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Summary. A numerical method for computing minimizers in one-dimen- 
sional problems of the calculus of variations is described. Such minimizers 
may have unbounded derivatives, even when the integrand is smooth and 
regular. In such cases, because of the Lavrentiev phenomenon, standard 
finite element methods may fail to converge to a minimizer. The scheme 
proposed is shown to converge to an absolute minimizer and is tested on 
an example. The effect of quadrature is analyzed. The implications for 
higher-dimensional problems, and in particular for fracture in nonlinear 
elasticity, are discussed. 
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1. Introduction 

In this paper we describe a numerical method for computing minimizers of 
integrals in the calculus of variations. Our work has its origin in recent studies 
by Ball and Mizel (1984, 1985) of some regular one-dimensional integrals 
whose minimizers, in appropriate classes of absolutely continuous functions, 
have unbounded derivatives at certain points. These singularities may prevent 
the minimizers satisfying classical necessary conditions of the calculus of varia- 
tions, such as the usual weak form of the Euler-Lagrange equation. To com- 
pute such singular minimizers, the most obvious initial approach is to directly 
approximate the integral by a finite-element or finite-difference scheme, leading 
at each stage to a finite-dimensional minimization problem which can be 
solved by nonlinear programming techniques. However, for certain integrals 
such approximation schemes typically fail both to converge to a minimizer and to 
determine the minimum value of the integral. To illustrate this consider the 
problem of minimizing 

1 
I(u) = ~ (u 3 - x )  2 (u') 6 dx (1.1) 

o 



182 J.M. Ball and G. Knowles 

10 

09 

08 

07 

06 

05 

04 

03 

02 

oi  

= 

i i i i p 

0'1 0'2 03 O't, 0'5 0'6 07 08 09 I0 
1 

Fig. 1. Numerical  minimization of ~ (u 3 -x)2(d)6dx  subject to u(0)=0, u(1)= 1; the result of direct 
0 

minimization using piecewise linear finite elements and the mid-point rule. The method converges 
to the pseudo-minimizer ff 

in the set of admissible functions 
d = { u ~ W l ' l ( 0 ,  1): u(0)=0, u(1)= 1}. (1.2) 

It is easily seen that the unique minimizer of 1 in ~ '  is u * ( x ) = x  1/3, and that 
l(u*)=0. It was shown by Mani~ (1934) that 

inf I(u)> infI(u) =0.  (1.3) 
u ~ . ~ t n W  1, ~ ( 0 ,  1 )  u e , ~ r  

This remarkable property is known as the Lavrent iev  phenomenon (Lavrentiev 
1926; Cesari 1983). The technique in Ball and Mizel (1985, Theorem 5.5) shows 
further that if p > 3/2 

lim I (u j )= Go (1.4) 
j ~  

for any sequence of functions u F d c ~  WI'P(0, 1) converging almost everywhere 
to u*! In view of (1.3), (1.4) it is clear that any numerical scheme based on 
sufficiently accurate computation of I(uj) for Lipschitz functions u i will fail 
both to find u* and the correct minimum value of I. This is borne out by 
numerical experiments. For instance, the simplest finite-element method is to 
approximate u by uh~s n, the space of piecewise linear splines in d on a 
uniform mesh subdividing [0, 1] with mesh spacing h =  1/N, and to minimize 
I(u h) in S h. If the internal nodal values of u h are {a 1 . . . . .  aN_l}, then 

I(uh) = Iu(al  . . . . .  aN- O, (1.5) 

and we are left with the programming problem 

minimize IN(a ) . (1.6) 
a ~ , N  - 1 

This has been done for a sequence of values of h%0 and a plot of the 
numerical minimizer u h of (1.5) is shown in Fig. 1. As predicted by (1.3), (1.4) 
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the scheme does not converge to u*(x)=x ~/3, but rather to a completely 
different function ft. (The effect of quadrature, which was neglected in the 
above description, is discussed later.) In fact the 'pseudominimizer '  ff can be 
identified as a solution of the Euler-Lagrange equation for (1.1) that is smooth 
in (0, 1) and minimizes I not in sJ  but in d c ~  W~'P(O, 1) for any p~[3/2, 2) (see 
w There is nothing in the numerical results to alert the unwary to the fact 
that the minimum in d has not been found. The integrand f(x,u,v)=(u 3 
- x )  2 v 6 in (1.1) is not regular, i.e., f,v is not strictly positive for all x,u,v. 
However the examples in Ball and Mizel (1985) show that singular minimizers, 
the Lavrentiev phenomenon and (1.4) can occur for regular integrands also 
[see also the interesting examples of Davie (1987)]. The results in Ball and 
Mizel (1985) concerning the existence of pseudominimizers were motivated by 
our numerical experiments. 

