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1 Introduction

What is the relationship between the Second Law of Thermodynamics and the
approach to equilibrium of mechanical systems? This deep question has per-
meated science for over a century, yet is still poorly understood. Particularly
obscure is the connection between the way the question is traditionally analysed
at different levels of mathematical modelling, for example those of classical and
quantum particle mechanics, statistical physics and continuum mechanics.

In this article I make some remarks, and discuss examples, concerning one
part of the picture, the justification of variational principles for dynamical sys-
tems (especially in infinite di ions) endowed with a Lyapunov function. For
dynamical systems arising from physics the Lyapunov function will typically
have a thermodynamic interpretation (entropy, free energy, availability), but its
origin will not concern us here. Modern continuum thermomechanics provides
such Lyapunov functions for general deforming materials as a consequence of
assumed statements of the Second Law such as the Clausius-Duhem inequality
(c.f. Coleman & Dill [18], Duhem [20], Ericksen [21], Ball & Knowles [12]). By
contrast, statistical physics provides Lyapunov functions only for very special
materials (the paradigm being the H-functional for the Boltzmann equation,
which models a moderately rarified monatomic gas).

Let T(t),, be a dynamical system on some (say, topological) space X. Thus
(i) T(0) = identity, (i1) T(s +t) = T(s)T(t) for all s,t > 0, and (iiz) the map-
ping (t,¢) — T(t)p is continuous. We suppose that T'(t),,, is endowed with a
continuous Lyapunov function V : X — R, that is V(T'(f)g) is nonincreasing
on [0,00) for each ¢ € X. (In some situations variations on these assumptions
would be appropriate; for example, solutions may not be unique or always gloh-
ally defined.) The central conjecture is that if {; — oo then T(tj)p will be a
minimizing sequence for V. If true, this would give a dynamical justification
for the variational principle:

Minimize V. Al
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What are the obstacles to making this more precise? First, there may. exist
constants of motion that force the solution T'(t)¢ to remain on some subman-
ifold. These constants of motion must be incorporated as constraints in the
variational principle. For example, if the constants of motion are ¢; : X — R,
1=1,...,N, so that

ci(T()p) = ci(p) forallt>0,i=1,...,N, (1.2)
then the modified variational principle would be

Min  V(¥),
ci(¥)=a, ) (1.3)
i=1,.. N

where the «@; are constants. Second, there may be points 1 € X which are
local minimizers (in some sense) but not absolute minimizers of V, so that an
appropriate definition of a ‘local minimizing sequence’ is needed. Third, the
conjecture is false for initial data ¢ belonging to the region of attraction of a
rest point that is not a local minimizer of V; such exceptional initial data must
someliow be excluded. Fourth, the minimum of V may not be attained, render-
ing even more problematical a good definition of a local minimizing sequence
(c.f. Ball [4]). We are thus searching for a result (applying to a general class of
dynamical systems, or to interesting examples) of the type:

Prototheorem For most initial data ¢, and any sequence tj — oo,
T(t;)p is a local minimizing sequence for V subject io appropriate constraints.

The trivial one-dimensional example in Figure 1 illustrates a further dif-
ficulty. In the example there are three critical points A,B,C. The Lyapunov
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Figure 1:

function V is the vertical coordinate. There is clearly no nontrivial constant of
motion, since such a function would have to be constant on the closed intervals
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[A,B] and [B,C]. Yet for any ¢ € [A,B] the solution tends as t — oo to a rest
point which is not a local minimizer of V. One could have at least three reac-
tions to this example (i) that staying in the invariant region [A,B] should be
incorporated as a constraint in the variational principle, (ii) that the example
is not generic, because the rest point B is not hyperbolic, or (#i1) that stochastic
effects should be introduced so that the upper orbit can get through the barrier
at B. For, example, taking the point of view (ii), a version of the prototheorem
can be proved for an ordinary differential equation in R™.

Theorem 1 Consider the equation
z = f(z), z€R", (1.4)

where f : R® — R™ is C'. Suppose that there ezists a continuous Lyapunov
function V : R® — R for (1.4) satisfying

lim V(z)= oo, (1.5)

lz|—00

and such that if z is a solution of (1.4) with V(x(t)) =const. for allt > 0 then
is a rest point. Suppose further that there are just a finite number of rest points
a;, i=1,...,N of (1.4), and that they are each hyperbolic. Then the union of
the regions of atiraction of the local minimizers of V in R™ is open and dense.

