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Uniaxial nematic liquid crystals are often modeled using the Oseen-Frank theory,
in which the mean orientation of the rod-like molecules is described through a unit
vector field n. This theory has the apparent drawback that it does not respect the
head-to-tail symmetry in which n should be equivalent to �n; that is, instead of n
taking values in the unit sphere S2 , it should take values in the sphere with
opposite points identified, i.e., in the real projective plane RP2. The Landau-de
Gennes theory respects this symmetry by working with the tensor Q¼ s (n�n�
1/3 Id). In the case of a non-zero constant scalar order parameter s the Landau-
de Gennes theory is equivalent to that of Oseen-Frank when the director field is
orientable.

We report on a general study of when the director fields can be oriented, described
in terms of the topology of the domain filled by the liquid crystal, the boundary
data and the rate of blow-up of possible singularities. We also analyze the circum-
stances in which the non-orientable configurations are energetically favoured over
the orientable ones.

Keywords: nematic; orientable; projective plane; Q-tensor; simply-connected; uniaxial

1. INTRODUCTION

The most common way of modelling uniaxial nematic liquid crystals is
to associate to each point in the macroscopic physical space a director
describing the preferred direction of the molecules at that point. One
of the most popular models, the Oseen-Frank model [1], takes this
director to be a unit-length vector n ¼ ðn1;n2;n3Þ. This has the effect
of automatically assigning an orientation to the locally preferred
direction of the molecules. On the other hand, in practice, the material
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is seen to be locally invariant with respect to reflection in the plane
perpendicular to the director. Thus it is physically more appropriate
to take the director to be a line, that determined by the pair of antipo-
dal unit vectors fn;�ng. This is one of the advantages of the Landau-
de Gennes theory [2], that in the uniaxial case uses for the director a
symmetric, traceless matrix with two equal eigenvalues. Such a 3� 3
matrix Q can be written as

Q ¼ s n�n� 1

3
Id

� �
; ð1Þ

where the scalar order parameter s is a real number, n ¼ ðn1;n2;n3Þ is
a unit vector, ðn� nÞij ¼ ninj, and Id denotes the identity matrix. One
notices that for fixed nonzero s one can associate uniquely to Q a pair
of unit vectors fn;�ng, that is a point in the real projective plane RP2.
In the rest of the paper we adopt the terminology Q-tensors for pos-
ition-dependent matrices of the form (1). In addition we assume that
s is a nonzero constant. For experimental determinations of s see for
instance [3].

The main purpose of this work is to compare the two theories,
Oseen-Frank and constant s Landau-de Gennes, and to determine
what they have in common and how they differ.

The Oseen-Frank theory has been successful in predicting the equi-
librium states as local or global minimizers of an energy functional:

EOF ¼
Z

X
Wðn;rnÞdx; ð2Þ

where

Wðn;rnÞ ¼ K1ðdiv nÞ2 þ K2ðn � curl nÞ2 þK3jn ^ curl nj2

þ ðK2 þ K4ÞðtrðrnÞ2 � ðdiv nÞ2Þ ð3Þ

and the Ki are elastic constants.
We consider a special case of the Landau-de Gennes theory, in

which the elastic energy density is defined by

wðQ;rQÞ ¼ L1I1 þ L2I2 þ L3I3 þ L4I4;

where the Li are constants and the four elastic invariants I1; . . . ; I4 are
given by

I1 ¼ Qij;jQik;k; I2 ¼ Qik;jQij;k; I3 ¼ Qij;kQij;k; I4 ¼ QlkQij;lQij;k;

where we have used the summation convention with i; j; k 2 f1; 2; 3g.
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It can be checked that the Oseen-Frank energy is expressible in
terms of the constant s Landau-de Gennes Q-tensors (see [4]). We have
that

I1 ¼ s2ðjdiv nj2 þ jn ^ curl nj2Þ; I2 ¼ s2ðjn ^ curl nj2 þ tr ðrnÞ2Þ;

I3 ¼ 2s2ðtr ðrnÞ2 þ jn � curl nj2 þ jn ^ curl nj2Þ;

I4 ¼ 2s3 2

3
jn ^ curl nj2 � 1

3
trðrnÞ2 � 1

3
jn � curl nj2

� �

Letting

K1 ¼ L1s2 þ L2s2 þ 2L3s2 � 2

3
L4s3; K2 ¼ 2L3s2 � 2

3
L4s3;

K3 ¼ L1s2 þ L2s2 þ 2L3s2 þ 4

3
L4s3; K4 ¼ L2s2;

we have that

Wðn;rnÞ ¼ wðQ;rQÞ;

and thus the Oseen-Frank elastic energy is the same as the Landau-de
Gennes elastic energy, but with different notation.