An example of more practical interest occurs in nonlinear elasticity in 
connection with the experimentally observed phenomenon of cavitation [Gent  
and Lindley (1958)]. Consider deformations of an elastic body occupying in a 
reference configuration the bounded domain O~113. Suppose that the material 
is homogeneous with stored-energy function W: M3• where M3+ • de- 
notes the set of real 3 x3  matrices with positive determinant. We seek a 
deformation x: O--)113 minimising 

I(x) = ~ W(D x(X)) dX (1.7) 
~2 

in the set of admissible functions 

= { x E W  1, 1(~r 1 1 3 ) :  xles~=AX}, (1.8) 

where AEM3+ • is given. It is shown in Ball (1982), Sivaloganathan (1986a, b), 
Stuart (1985) that there are functions W such that for any A the absolute 
minimum of I in d~Wl '~(O;  1/3) is attained by the linear deformation x(X) 
=AX [that is, W is quasiconvex in the sense of Morrey (1966)], but that for 
some A the Lavrentiev phenomenon 

inf I = W(A). vol O > infI  (1.9) 
~ r Wl, ~(l~; ~ 3 ) 

holds. If t2 is a ball and A = 2  1 then for sufficiently large 2 the minimum of I 

among radial deformations x(x)=r(--~)X, R=IXI ,  is attained by a function 

r(R) with r(0)>0,  so that a cavity forms at the origin. For further information 
concerning cavitation, radial equilibria, and the possible implications of singu- 
lar minimizers for other modes of fracture see Ball and Murat  (1984), Knops 
and Stuart (1984) and Ball and Mizel (1985). For numerical methods for 
computing regular deformations in elasticity see Glowinski and Le Tallec 
(1982). 

The numerical procedure developed here avoids the Lavrentiev phenome- 
non and can detect singular minimizers. The basic idea is to decouple the 
unknown function u from its gradient in a manner reminiscent of control 
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theory (or mixed finite element methods). Of course, for problems such as (1.1) 
it would be possible to make a change of variables so that a standard finite- 
element method would successfully minimize I, or, what is virtually the same 
idea, to use basis functions with singularities. Our procedure does not suffer 
from an important disadvantage of such methods, namely that they prejudge 
both the spatial location and order of the singularities. A stochastic approach 
to minimization of an integral similar to (1.1) has been shown by Heinricher 
and Mizel (1986) to inherit the Lavrentier phenomenon. In this paper we 
concentrate on one-dimensional variational problems. Preliminary numerical 
results indicate that the methods here do locate cavitating solutions in multi- 
dimensional elasticity problems, and this will be expanded in a later paper. We 
note that the convergence proofs given are based on the direct method of the 
calculus of variations and are in some respects independent of the space 
dimension. 

The plan of the paper is as follows. In w we describe our numerical 
method and establish its convergence, neglecting the effects of quadrature, 
under various hypotheses on f. In w we analyse the effects of quadrature. 
Finally, in w 4 we describe our numerical results for the Mani/t example. 

2. The Numerical Method 

We consider the problem of minimizing 

b 

I(u) = ~ f (x, u(x), u'(x)) dx  (2.1) 
a 

in the set of admissible functions 

d = {u~ W 1' l(a, b): u(a) = ~, u(b) = 13} (2.2) 

where - oe < a < b < oe and e,/~ are constants. 
Let 4~: IR--*R be an even continuous function satisfying 

[vlS=<~b(v) for all vER, (2.3) 

q~(v 1 +v2)=< C(q~(vl)+~b(v2) ) for all v~, v26R,  (2.4) 

where 1 __<s< ~ and C > 0  (for example, ~b(v)=lv[). 
Our approach is to minimize numerically the decoupled integral 

b 

I(u, v) = ~ f ( x ,  u(x), v(x)) dx  (2.5) 
a 

among pairs of functions (u, v ) e d  x LX(a, b) satisfying the constraint 

b 

(a (u'(x) - v ( x ) )  dx  < e (2.6) 
a 
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and to let e ~ 0 + .  Note that this problem is similar to that obtained from the 
usual method for transforming a problem in the calculus of variations into 
control form, except that the state constraint 

u'(x)=v(x), a.e. xe[a,b] (2.7) 

is replaced by the inequality constraint (2.6). When e = 0  the two problems are 
equivalent. 

We will make use of the following hypotheses on the integrand f :  

(HI)  f :  [a,b] x ~  x~- -* lR  is continuous, 

(H2) there exist constants ko>0,  k 1 such that 

f (x,u,v)>ko~(v)+k,  for all xe[a,b], u,v~lR, (2.8) 

(H3) lim f ( x 'u ' v ) -oo  for all (x,u)r (2.9) 

where S is a closed slender subset of [a,b] x ~ ,  that is a closed subset 
satisfying meas{ueN:  (x, u)eS for some xeE} = 0  whenever E~[a, b], measE  
= 0, 

(H4) f(x,  u, ") is convex for all xe[a, b], uelR. 

Note that if 
f(x,u,v)>-_O(v) for all xe[a,b], u, veF,, (2.10) 

, .  r  
where 0: IR~IR is continuous and satisfies nm - - =  ~ then (H3) holds with 

S empty. The Mani/t integrand f=(u  3 - x )  2 v 6 satisfies (H1), (H3) and (H4) with 
S={(x,  u): xe[a, b], u3=x}, but not (H2); we return to this point later. Theo- 
rem 2.1 below asserts in particular that under hypotheses (H1)-(H4) I attains 
its absolute minimum on d .  However these hypotheses do not imply in 
general that I(u,v) attains a minimum subject to (2.6), as is shown by the 
following example. 