Proof. I sketch the standard argument. By (1.5) each solution z(t) is
bounded for ¢ > 0, so that by the invariance principle (Barbashin & Krasovskii
[14], LaSalle [25]) z(t) — a; as t — oo for some i. Thus

N
R" = | A(a), (1.6)
i=1

where A(a;) denotes the region of attraction of a;. But a hyperbolic rest point
a; is stable if and only if it is a local minimizer of V, while if a; is unstable then
A(a;) is closed and nowhere dense. u]

Note that from (1.6) it follows that under the hypotheses of Theorem 1 there
is no nontrivial continuous constant of motion ¢ : R” — R.

Similar results to Theorem 1 can be proved for some classes of (especially
semilinear) partial differential equations by combining the invariance principle
with linearization (c.f. Hale 23], Henry [24], Dafermos [19], Ball [6,5]), provided
the set of rest points is, in an appropriate sense, hyperbolic. However, many
interesting examples lie well outside the scope of these results, and no version
of the prototheorem of wide applicability is known to me.

The work of Carr & Pego [16] on the Ginzburg-Landau equation with small
diffusion shows that, even when the prototheorem holds, solutions may in prac-
tice take an extremely long time to approach their asymptotic state, getting
stuck along the way in metastable states that are not close to local minimizers.



2 Two variational problems of elasticity

The examples in this section illustrate some of the features described in Sec-
tion 1. In the first there are nontrivial constants of motion, while in the second
the minimum is not attained.

Example 2.1. (The pure traction problem of thermoelasticity)

Consider a thermoelastic body in free space, occupying in a reference config-
uration a bounded domain € C R3. It is assumed that the external body force
and volumetric heat supply are zero, that there are no applied surface forces,
and that the boundary of the body is insulated. Let y = y(z,t) € R® denote
the position at time ¢ of the particle at £ € Q in the reference configuration,
v y(x,t) the velocity, € = €(x,1) the internal energy density, and pr = pr(z)
the given density in the reference configuration. Then the balance laws of linear
momentum, angular momentum and energy imply that

d
E/np,wdx_o, @1)
i/ Avdz =0 (2.2)
& nPRy =9, .
a 1, .,
— — dr = %
dt/‘;pn(c+2lv|)l 0, (2.3)

respectively, while as a consequence of the Clausius-Duhem inequality we have
that

d ;
——/ —pr1)(z, Dy, €)dz <0, (2.4)
it Jo

where 7) denotes the entropy density and Dy the gradient of y. It is assumed
that 7 is frame indifferent, that is

n(z, RA,€) = n(z, Ae) (2.5)

for all #, A e and all R € SO(3). By changing to centre of mass coordinates we
may assume that

/ pryde =0, / prvdz = 0. (2.6)
ol a
This motivates the variational principle
Minimize / —pr1n(z, Dy, €)dz (2.7)
X a
4

subject to the constraints

1
[onte+ 510 ds=a, (28)
a 2
/pRydz=0, /pm}dz:O, (2.9)
a2 a
/pRyAud:,':b, (2.10)
o}

where o € R and b € R? are constant.

The minimization problem (2.7)-(2.10) has recently been studied by Lin [26],
who proved that under reasonable polyconvexity and growth conditions on 7 the
minimum is attained at some state (7,7,€). Of course §,7,€ are functions of
z alone. As a consequence of (2.5), the minimization problem is invariant to
the transformation (y,v,¢) — (Ry, Rv, ¢) for any R € SO(3) satisfying Rb = b.
Hence, for any such R, (R¥, R%, €) is also a minimizer. In fact it is proved in [26]
that for any minimizer (,7, ) there exists a skew matrix A such that Ab = b,
v = Ay, and such that

y(z,1) = eMy(=) (2.11)
e(z,t) = €(x) (2.12)

is a weak solution of the equations of motion. Furthermore
17}
;Z(r‘Dy(m,t),f(z,t)) =67 (2.13)

for all ¢, where 6 is a constant. The motion (2.11), (2.12) corresponds to a rigid
rotation at constant temperature . Note that in this example the Lyapunov
function V' is constant along nontrivial orbits, such as that given by (2.13). In
particular, solutions to the dynamic equations need not tend to a rest point as
time t — oo.