For more information concerning the form of the Landau-de
Gennes energy w and its relationship to the Oseen-Frank energy
see [5,6].

On the other hand, although the energy density can be regarded
as being the same in the two theories, in the constant s Landau-de
Gennes theory there are more possibilities for energy minimization
than in the Oseen-Frank theory. Indeed, there are more line fields
than vector fields. Consider a vector field nðxÞ : X! S

2 (where the
bounded domain X denotes the container to which the liquid crystal
is confined and where S

2 is the unit sphere). To such a vector field
one can associate a line field fnðxÞ;�nðxÞg � QðxÞ ¼ sðnðxÞ � nðxÞ
�1=3ðIdÞÞ. Apparently one can do the opposite as well, that is to
replace a line field fnðxÞ;�nðxÞg by a vector field just by choosing
at each point either nðxÞ or �nðxÞ. But in making the changes from
the line field to a vector field one needs to create as few jumps in
the director as possible, in order not to create a vector field having
infinite energy.

In fact it turns out that there are continuous, even smooth, line
fields for which it is impossible to ‘assign arrows to the lines’; that
is, one cannot make a choice of a vector out of each line in such a
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way that no discontinuity is created. To see this, consider the line field
illustrated in Figure 1, which is defined in the exterior of a circular
cylinder with generators parallel to the x3-axis. The line field is in
the ðx1; x2Þ–plane, i.e., the vectors fnðxÞ;�nðxÞg have x3-component
zero. Thus we can consider it as a two-dimensional line field defined
in the exterior of the circle shown, with centre the origin and radius
1=2. For x2 > 0 the line field at the points ðx1; x2Þ is parallel to the
vector ðx2;�x1Þ, while for x2 � 0 all lines are parallel to the x2-axis.
Let us try to ‘orient’ this line field, that is to assign arrows to all the
lines, those tangent to the upper semicircles, and those parallel to
the x2-axis. We want to do this without creating any discontinuity,
so that in particular this leaves us with just two choices for choosing
the vectors at ð�1; 0Þ and ð0; 1Þ: if you pick the arrow to point up at
ð�1; 0Þ you will have to take it pointing down at ð1; 0Þ, and vice versa.
On the other hand if one looks at the line field below (and including)
the x1-axis one sees that the only possibility of assigning arrows with-
out creating jumps is by putting them all in the same direction, in
particular in the same direction at ð�1; 0Þ and ð1;0Þ. This shows that
we must necessarily create a jump by trying to make this line field into
a vector field.

FIGURE 1 A non-orientable director field.

224=[576] J. M. Ball and A. Zarnescu



This example also shows that in order to orient a line field that has no
jumps one needs to look at what happens along curves, because along
each curve the orientation ‘propagates’ by continuity along the curve.
Also, the example shows that the only issue that might appear is when
these curves have self-intersections, so that they form a loop (in our
example the loops that cause the problem are those that go around
the shaded disk). Thus in order to decide whether a line field is orien-
table or not we need to check its orientability along all possible loops.
As some thought will show, if a line field is orientable on a loop A, it is
also orientable on any other loop B that can be obtained from A through
a continuous deformation that keeps the loop within the domain.

In particular we have orientability along any loop that can be continu-
ously deformed to a single point while staying in the domain. Hence, in
so-called simply-connected domains (in which any loop can be continu-
ously deformed into a point while staying in the domain), we have that
continuous line fields can be replaced by continuous vector fields.

However, in practice director fields often do have discontinuities
corresponding to defects. In order to understand whether it is possi-
ble to orient a line field in the case when defects are present we
first need to introduce a framework for measuring how bad such
defects can be.