Example. Let f(x,  u, v)~-u  2 + 1 ) 2  ~b(v) = Ivl, e = l ,  ~ = { b / e w  1' 1(0, 1): u(0)=0, u(1) 
= 1}. Let u~(x)=max{0, 1 + ( x -  1)/6}, v~(x)=0. Then 

i(u~, v~) = I (u~ + v~) dx = 3' 
0 
1 
~ lu'~-vo[ dx= l, 
0 

so that the infimum of I(u,v) subject to (2.6) is zero, which is clearly not 
attained. 

If q5 is convex and satisfies (2.10) then (H1)-(H4) imply that l(u, v) does 
attain an absolute minimum on d x Lt(a, b) subject to (2.6); this can be proved 
using similar arguments to Theorem 2.1 below. 
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Let h > 0  be the approximation parameter. We suppose that for each h 
there are finite-dimensional affine subspaces ~r V h of ~', L~(a, b) respectively 
such that 

(i) given any u ~  with (a(u')~D(a,b) there exist functions u h ~  'n with 
b 

lim ~ q~((uh) ' -- U') dx = 0, and 
h ~ O  a 

(ii) given any vEL~(a,b) there exist functions vh~v* with Ivh(x)I~K for a.e. 
x~[a,b],  all h and some constant K, and vh(x)~v(x)  as h ~ 0 ,  a.e. x~[a,b];  if, 
further, v > 0  a.e. in [a,b] (resp. v < 0  a.e.) then we assume that the v* may be 
chosen such that v*>O a.e. (resp. v*<O a.e.) (this last property is used only in 
Theorem 2.4). 

Typical examples include for d h the space of piecewise affine splines in J 
on a grid covering [a,b] with mesh size h, and for V* the space of piecewise 
constants with respect to the same mesh. 

The natural discretization of (2.5), (2.6) is to minimize 

b 

I(u, v) = by(x,  u(x), v(x)) dx (2.5) 
a 

among pairs (u, v ) e d  h x V h satisfying 

b 

(J(u'(x) - v(x)) dx < e. (2.6) 
a 

(In practice the integral I(u, v) will need to be further approximated by quadra- 
ture - this is considered in w This is a finite-dimensional optimization 
problem with a closed constraint set that is nonempty for h sufficiently small. 
It follows easily from (2.3), (H2) that for pairs (u, v ) e d  h x V h satisfying (2.6) we 
have I(u, v )~ov  as Ib(u, v)l]~ • vh-~oo. Since f is continuous the minimum value 
I[ is therefore attained by a pair (u), v ) ) c d  h x V h. 

Theorem 2.1. Assume (H1)-(H4). Then there is a nondecreasing function 7" 
(0, ~ ) ~ ( 0 ,  ~ )  such that 

h_ infI(u). (2.11) lim I~-- 
h , e ~ O  uc=~t 

0 < h < ~ ( E )  

Let hj~O, ej---}O be sequences with 0<hj<y(ej) ,  and let (u~j, v~hj) be a minimizing 
pair for I(u, v) in d hJ • V hj subject to the constraint 

b 

~ (u' - v) dx < ej. (2.12) 
a 

Then there exist a subsequence (hu, eu) of (hi, ej) and a minimizer u* of I(u) in d 
such that as I~--*~ 

u~ ~ u *  uniformly in [a,b], (2.13a) 



A Numerical Method for Detecting Singular Minimizers 187 

v h"*(u*)' weak , in the sense of measures Eu 

!o  ;dX So O(u*)'dx for a.  O C([a,b]l . 

Proof. Let e>0 .  There  exists u~,~'  with 

(2.13b) 

l(u) < inf I + c < oo. (2.14) 

Since u is continuous,  it follows from (2.3) and (H2) that  there exists M > 0  
such that  if I v ] > M  

f (x ,  u(x), v)>f(x,u(x),O) for all x~[a, b]. (2.15) 

For  any 6 > M define 
0 if {u'(x)t > 6 

va(x) = u'(x) otherwise. 
By (2.15) 

l(u, %) <= l(u). 
Also 

b 

y q~(u' - ~0) dx  = .f 4(u ' )  d~,  
a E6 

where E~ = {xe[a, b] ; lu'(x)l > 6}. 
Choose  6 > M sufficiently large so that  

(2.16) 

(2.17) 

(2.18) 

b 

C ~ ~(u ' -v~)dx <~, (2.19) 
a 

where C is the constant  in (2.4); this is possible by (2.18), since O(u')cLl(a, b) by 
(2.8). There  exist functions UhCSr h, vheV h with 

b 
lira ~ 0((uh) ' -u ' )dx  = 0 ,  (2.20) 
h - . O  a 

as h--*O, ]vh(x)]<K, a.e. xe[a,b]. (2.21) vh(x)~v~(x) 

