,b) x (0O,) — R 1is continuous, where b > O is

a constant,
(dd) for each fixed p € (O,b), A(p,*) is Cl and strictly

concave,
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(iii) for each fixed 6 € (0,«), the function

fe(p)dgpr(p,e) satisfies lim £.(p) = O,

£, (p) p> O+
1im -8 = -~ and lim f£.(p) = + .

p + 0 e p*+b-

These hypotheses are satisfied by the classical van der
Waals' fluid (cf Landau & Lifshitz [23]) for which

A(p,0) = -ap + k8 1og[5%?6} - cblogb - d6 + const., (3.10)

where the coefficients a,k and ¢ are positive.
By (ii)
A(p,8) < A(p,8) + (6-06)3R(p,0 )
pl g pl le) o ae pl [o) [ &

with equality if and only if 6 = 60. Thus the integrand in
(3.9) has a strict minimum, for fixed p, when v = O and

6 = 60. Motivated by this, we consider the problem of minim-
izing
def
I(p) = ip(U(p,eo) - 0,n(p,0,))dx

= Jfy (p(x))ax
w o
among measurable functions p :w —[0,b]l satisfying (3.8),

where fe (b) is defined to be +° in consonance with (iii).
o

We are interested in cases, such as (3.10), for which fe (=)
o

* %
is not convex. We denote by fe the lower convex envelope

of £, , that is N
o
* %
fq (0) = supla + Bp : o + Bt < £y (£) for all t €[0,b)},
o o
and by h7 the Weierstrass set
* %
W = {p€l0,b): £, (p) = £, (p)].
o o

Recall that if F :[0,b) — R then the subdifferential
3F(p) of F at the point p € [0,b) is defined to be the
set

aF(p)%8F (g € m:F(p) +B(E-p) < F(t) for all t€[0,b)}.
Define

A *k
s(p) = {p € (0,b) : 3£, (p) C iE, (p)},
o o
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M

where p = o

is the mean density. It is easily shown
that S(p) C W and, using (iii), that p belongs to the

convex hull of S(p). In the case of (3.10), for

3
f%l > [%J there exists exactly one nontrivial common tangent
o

to the graph of fe with end-points pPprP, as shown in
o

Figure 1. The Weierstrass set h? = [0,pl]lJ [pz,b), and
s(s) = {p} for p € (0,p;) Y (p,,b), S(p) = {p;}V{p,} for
P € [01,02]. In order to characterize the minimizing
4\fe i
o |
I
I
1
I
i
1
I
]
1
|
P b
Lo B2 ey
| E ’
l i
' |
= I
\\\ :
= H
Figure 1

The graph of £ for a van der Waals' fluid

eO

sequences of I we introduce, following L.C. Young [30] (see
also McShane [24], Berliocchi & Lasry [10], Tartar [27]), the
generalized problem:

Minimize

tm®E 1 g £4 (p)dv (p)ax
’ (o]

w [0,b]
subject to
| edv (p)ax = M. (3.11)
w [0,b]
The unknown Vv = (vx) is a Young measure, that is a measur-

able mapping x Lt of w to probability measures on
[0,bl. (Due to the results of Tartar [ 27,28 and DiPerna
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[14,15] these measures are playing an increasing role in the
study of nonlinear partial differential equations. Their
use in the calculus of variations is now standard; see, for
example, the article by Jean Taylor in this volume.) An

ordinary function p(x) corresponds to the Young measure

By = 6p(2)7 note that for this v we have f(v) = I(p) and
S | pdv_(p)dx = [p(x)adx.
w [Olb] w

Theorem 3.1
(a) The minimum of I(v) subject to (3.11) is attained; the
minimizing Young measures V are exactly those satisfy-

ing (3.11) and such that suppsx C s(p) gre. % € w.

(b) The minimum value of I subject to (3.8) is the same as
that of i(v) subject to (3.11), and is attained exactly
by those functions p satisfying (3.8) and such that
p(x) € s(p) a.e. x € w.

(e) Let {pj} be any minimizing sequence for 1 subject to
(3.8); then there exists a subseqzence {pu} and a
minimizing Young measure vV for I subjeet to (3.11),
such that for any continuous function F :[0,b] — R,

F(p ) — [ F(p)dv_(p) in L (). (3.12)
¥ [0,b] *

Conversely, given any minimizing Young measure V for
I subject to (3.11) there exists a minimizing Sequence
{pu} of I subject to (3.8) satisfying (3.12).

Part (b) of the theorem is a result of a type first
stated by Gibbs [21]; a similar, but not identical version
is given by Dunn & Fosdick [ 17 Theorem 9].