2. SOBOLEV SPACES AS A MEASUREMENT SCALE
FOR DEFECTS

In defining the functions that describe the orientation of the director,
be it a line or a vector, we make the convention of considering two
functions to be the same if they differ only on a set of measure zero,
i.e., of zero volume. We say that a set has measure zero if it can be com-
pletely covered with balls the sum of whose volumes can be made as
small as desired. Thus our convention amounts to saying that the
functions we consider only see those features that are on large enough
scales. This is particularly useful in our case as we do not know what
happens on very small sets, the locations of defects, where we do not
know whether the director is defined or not.

We need to reinterpret the definition of the derivative so that it
makes sense in the new framework. Denoting by Rd d-dimensional
real Euclidean space, for a function f : X � Rd ! R we define the
generalized partial derivative in direction xk to be a function
gk : X � Rd ! R such thatZ

X
f ðxÞ @uðxÞ

@xk
dx ¼ �

Z
X

gkðxÞuðxÞdx ð4Þ
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where the equality holds for any function u that is differentiable on X,
in the usual sense, with continuous derivative, and that is zero outside
a bounded set. An example of such a function u is

u0ðxÞ ¼
exp 1

jxj2�1

� �
if jxj < 1

0 if jxj � 1

(
ð5Þ

that is differentiable in Rd in the usual sense, with continuous deriva-
tive, and zero outside the bounded set fx 2 Rd; jxj < 1g.

When the function f is differentiable in the usual sense gk is pre-
cisely the partial derivative @f=@xk. However the relation above makes
sense even if f is not differentiable. To see this take d ¼ 1;X ¼ ð�1; 1Þ
and f ðxÞ ¼ jxj. This function is not differentiable at x ¼ 0 but neverthe-
less it has a generalized derivative

gðxÞ ¼ �1; for x < 0
1; for x > 0

�

(note that g is not defined at x ¼ 0 in agreement with our convention,
as one point has measure zero).

To see that g satisfies relation (4) it suffices to break the interval
½�1; 1	 into two parts ½�1; 0	 and ½0; 1	, on which f is smooth, and inte-
grate by parts on each of the intervals.

Another example of generalized derivative is that of the hedgehog,
given by the vector-valued function nðxÞ ¼ x1=jxj; x2=jxj; . . . ; xd=jxjð Þ
with x 2 Rd; jxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rd

i¼1x2
i

q
: In this case the function is not even defined

at x ¼ 0 but one can check that it has a generalized gradient

rnðxÞ ¼ 1
jxj ð1� nðxÞ � nðxÞÞ. As before, the generalized gradient coin-

cides with the usual one at all points where n is differentiable in the
usual sense. The hedgehog is a significant example that is often
encountered as a prototypical defect. The usual treatment of such a
defect is to consider a small hole around the singularity and analyze
everything outside that hole. However this kind of treatment requires
a knowledge of the location of the defect. The generalized derivative as
we have defined it has the advantage that it does not require such a
priori knowledge of defect locations.

It is desirable to be able to classify the functions that have generali-
zed derivatives on a scale that measures ‘‘how bad the possible defects
could be.’’ A possible way of doing this is by considering the average of
powers of the derivatives. We define the Sobolev space W1;pðXÞ as the
space of all vector functions f that have a generalized gradient rf such
that both

R
X jf ðxÞj

pdx <1 and
R

X jrf ðxÞjpdx <1. In this framework
the functions of finite energy are those in W1;2, since the Oseen-Frank
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and Landau-de Gennes energy densities are quadratic in the gradient,
but there are nevertheless examples of index one-half singularities
that can only be in the larger space W1;p; p < 2 (see Fig. 2 and
the next section). In the case of the hedgehog we have nðxÞ 2 W1;pðXÞ
if and only if p < d, so that when d ¼ 3 it has finite energy. On
the other hand the function f ðxÞ ¼ jxj in our first example is in W1;p

for any p. In general, for X a bounded set, we have that
W1;pðXÞ � W1;qðXÞ if q < p; thus the smaller the index the larger the
space and the more general the type of defects allowed. Functions
that have too strong a discontinuity will not be in any Sobolev space
of the type considered so far. For instance consider the function
f : ð0; 1Þ2 ! R defined by

f ðx; yÞ ¼ 1; for x � 0; y 2 ð�1; 1Þ
�1 for x < 0; y 2 ð�1; 1Þ

�

Then f 62 W1;p for any p. In fact f does not have generalized partial
derivatives. One might be tempted to state that the generalized partial
derivatives f are 0 almost everywhere. This is not the case. If one takes
g1 ¼ 0 to be the generalized derivative in the x direction and u to be
the u0, as in (5), one obtains a contradiction when replacing f ; g1;u

FIGURE 2 A non-orientable director field on a simply-connected domain, for
p< 2.
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in relation (4). This kind of discontinuity arises in attempting to orient
the director field in Figure 1, which can be shown to be impossible
even in Sobolev spaces.