Now, by (2.4), 

b h h b 

~( (uh )  ' --  uh) d x  ~ C ~ ~)(ur --  uh) d x  -~ C2 ~ ~D(odh) ' --IA') d x  q- C2 ~ (~(u h - u6) d x .  
a a a a 

(2.22) 

The last two integrals in (2.22) tend to zero as h--*0 by (2.20), (2.21). Further,  
since (2.3), (2.20) imply that  uh--*u uniformly in [a, b] as h--*0, it follows from 
the bounded  convergence theorem that  

lim I(u h, v h) = I(u, %). (2.23) 
h~O 

F r o m  (2.19)-(2.23) we see that there exists ~r(0e(0, 1) such that  for h <Y(0 
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I(u h, v h ) < I (u, v~) + e (2.24) 
and 

b 

4) ((uh) ' -- V h) dx <= e. (2.25) 
a 

From (2.14), (2.17), (2.24) we then have that 

I(u h, v h) < infI  + 2e, (2.26) 
ar 

and thus 
I~ < inf I + 2 e. (2.27) 

Now let ?(e)=�89 0<~-<e,}. Then 0<? (e )<  oo and ? is nondecreasing. If 
h<7(e ) then h <?(eD for some ~-e(0, ~], and 

I )<  I ) < i n f I  + 2g<in f I  + 2e, 

so that (2.27) still holds. 
We complete the proof of the theorem first under the assumption that q5 

satisfies the superlinear growth condition (2.10), since the proof in this case is 
much simpler and since we will refer to it later. Let hi--,0, c j~0  with 

h~ __ hj 0<hj<?(e,j), and set uj=u~,, v j - v ~ .  By (2.27), (2.10) 

b 

sup ~ ~p (vj) dx < oo, (2.28) 
J a 

so that by de la Vall6e Poussin's criterion (Natanson 1964, p. 158; Cesari 1983, 
p. 329) there exists a subsequence vu of vj with 

for some v*. Since 

vu~ v* in Ll(a, b) (2.29) 

b b 

a a 

it follows that ' * u , ~ v  in Ll(a,b). Hence 

uu~u* in Wl'l(a,b),  (2.30) 

where u*(x)%fc~+ iv*(y)dy.  In particular, u,--*u* uniformly in [a,b], and thus 
a 

u * e d .  Since f is convex in v, we deduce from standard lower semicontinuity 
results (Cesari 1983, p. 352; Ekeland and T~mam 1974, p. 226; Eisen 1979) that 

inf l  < I(u*) < lim inf I(u,,  v,). (2.31) 
# 4 0 0  

Since I(u,, v,)=I)~ it follows from (2.27), (2.31) that u* is a minimizer and 
lim l~-=infI .  Since (2.13b) follows from (2.29), it remains to prove (2.11). But 

this follows from the above argument applied to sequences hi, ej assumed for 
contradiction to satisfy !im I~a~ < infI. 

j ~ a o  ~ /  
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To complete the proof  in the general case we again suppose that h~--,0, 
hj h I ej--*0 with hj<7(ej) and set uj=u~, vj=v~j. We first show that the uj are 

uniformly bounded  and equicontinuous.  The uniform boundedness is a con- 
sequence of (2.27), (2.3), (2.8) and (2.13a). For  the equicontinuity we use the 
following lemma. 

L e m m a  2.2. Suppose that the rectangle Q = [c, d] x [Ul, u2] , a < c < d < b, u t < u2, 
contains no points of  S. Then 

f ( x ,  u, v) > Oe(v) 

for some function OQ: N - - * ~  with 

for all (x, u)6Q, v e ~  (2.32) 

lim qSQ(v)= oo. Furthermore, there exist a 

constant ~ > 0 and a positive integer Jo such that 

IXzj--Xljl>=~ (2.33) 

for any J>=Jo such that uj(xlj ) = Ul, uj(x2j ) = u2, xlj, x2j~[c, d]. 

Proof Define 
~bQ(v) = rain f (x ,  u, v) (2.34) 

(x, u)~Q 

and suppose for contradict ion that there exist (x~J),u~J))eQ and v li) with 
] v ~ J ) ] ~  as j ~ o Q  and 

(ao(v(J)) = f (x (j), u (i), v (jl) <= K o Iv(J) I (2.35) 

for all j and some constant  K o. We can assume that (x (j), u(~))~(x,u)eQ as 
j--,oe. Since f ( x  (j), u (j), ") is convex, for each j the function 

f ( x  (j), u (j), v ) - f ( x  (j), u ~j), O) 
V~---~ 

Ivl 

is nondecreasing for v > 0  and nonincreasing for v<0 .  Therefore, for any v + 0 ,  

f (x, u, v) - f (x, u, 0) = lim f (x(J)' u(j)' v) - f (x (j), u ~j), O) 