Example 2.2. (A theory of crystal microstructure)

Consider an elastic crystal, occupying in a reference configuration a bounded
domain  C R® with sufficiently smooth boundary Q. Assume that part of
the boundary 9 is maintained at a constant temperature 6y and at a given

;deformed position

y|an =7, (2.14)

where § = g(-), while the remainder of the boundary is insulated and traction
free. Then an argument similar to that in Example 2.1, but using a different
Lyapunov function, the availability, motivates the variational principle

Minimize / W(Dy(z)) dz (2.15)
a



subject to
Ylon =7, (2-16)

where W is the Helmholtz free energy at temperature 6y (see Ericksen [21], Ball
[3).) It is supposed that W is frame indifferent, i.e.

W(RA) = W(A) (2.17)

for all A in the domain of W and all R € SO(3). In addition to (2.17), W has
other symmetries arising from the crystal lattice structure, as a consequence of
which W is nonelliptic. This lack of ellipticity implies in turn that the minimum
in (2.15),(2.16) is in general not attained in the natural spaces of admissible map-
pings. In this case, in order to get closer and closer to the infimum of the energy
it is necessary to introduce more and more microstructure. Such microstruc-
ture is frequently observed in optical and electron micrographs, where one may
see multiple interfaces (occurring, for example, in the form of very fine parallel
bands), each corresponding to a jump in Dy. The observed microstructure is
not, of course, infinitely fine, as would be predicted by the model here. The
conventional explanation for this is that one should incorporate in the energy
functional contributions due to interfacial energy; this should predict a limited
fineness and impose additional geometric structure (c.f.Parry [29), Fonseca [22]).
Since the interfacial energy is very small (witness the large amount of surface
observed) it is a reasonable expedient to ignore it, and in fact this successfully
predicts many features of the observed microstructure (see Ball & James [10],
Chipot & Kinderlehrer [17]). An example in which the nonattainment of a min-
imum can be rigorously established is the following (a special case of a result of
Ball & James [11]). Let W > 0 with W(A) = 0 if and only if A € M, where

M = SO(3)S* USO(3)S~, (2.18)

where

SE=1+tbe3®e, (2.19)
and where 6 > 0 and {e1, e2,es} is an orthonormal basis of R®. Suppose that
Q) = 00 and that

F(z) = (AST + (1-2)S7)z, Ae(0,1). (2.20)

Then under some technical hypotheses it is proved in [11] that the infimum of
(2.15) subject to (2.16) is zero, and that if ¥\ is a minimizing sequence then
the Young measure corresponding to Dy is unique and given by

vz = Abg+ + (1 — N)bs-, for a.e. z € Q. (2.21)

In particular, because v is not a Dirac mass a.e., it follows that the minimum
is not attained. The minimizing set M in (2.18) occurs, for example, in the case
of an orthorhombic to monoclinic transformation.
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It would be very interesting to carry out a dynamical analysis corresponding
to the above variational problem, to see if the dynamics produces minimiz-
ing sequences with microstructure after the fashion of the prototheorem. This
could lead to important insight into a controversial area of metallurgy, that of
martensitic nucleation.

3 Some dynamical examples

In this section some infinite-dimensional problems are discussed for which the
prototheorem can either be proved or, in the case of Example 3.2, related infor-
mation obtained.

Example 3.1. (Stabilization of a rod using the azial force as a control)
The problem of feedback stabilization of an elastic rod using the axial force
as a control leads to the initial-boundary value problem

- 1

Upp + Uzgrz + (/ uzx“t‘“’) Ui =0, 0<z<l, (3.1)
0

U=y, =0, z=0,1, (3.2)

u(z,0) = uo(z),  w(z,0)=w(z), O<z<l. (3.3)

Here u(z,1) denotes the transverse displacement of the rod, while the boundary
conditions (3.2) correspond to the case of simply supported ends. This and
similar problems were formulated and analyzed in Ball & Slemrod [13]. Using
the Lyapunov function