The proof of Theorem 3.1 is given in [6], where a
variety of similar problems are also considered. Here we
merely note that part (a) follows by integration of the
inequality

£(0) > £(3) + B(p=-p), p€LO,b], FES(E), BEAE, (B),
0

with respect to V_,v_ and w.
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* %
Applying part (a) to fe ; and noting that
* ok o
afe (p) = 8f8 (p) for any p € h?, we see that the minimiz-
o o %

ing Young measures Vv of I are the same as those of

Ak k * %
I v =[ [ £, (pdv (p)dx,

w [0,b] %o
and hence that the infimum of I is unchanged if fe is
* % o
replaced by fe . It follows using lower semicontinuity that
o

any minimizing sequence of I has a subsequence converging
weak * in L (w) to a minimizer of
* % * %
I (p) = [£, (p(x))ax
w o
subject to (3.8). A result closely related to this was
proved by Dacorogna [ 12] in material coordinates. The appear-

ance of the lower convex envelope of f9 is consistent with
results of statistical physics for infingte volumes (for dis-
cussion and references see Thompson [ 29]); these results
establish convexity properties of certain averaged free energy
functions, but do not appear to give information concerning
the local free energy A . Note that part (b) of the

theorem shows that only values of p € %7 can be observed in
an absolute minimizer; this is the classical Weierstrass
condition of the calculus of variations. Sometimes it is
erroneously asserted that because of this 'stability' condit-

ion fe is itself convex; the correct interpretation noted
o

above has been pointed out by, for example, Ericksen [18].
Using Theorem 3.1 it can be shown that any minimizing

sequence (pj,vj,ej) of E subject to (3.8) possesses a
subsequence (pu,vu,eu) such that vu — 0 a.e;, eu —> 0

a.e., and pu converges to a minimizer Vv of I in the

(o]

sense of (3.12). Similarly, the minimizers of E have the
form (p,O,eo), where p 1is a minimizer of I. It follows
from part (c) of the theorem that in general (e.g. for the

van der Waals' fluid) there are minimizing sequences

(p. ,V.
OJ:

] —
Young measure Vv which does not correspond to a function, and

,Gj) with pj converging in the sense of (3.12) to a

such that pj PN p in Lm(w) with p not a minimizer of

I s Typically these sequences 'mix the phases' more and more
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finely as j increases. It would be very interesting to know
if such sequences can be realized by the dynamics (cf (Q5) and
Andrews & Ball [2]). Such dynamic behaviour would be physic-
ally significant in regimes where the phases are mixed suffic-
iently coarsely to neglect the energy of phase boundaries.

Finally we note that by part (b) of the theorem, any
minimizer (p,O,eo) of E satisfies

fé(p(x)) = const. , fe(p(x))- p(x)fé(p(x)) = const. ,

o o o

a.e. in w, provided A(p,8) is Cl in p. These are the
familiar necessary conditions representing constancy of the

chemical potential and pressure respectively.

4. QUASICONVEXITY AND ELASTIC STABILITY

We consider a nonlinear thermoelastic material as in §2.

For simplicity we suppose that the material is homogeneous, so
that PR
to §2 we suppose that there is a conservative body force

pr = VXW(X,X), so that (2.1l) now becomes

and A do not depend explicitly on X. In contrast

X = DivT_ +

R PRP- (4.1)

PR
We assume that the boundary conditions are as in §2, special
case 1, with 892 nonempty. The same calculation as usual

shows that if
" Lijpisi 2 o
Fo= pRB|x| + U Gorﬂ + v
then é% fﬁdx < 0. Assuming that A is strictly concave in
Q

6 and applying the reasoning in §3, we are led to consider
the problem of minimizing
I(x) = [[W(Ux(X)) + ¥(X,x(X))]ax (4.2)
Q

subject to (2.5), where the stored-energy function W is
defined by
def
W(F)9E PRA(F,6). (4.3)

We suppose that W :Mnxn
the usual topology of the extended real line R) and bounded

X
below, where MR denotes the set of all real nxn

— R is continuous (with respect to

matrices, and that VY :§><Rn — R is continuous and bounded




14 J- M. Ball
below.

The following definition is an adaptation of that of
Morrey [ 26].

Definition ([ 91)
nxn

Let 1 < p <o, W is Wl’p-qpasiconvex at A EM

if
WA + V¢ (Y))ay = [w(a)dy
D D

for every bounded open set D C R" with meas 9D = O and all

¢ belonging to the Sobolev space Wi'p(D;Rn). If this holds

for all A € MM ye say that W is Wl'p—quasiconvex.

We attempt to illuminate this somewhat impenetrable
condition by stating some recent results.

Theorem 4.1 (Ball & Murat [ 91])
Let "A'E Man, and suppose that I(X) aqttains a minimum
1 n :
on AX + Wo’p(Q;R ) for every smooth nonnegative VY. Then

W <s Wl'p—quasiconvex at A
It is possible that I is sequentially weakly lower
LiP(g;R®) (weak* if p = =) if and

only if W is Wl’p—quasiconvex but so far only partial

semicontinuous on W

results have been obtained (see [ 9] for the references).
Relaxation theorems of the type given in §3 expressed in
terms of lower gquasiconvex envelopes (but not making use of
the Young measure) have been given by Acerbi & Fusco [1l] and
Dacorogna [13], though these have not as yet been shown to
hold under weak enough growth conditions to apply to elastic-
ity.