< lim f~(x(j)' u(j)' v(j)) -f(x(J) '  u(jl' O) < Ko, 
- j ~  Iv~J)l 

contradicting (H3). 
To establish (2.33) we can suppose without  loss of generality that x t j<x2j  

and that  uj(x)~[uo, ul~ for all x~[x l j ,  xzj]. By (2.27), (2.32), there exists a 
constant C o such that  

x2 j  

Oe(vj) dx < C O for all j. (2.36) 
x1d 

Choose Jo such that e j < l ( u  1 - u  o) for all J>Jo and a > 0  such that a C o < � 8 9  1 

-Uo). Then choose M o such that ~be(v)_- >1~ whenever Ivl>=M o. Set Ej 
={NU.[Xlj, Xzj]: Ivj(x)l> Mo}. Thus Ivl a 
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X2j X2 3 

u , - U o <  S lu}[dx< f Iv~ldx+e,j, (2.37) 

and x,, ~,, 
X23 

S [@ dx< S Ivjl dx +Mo(x2j-xlj ) 
Xl j  Ej  

a C 0 + Mo(x2j  - x l j  ). (2.38) 

Combining (2.37), (2.38) we obtain (2.33) with 6 = M o l [ � 8 9  Co]. (This 
argument is a modification of that in Natanson 1964, p. 159.) [] 

Continuation of  Proof of  Theorem 2.1 

Suppose for contradiction that the t9 are not equicontinuous. Then there exist 
a subsequence uj~ of uj and points Ylk, Yzke[ a, b] such that ylk'-*Xo, Y2k~Xo, 
Uj~(Ylk)~ %, Uj,(y2k)~W 2 as k ~ m  with % < w  2. The line segment L={xo} 
x [%,w2]  is not entirely contained in S since S is slender, and since S is 
closed this implies that there is a rectangle Q=[c ,d]x[u l ,u2]  with 
a<__c <d<=b, c<=xo <d, wl <ul <u2 <w2, Qc~S empty, and points xlk, x2ke[c,d] 
such that Xlk, X2k---'X o and uj~(Xlk ) = ul, Uj~(Xek ) = U 2. This contradicts Lemma 2.2. 

Since the uj are unitbrmly bounded and equicontinuous, by the Arzela- 
Ascoli theorem there exists a subsequence u, of uj converging uniformly to a 
continuous function u* on [a,b]. Since by (2.37), (2.3), (H2) and the constraint 

h 

we have sup S l @ d x < o %  it follows that u* has bounded variation on [a,b]. 
J a 

We claim that u* maps sets of measure zero to sets of measure zero. If not 
there would exist a subset E of [a,b] with m e a s E = 0  and measu*(E)>0.  
Define A={xe[a ,b] :  (x,u*(x))eS}. Then either measu*(EcaA)>0  or 
measu*(E\A)>O. The first case is impossible since S is slender. The second 
case is impossible since the uniform convergence, the estimate (2.32), and the 
delaVall6e Poussin criterion show that u* is absolutely continuous on any 
closed interval J disjoint from A, and thus measu*(J )=0 .  Since u* maps sets of 
measure zero to sets of measure zero and is continuous of bounded variation, 
the Banach-Zarecki theorem (Natanson 1964, p. 250) implies that u* is ab- 
solutely continuous on [a, b]. Hence u * e d .  

t ____1. @ t Since u * e d ,  u, ( u )  in the sense of distributions on (a,b), and hence, 
b 

t using the uniform boundedness of Slu,,Idx and a standard approximation 
a 

t @ ~ t  t argument, we have also that uu~(u ) in the sense of measures. Since Ilu, 
-vullr,,~a,b)~0 as . /~+m this proves (2.13b). We now use the following result of 
Reshetnyak (1967, Theorem 1.1). (We remark that in the English translation of 
Reshetnyak's proof the phrase ' a  point close to '  should read throughout ' the 
point closest to'.) 

Lemma 2.3. Let ~2~N" be open and F,: t2 x P,J~IR be a sequence of nonnegative 
continuous functions such that Fu~F locally uniformly in t2 x lR I as It--*oo. Then, 
!f the functions Fu(x, .) are convex, the inequality 
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F(x, v(x)) dx =<lim inf~ Fu(x, v u(x)) dx (2.39) 

holds for every sequence vueLl(f2; 1t l) converging weak �9 in the sense of mea- 
sures to a function yeLl(Q; lRl). 

Applying Lemma 2.3 to the functions 

Fu(x, v)%f f (x ,  uu(x), v ) - k l ,  

we deduce that (2.31) holds. The remainder of the proof is as before. [] 

Remark. The assertion in Theorem 2.1 that t attains a minimum on d is 
essentially a special case of a result of Cesari et al. (1971) (see Cesari 1983, 
p. 412) and is similar to theorems in McShane (1938). The parts of the proof 
concerned with slender sets use many of the ideas in Cesari (1983, Chap. 12). 

We now give a variant of Theorem 2.1 applying in particular to the Manih 
example (1.1). 