1
V() = /o‘ -;—(u,2 + uzx)da:, (3.4)

which has time derivative

V()= - (/01 Uprty dz)z, (3.5)

it was proved that if {uo,u;} € X < (H?(0,1) N H(0,1)) x L2(0,1) then the

unique weak solution {u,u,} of (3.1)-(3.3) satisfies
{u,us} — {0,0}  weaklyin X as 1 — oo. (3.6)

Considered as a functional on X, V has only one critical point {0,0}, which is
an absolute minimizer. The conclusion of the prototheorem therefore holds if
and only if

{u,u;} = {0,0}  strongly in X as ¢ — co. (3.7)



;I]‘]h@ l:ias.trecently be;m proved by Miiller [28] by means of a delicate analysis of
¢ infinite system of ordinary differential equations satisfied b i
u;(t) of the Fourier expansion o the colfcients

u(z,t) = Eu,-(t)sin(jrz) (3.8)
Jj=1

o'f a solution..Mﬁller also established the interesting result that given any con-
tinuous funcl:non;q 1 [0,00) — (0, c0) with lim_.og(t) = 0 there exists initial
data {ug, u1} € X such that the solution of (3.1)-(3.3) satisfies

V(t) > Cy(2) (3.9)

for all t > 0 and some constant C' > 0. Thus solutions may have an arbitrary

slow rate of decay as { — co. It is an o] i
) pen question whether st
holds for the case of clamped ends ons convergence

u=u, =0 at z=0,1, (3.10)

or for various other feedback stabilization probl fi i
(3.6) was established in [13]. pretioum R il e wnilogved

(l‘jlxax};ple 3.2(.1. (Phase transitions in one-dimensional viscoelasticity)
onsider one-dimensional motion of a viscoelastic r quati
motion is taken to be o0 The cquation of

U = (0(uz) +uzr)s, O<z<1, (3.11)
with boundary conditions
u=0atz=0, a(u,)+u,,=0atr=1, (3.12)
and initial conditions
u(z,0) = ug(z), u(z,0) = uy(z), 0<z<l1. (3.13)
For simplicity, assume that
o(uz) = Wilus),  W(u,) = (u2 - 1)2. (3.14)
Let
Vn = [ +w
= [ [+ W) (3.15)

Then V(u,u,) is a Lyapunov function for (3.11)-(3.13) with time derivative

. 1
Viu,u) = —/o i, dz < 0. (3.16)

P—

The corresponding variational problem

MinV,

X (3.17)
where X = {{u,p} : u € Wh*(0,1), u(0) = 0, p € L*(0,1)} has uncountably
many absolute minimizers, given by any pair {u,0} € X with v, = %1 ae..
In particular it is easily proved that given any smooth function v on [0, 1] with
v(0) = 0 and | ¢’ |< 1, there exists a sequence {u),0} of absolute minimiz-
ers such that u0) 2 v in W*(0,1). This raises the interesting question as
to whether a solution {u,u;} to (3.11)-(3.13) could exhibit similar behaviour,
converging weakly but not strongly to a pair {v,0} which is not a rest point.
This question was resolved by Pego [30], following earlier work of Andrews &
Ball [1]. Pego showed that for any solution {u,u;}, as t — oo,

u(-,t) — v(-) strongly in W?(0,1), (3.18)

w(-,1) — 0 strongly in W2(0, 1), (3.19)
for all p > 1, where {v,0} is a rest point of (3.11)-(3.13). Thus solutions
to the dynamical equations do not mimic the typical behaviour of minimizing
sequences. The results of Pego do not seem, however, to be sufficient to establish
whether or not a version of the prototheorem holds.

Example 3.3. (The Becker-Doring cluster equations)
These are the infinite set of ordinary differential equations

ér = Jr—l(c(t)) - Jr(c(t))r r>2,
(3.20)

é = =Ji(e(t) = Y Je(e()),
r=1
where ¢(t) denotes the infinite vector (c.(t)),
Jr(e) = arcrer — bryrcrya, (3.21)

and the coefficients a, > 0, b, > 0 are constant. The physical significance of
(3.20) is discussed in the article in this volume by Carr [15].