Definitions

(a) By a standard boundary region with normal N € R we

mean a bounded strongly Lipschitz domain D C R" satis-
fying
(&) D is contained in the half-space

Kg = {x € R": XN < a} for some a € R®, and

(ii) the n-1 dimensional interior E of anWKg is

nonempty; we denote 3D\ E by aDl.



Material Instabilities 15

(b) Let x € Wl'l(Q;Rn) be such that I(x) exists and is
finite, and let Xo € 0. We say that x is a local
minimum of I at X  in W 'P n c® if there are
numbers p > 0, § > 0 such that I(y) exists and
I(y) > I(x) whenever y - x € C (3;R™), y(X) = x(X) for
|x-Xx | >p and X € Q, and ly-xl

o wE P (q;RY)
+ly - Il < s
c®@;r™)

Theorem 4.2 (a special case of Ball & Marsden [ 7 Thm 2.2])
Let 1 <p <o and let r be a positive integer

satisfying r <1 + % . Suppose x € Wl’l(Q;Rn) 18 a loecal

minimum of I at X € T in WP Ac® and that x s ct

in a neighbourhood of X_ in Q.

() If X € Q, then

JW(Vx(X ) + V¢ (Y))dAY > [W(Vx(X_))dY
D P D o

for any bounded open set D C R® and all ¢ € Ci(D;Rn)

(= Cl functions with compact support in D) satisfying
det (Vx (X ) + V¢ (Y)) >0 for all Y € D.

(2Z) Let X € 3\ aﬁl, and suppose 23 is smooth in a
netghbourhood of X, Let N = N(Xo) be the unit out-
ward normal to 3R at Xo, and let D be a standard
boundary region with normal N. Then
JW(x(X ) + V6 (¥))dY = [W(Vx(X ))dy
D - D ©

for all ¢ € Cl(B;Rn) vanishing in a neighbourhood of
D, in D and such that det (Vx(X ) + V¢ (Y)) >0 <in D.

Part (i) of the theorem is but a slight generalization of
a result of Meyers [ 25 ppl28-131]; note that the conclusion
is nearly that W is Wl’m—quasiconvex at Vx(Xo). The
condition in part (ii) of the theorem is a gquasiconvexity

condition at the boundary; roughly, it asserts that

z(Y) = Vx(X )Y minimizes éW(Vz(Y))dY globally subject to

the boundary condition ZIaDl = Vx(XO)Y aDl' In [7 ] part
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(ii) is used for n > 1 to construct an example of a strictly
quasiconvex, strictly polyconvex W having a natural state

that is not a local minimum of J(x)d9ef JW(vx)dx in
Q

WP nc® for r<i1+ % even though the second variation of
J 1is strictly positive (linearized stability); this cannot
happen for n = 1. The technical hypotheses in results such
as Theorem 4.2 could do with some improvement to allow less
regularity of x(¢) and ¢ (°).

Example (cf [4,9 ])
Let n = 3 and define

W(F) = tr(F'F) + h(detF), (4.4)
where h is convex, h(§) = 4+ for &§ <O, h is contin-
uous for § >0, and lim h(§) = lim h(s) = o Then W is

§ + O+ §
Wl’p—quasiconvex if and only if p = 3. 1In fact if

1<p<3 then W is not Wl’p—quasiconvex at ANl for
A > 0 sufficiently large; this corresponds to the fact that
a solid ball B made of this material and subjected to the

radial boundary displacement x(X) 3B AX can reduce its

energy by cavitation, i.e. by forming a hole in its interior.
The stored-energy function (4.4) is of a type used to model

natural rubber, which can rupture by cavitation.

Given a stored-energy function W(F) one may define for
1 < p < the sets

Sp ={F:wW is Wl’p—quasiconvex at Fl.
Clearly Sp Cc Sq if p < gq. Anticipating the proof of

refinements of Theorem 4.2 one can think of Sp as consisting

of those F that can be observed in configurations that are

. ’ L
local minimizers in w-'P.

S3 = M3x3, S1 * M3><3 and can view aSl as a fracture sur-

face. Note, however, that deformations in which x is dis-

In the example (4.4) we have

continuous across a plane do not belong to Wl'l(Q;R3), and
therefore that the above framework cannot handle the most
common type of fracture; this may not be as serious as it
sounds, as there is evidence that in some materials cracks
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are initiated by cavitation. For another speculative
approach to the onset of fracture see Ball & Mizel [8].

As a final result concerning quasiconvexity we mention
the recent beautiful theorem of Knops & Stuart [22] which
states that if W 1is strictly Wl’m—quasiconvex and Cl for
det F > 0 then for zero body forces the only smooth solution

of the equilibrium equations

9X Bxla

satisfying detVx(X) >0 in © and the homogeneous boundary
data

3 (X) a0 AX

is x(X) = AX, provided Q is star-shaped.
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