Theorem 2.4. Assume (HI), (H3), (H4) and that 

0 =f(x,  u, 0) = min f (x ,  u, v) (2.40) 
v~IR 

for all x~[a, b], ueN.  Suppose that q~: [l--*~ is continuous, with 

Ivl<4)(v)<=Cllv [ for all velR, (2.41) 

where C 1 is a constant. 
Let a<fi (resp. ~>fl). Then there exists a nondecreasing function 7: 

(0, oo)--,(O, ~ )  such that if 0<h<7(~)  then l(u,v) attains an absolute minimum 
among pairs (u, v)~dh• V h satisfying v(x)>O (resp. v(x)<=O) for a.e. xe[a, b] and 
the constraint (2.6), and such that the minimum value I~ satisfies (2.11). Let hj--*O, 
e ~ O  be sequences with O<h~<7(~j) and let (u~, v~h~) be a corresponding minimiz- 
ing pair. Then there exist a subsequence (hu, e,) of (hj, ej) and a minimizer u* of 
I(u) in ~'  such that, as #~oo,  (2.13) holds. 

Remark. If c~=fl then of course u(x)=-a is an absolute minimizer of I(u) in s~, 
so that the minimization problem is trivial. 

Proof of  Theorem 2.4 

Let c~<fl; the case c~>fl is treated similarly. First note that for any (u ,v )~d  ~ 
x V h satisfying v > 0  a.e. and (2.6), 

and hence 

b b 

y v dx = y (v -u '  + u') dx < e + fl - ~  (2.42) 
a a 

b 

Ju'[ dx< 2e + f l -~ .  (2.43) 
a 
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The finite-dimensional optimization problem therefore has a compact con- 
straint set that is nonempty for h sufficiently small (depending on e), and so the 
minimum is attained. 

Let ~>0. There exists f l e d  with 

Define u: [a,b]--*[ct, fl] by 

I(fi) < inf I  + e < oo. (2.44) 

u(x)=min{fl, max fi(y)}, 
a < y < x  

Then u is continuous and for some be(a, b], 

x6[a, b]. (2.45) 

~<u(x)<fl  for xe[a,b), 
(2.46) 

u(x)=fl for xe[b ,  b]. 

Since u is nondecreasing it is differentiable a.e.. Let x~(a, 6) be a point at which 
both u and fi are differentiable. If u(x)>fi(x) then clearly u '(x)=0,  while if u(x) 
=fi(x) then u - f i  has a minimum at x and thus u'(x)=~'(x). The set 

def - lz = {xe(a,b): u(x)>fi(x))} is open and is therefore a countable union of dis- 
joint open intervals E k. Clearly 

u'(x)dx= y~ ~ ~'(x)dx=O, 
E k E k 

and so 

~u'(x)dx= I u'(x)dx= S ~'(x)dx=~'(x)dx=~-~,. 
a (a,/J)\E (a, ~)\E a 

Since u'=>0 a.e. it follows (Saks 1937, p. 224) that u is absolutely continuous, 
and hence u ~ 4 .  By (2.40), (2.44) 

I(u) < I(fi) < i n f I  + e. (2.47) 
ar 

For 6 > 0  we define va by (2.16). Then (2.17) holds by (2.40). The proof now 
follows that of Theorem 2.1. Note that dp(u')eLl(a, b) by (2.41), (2.43) and that 
by assumption the v h can be chosen to be nonnegative. [] 

A variant of Theorem 2.1 can also be proved in which the convexity 
hypothesis (H4) is dropped. The function u* in (2.13) is in this case a minimizer 
of 

b 

d(u) %f S f **(x, u(x), u'(x)) dx (2.48) 
a 

in ~r where f**(x,u, v) denotes the lower convex envelope of f (x ,u,v)  with 
respect to v. In order to carry over the proof use is made of the relation 

inf l(u) = inf J(u). (2.49) 
ue,~ u ~ t  

Unfortunately, (2.49) seems only to be known under rather strong growth 
hypotheses on f such as 
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c 1 +d~lvl=<:f(x, u, v)~c2+~lul~+d21vl ~, (2.50) 

where 1 < ~ < ~ ,  a ~ 0 ,  d 2 ~ d l > 0  and el, c 2 are constants (cf. Ekeland and 
T6mam 1974, p. 314; Marcellini and Sbordone 1980). With such growth hy- 
potheses the Lavrentiev phenomenon cannot occur, and a proof similar to that 
of Theorem 2.1 shows that direct minimization of l(u) in d h as h ~ 0  suffices to 
determine infI  and a minimizer u* of J. We therefore omit the details. 

Our numerical scheme can be adapted to find the minimum value and 
minimizers for I in ~r  for any e ~ [ 1 , ~ ] .  The idea is to add the 
constraint 

I[V]IL~<a,b) < M (2.51) 

to the minimization problem (2.5), (2.6) and let M take larger and larger values. 
For ~ such that the minimum of I in d ~ W l ' ~ ( a , b )  is attained (cf. Ball and 
Mizel 1985) the computed u* and value of I will be in general independent of 
all sufficiently large M. 