Let X = {y=(v) : llvll e Yooz rlur I<oo}. X is a Banach space
with the indicated norm. Solutions of (3.20) are sought as continuous functions
c:[0,00) = X+, where

Xt={yeX:y >0, r=12,.}. (3.22)
The system (3.20) possesses the Lyapunov function

V()= ic, (m (5—) - 1) ) (3.23)

r=1



where @) = 1, Q,4+1/Qr = a,/bry1, and there is a constant of motion, the
density

\

(=]
p=3 re. (3.24)
r=1

For suitable coefficients a,,b, there exists p, > 0 such that there is a unique
rest point c(?) of (3.20) with density p for p € [0, p,], and no rest point with
any density p > p,. Furthermore c(?) is the unique absolute minimizer of the
problem
Minimize V(e).
ceEXH Y2 rer=p

The equations (3.20) were analyzed in Ball, Carr & Penrose [8], Ball & Carr
[7]; see also Ball [2] for remarks on the variational problem (3.25). It follows
from [8],[7] that under suitable hypotheses on the a,,b, the conclusion of the
prototheorem holds. That is, given ¢(0) € X+ with Y72, rc,(0) = p, and any
sequence 1; — 00, ¢(l;) is a minimizing sequence for (3.25). Note that this
conclusion holds even in the case p > p,, when the minimum in (3.25) is not
attained.

(3.25)

Example 3.4. (Model equations related to phase transilions in solids)

In Example 3.2, the Lyapunov function V given by (3.15) has minimizing
sequences that oscillate more and more finely, converging weakly to a state that
is not a minimizer. On the other hand there are minimizing sequences which
do not behave like this, consisting, for example, of a single minimizer. The
results of Pego show that the dynamics chooses to imitate the latter kind of
minimizing sequence rather than the former. In the crystal problem described
in Example 2.2 minimizing sequences are forced to oscillate more and more
finely, leading to interesting possibilities for a corresponding dynamical model.
Does the dynamics imitate the minimizing sequences, or is it still the case that
all solutions tend to equilibria? This is a formidable problem, so it makes sense
to first try out some one-dimensional examples. The most obvious candidate is
the problem

wy = (0(ug) + une)e —2u, 0<z <1, (3.26)
with boundary conditions
u=0atz=0,1, (3.27)
and initial conditions
w(z,0) = up(z),  w(z,0) =u(z), 0O<z<l (3.28)
As before, assume that
o(uz) = W(ug),  Wi(u,)=(ul - 1)% (3.29)

10

Then V(u, u¢) is a Lyapunov function for (3.26)-(3.28), where
1
V(u,p):/ [%p2+ W(us) + u?] de. (3.30)
(]

The minimizing sequences of V subject to (3.27) all oscillate faster and faster,
converging weakly but not strongly to {0,0} in Wa(0,1) x L*(0,1). (See t.he
paper in this volume by Miiller [27] for a study of this variational problem with
surface energy added.)

The problem (3.26)-(3.28) has been studied in joint work of P.J.Holmes,
R.D.James, R.L.Pego, P.Swart and the author [9], together with the much more
tractable problem consisting of the equation

1
Uy = (/ u:dz—l) Upr + Uzzt — 2U, 0<z<l, (3.31)
o

with boundary and initial conditions (3.27),(3.28). This problem has the Lya-
punov function V(u,u;), where

1 1 1 2
V(u,p)= [l(p2 —ul)+ullde + - (/ u? dz) : (3.32)
’ o 2 4\Jo
There are countably many rest points of (3.31),(3.27) given by
ug = apsinkwz, k an integer, (3.33)
for suitable coefficients a;. It can easily be proved that
WiV, (3.34)
X

where X = H}(0,1) x L?(0,1). Then we have the result

Theorem 2 Let u be any weak solution of (3.31),(3.27). Ast — oo either
() {u,uc} — {ux,0} strongly in X for some k, or
(i) {u,u} — {0,0} weakly in X, but not strongly, and

- 1
i =—=. 3.35
Jim V() = -5 (3.35)

The alternatives (i),(ii) both occur for dense sets of initial data in X, the set

corresponding to (ii) being of second calegory.

By contrast, for the problem (3.26)-(3.28) it is shown in [9] that there is no
solution {u,u} for which»
Jlim V() =0, (3.36)

i.e. no solution which realizes an absolute minimizing sequence.

11
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