3. The Effect of Quadrature 

In Theorem 2.1 and its variants it is assumed that the integrals in (2.5), (2.6) 
are computed exactly. In this section we study the effect of various methods of 
computing these integrals on the outcome of the numerical scheme. We consid- 
er throughout the special case used in our numerical computations of d h 
=shc,.~r piecewise linear and V h piecewise constants on the grid with mesh 
points {a+ih}o<i< N, where h = N - ~ ( b - a ) .  Note that in this case the integral 
in (2,6) can be computed exactly (ignoring round-off error) since the integrand 
is piecewise constant; we therefore consider only the approximation of the 
integral (2.5). 

In order to compute the integral (2.5) to arbitrary accuracy it is necessary 
to introduce further mesh points in each subinterval Ai=[a+ih,  a+(i+l)h] ,  
and the number of such new mesh points in each subinterval will in general 
need to increase without limit as h, e ,~0+  in order to compensate for the 
increasingly singular behaviour of the finite-dimensional minimizer (u~ h, v~). 
Such a procedure, while feasible, has obvious disadvantages in programming 
and computation time, and it is more convenient to calculate the integral by 
means of a quadrature rule involving at most a fixed finite number of new 
mesh points in each subinterval. Let ag=a+ih, so that Ag=[ag,ai+~], and 
suppose that l(u, v) is calculated for (u, v ) ~ d  h x V h through the quadrature rule 

N - 1  M 

Ih(u, v)=h ~ ~ 2kf(aiq-tkh, u(aiq-tkh), V6)), (3.1) 
i = O  k - - 1  

M 

where v,) is the (constant) value of v in (al, ai+ 1) and where M > 1, 2 k > 0, 2 2k 
k=l 

=1 and 0__<tl<...<tM_-<l are given. Special cases of (3.1) are the mid-point 
rule (M=2 ,  21 = 2 2 =  1/2, t 1 =0,  t2=l ) ,  and Simpson's rule (M=3 ,  21 = 2 3 =  1/6, 
22 =2/3, t 1 =0,  t 2 = 1/2, t 1 = 1). The following example shows that for any such 
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quadra ture  rule there are integrands f satisfying the hypotheses  of Theorem 2.1 
such that  the numerical  scheme 

minimize Ih(U, V) for (u, v)~sr h z V h satisfying (2.6) (3.2) 

can lead as h, e--,0 to too low a value for infI .  
aat 

Example. Let 
M 

g ( u )  = I-I  (U - -  tk), f(x,U,V)=(g(u)v)2+[Vl, q~(v) = [V], 
k= l  

a = a = 0 ,  b = f l = l .  Then  (H1)- (H4)  are satisfied with S=[O, 1]X{t l , . . . , t~} .  
Given h = N -  1 define 

h ( N x ,  O<_x<h (3.3) 
u ( x ) = ~ l  ' h<_x<_l 

and vh(x)=(uh)'(X). Then the constraint  (2.6) is satisfied for all ~ > 0  and 

Ih(U h, V h) = h. h - 1 = 1. (3.4) 

But by Theo rem 2.1 I at tains an absolute  m i n i m u m  on d and  hence 

1 
inf I(u) > inf S lu'l dx = 1. (3.5) 
u~,~ u~,~ 0 

We now show that  the scheme (3.2) works  if f satisfies the superlinear 
growth condit ion (2.10). 

Theorem 3.1. Assume (H1)- (H4)  and that f satisfies (2.10). Then there is a 
nondecreasing function ~: (0, oo)--*(0, oo) such that if 0 < h < p ( e )  then Ih(U,V ) 
attains an absolute minimum among pairs (u, v ) e d  h x V h satisfying the constraint 
(2.6), and such that the minimum value I~ satisfies (2.11). Let hi-+O, e ~ O  be 
sequences with O<hj<v(ej) and let (u h, , ~, v~j) be a corresponding minimizing pair. 
Then there exist a subsequence (hu, e,) of  (hi, ej) and a minimizer u* of I(u) in d 
such that, as #--,oo, 

u h ~ u  * weakly in Wl"l(a,b), 
v)s~(u*)' weakly in Ll(a, b). (3.6) 

Proof Let h = N - l ( b - a ) .  Define 
k--1 k ) 

Yh(X)=ai+tk h for xE(ai+h~ ,=1 ~ 2r'ai+hr~=12r ' (3.7) 

0 

where 0 < i < N - 1 ,  l < r < M ,  and where ~ is interpreted as zero. Then 
r = l  

yhEL~176 b) and Yn(X)-*x a.e. as h--*0. If  (u, v ) e d h x  V h then 

b 
Ih(u, v)= ~ f (yh(x), u(yh(x)), v(x)) dx. (3.8) 

a 

The proof  now follows that  of Theo rem 2.1 for the superl inear  growth case. 
F r o m  (3.8) and the bounded  convergence theorem we see tha t  for the functions 
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u h, v h in (2.20), (2.21), we have 

lim [Ih(U h, V a) --HU h, va)] = 0 (3.9) 
h~O 

so that, by the argument following (2.23), (2.27) holds for O<h<p(e) ,  where p: 
(O, oo)--,(O, oo) is nondecreasing. Let hj--*O, ej~O with O<hj<p(ej) and set u i 

hj __ hj u~j, vj--v~. As before we extract the subsequence (hu, eu) such that (2.29), 
(2.30) hold. Since the vector (yh,(x), u,(Yh,(X)) ) converges a.e. to (x, u*(x)) and f 
is continuous we deduce from (3.8) and the cited lower semicontinuity results 
that 

I (u*) <= lim inf Ih, (U,, V ,), (3.10) 
ll ~ oO 

and the theorem follows. [] 

The example preceding Theorem 3.1 suggests that a direct minimization of 
Ih(U)%fIa(U,U ') over d h might in some problems bypass the Lavrentiev phe- 
nomenon and converge to the correct minimum. Indeed this occurs for the 
Manifi problem (1.1), (1.2) if we use the trapezium rule; if uhEd  h satisfies uh(jh) 
=( j  h) 1/3, 0 <j  < N, then Ih(U h) = 0. In this example the Lavrentiev phenomenon 
is not inherited by the numerical scheme since the trapezium rule does not see 
the points where uh4=x 1/3. This does not occur for the integral 

1 
I ( u ) =  y [(u 3 --X)2 (U') 6 "+-(X U ' - - l u ) 2  (U')12] d x ,  (3.11) 

o 

with the same boundary conditions u(0)=0, u(1)= 1. The absolute minimum of 
I in d is again attained by u(x )=x  1/3. However direct minimization of Ih(U ) 
over d h using the trapezium rule leads numerically to a minimizer u a satisfying 

lira I h (u a) > 0, (3.12) 
h~O 

showing that in this example the numerical scheme does inherit the Lavrentiev 
phenomenon (this could probably be proved analytically). We expect that 
convergence to the correct minimum of direct minimization of I h using the 
trapezium rule is rare, even when f is convex in u'. 

4. Numerical  Results 

To test our method we have applied both it and direct minimization to the 
Mani/t example (1.1), (1.2). The result of direct minimization of Ih(U) over d h 
(piecewise affine functions) using the mid-point rule are shown in Fig. 1. The 
scheme converges to a function ff that can be identified as the unique mini- 
mizer of I in sdc~WI'P(0,1) for every pe[~,2) ;  this function is a smooth 
solution of the Euler-Lagrange equation for (1.1), (1.2) on (0, 1) with infinite 
slope at x = 0 ,  1. We do not give the complete details of this identification as 
they are lengthy and follow roughly the lines of calculations in Ball and Mizel 
(1985), and as for our purposes the essential point is that g ~ x  1/3. The main 
ingredients are (i) the reduction of the Euler-Lagrange equation to an auto- 
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Fig. 2. Numerical minimization of ~(u3-x)Z(u')6dx subject to u(0)=0, u(1)= 1; the result of the 
0 

numerical scheme (3.2) with ~ h  piecewise linear, V h piecewise constant, q~(v)=lvl and using the 
mid-point rule. The scheme converges to the true minimizer u*(x)=x 1/3 

nomous ordinary differential equation in the (q,z) plane by means of the 
change of variables w = u 3, z = w/x ,  q = d w / d x  and x = e t, (ii) the proof that this 
equation has a unique orbit q=q(z)  leaving the origin z = q = 0  with slope 9/5 
and which satisfies ~(z)~oo as z ~ l - ,  (iii) use of arguments such as in Ball 
and Mizel (1985, Theorems 5.8, Lemma 3.9) to show that the minimum is 
attained, meets u = x  1/3 only at x=0 ,  1, and corresponds to q(-), (iv) correlation 
of the computed values in Fig. 1 with numerical computation of q(z). 

We implemented the numerical scheme (3.2) in the following way. First, as 
in w 3, d h and V h were chosen to be piecewise linear and constant respectively. 
Second, Ih(u, v) was calculated using the mid-point rule; as the example follow- 
ing (3.2) shows, we were perhaps fortunate that this did not in practice affect 
the convergence adversely. Third, the function ~b in the constraint was chosen 
to be q~(v)=[v]. Finally the finite-dimensional optimization was carried out 
using a modified penalty method to handle the constraint and a quasi-Newton 
unconstrained optimization routine; to avoid non-differentiability difficulties 
for the optimization routine the absolute value function was suitably ' rounded'  
near zero. The starting values for the minimization algorithm were taken on 
the straight line u ( x ) = x .  The results are presented in Fig. 2, where the min- 
imizing u) is plotted for various values of h for small values of e, It can be 
seen that u) does approximate the minimizer x 1/3. An effect of using the mid- 

h intersects x 1/a close to the mid-point of point rule can be seen - the graph of u~ 
each subinterval. 

Strictly speaking the implemented numerical scheme is not covered by any 
of the convergence theorems proved; for example, we have not included any 
analysis of the finite-dimensional optimization routine in this paper. If we 
neglect the effects of quadrature and errors in the finite-dimensional optimi- 
zation then Theorem 2.4 establishes convergence under the addition constraint 
v > 0  a.e.; this constraint is seen to be verified a posteriori by the numerical 
results. Theorem 3.1 does not apply to the Mani/~ example, which does not 
satisfy (2.10). 
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