Generalized derivatives and the framework exposed in this section
have proved their usefulness in other kinds of problems involving
discontinuities. For example, a study was made in [7] in which it
was theoretically predicted that, under suitable conditions, a spherical
cavity will form at the centre of a ball of isotropic, homogeneous non-
linearly elastic material subjected to hydrostatic tension or outward
radial displacement. In that study it was shown that the energy mini-
mizers depend on the particular Sobolev space considered, so that the
function space is part of the mathematical model. This raises the ques-
tion as to how to decide which function space is appropriate. For liquid
crystals this question might be answerable by means of an analysis of
the passage from a molecular model to a continuum one, but this has
not been done. For further examples and discussion see [8].

For more details about Sobolev spaces the reader is referred to [9,10].

3. THE OVERLAPPING OF THE TWO THEORIES

In the framework developed in the previous section we call a line field
Q 2 W1;pðXÞ orientable if and only there exists a vector field in the
same functional space, that is an n 2W1;pðXÞ such that nðxÞ 2 S

2

and QðxÞ ¼ sðnðxÞ � nðxÞ � 1=3ðIdÞÞ for all x 2 X, except for possibly a
set of measure zero. This amounts to saying that Q is orientable if
and only if we can find a corresponding vector field whose singularities
are no worse than those of the line field. In fact it can be shown
(see [11]) that if we can find a unit vector field m in the largest Sobolev
space W1;1ðXÞ such that QðxÞ ¼ sðmðxÞ �mðxÞ � 1=3ðIdÞÞ then in fact
m 2W1;pðXÞ and thus Q is orientable in W1;pðXÞ.

One might wonder whether there could be several distinct ways of
orienting a line field into a vector field. The intuition of the continuous
case seems to indicate that there can be only two possible orientations,
one being obtained from the other by a change of sign. This can be
shown to be the case in the Sobolev space framework as well (see
[11]), namely if you have a unit vector field n 2W1;pðXÞ corresponding
to a line field Q 2 W1;pðXÞ there can be only one other vector field
corresponding to the same Q, namely the vector field �n.

Recall that in the first section we showed that the natural way to
check the orientability is to do it along all possible loops. We also
saw that in simply-connected domains, that is domains where any
loops can be continuously deformed into a point, line fields without
jumps, that is continuous line fields, can be oriented into vector fields.
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In the framework of Sobolev spaces the idea of checking the
orientability along all possible loops cannot work any longer in
the same manner because loops are sets of measure zero. However
the intuition provided by the continuous case is still valid, as long
as the spaces W1;p are not ‘too far’ from the continuous case. In fact
the following result is proved in [11] (see also [12]).

Theorem. For simply-connected domains, line fields belonging to W1;p

for some p � 2 are orientable.
However for p < 2 this is no longer true and there are line fields on

simply connected domains that are not orientable. An example is pro-
vided in Figure 2. This is a line field QðxÞ ¼ sðnðxÞ � nðxÞ � 1=3ðIdÞÞ
on X ¼ ð�1; 1Þ3 � R3 corresponding to an index one-half singularity,
where

nðx1; x2; x3Þ ¼
ðx2;�x1; 0Þ for ðx1; x2; x3Þ 2 ð�1; 1Þ � ð0; 1Þ � ð�1; 1Þ
ð0; 1; 0Þ for ðx1; x2; x3Þ 2 ð�1; 1Þ � ð�1; 0Þ � ð�1; 1Þ

�

One can check that the generalized gradient of Q is equal to the classical

gradient everywhere in Xnfx1 ¼ x2 ¼ 0g, and that jrQj2 ¼ Qij;kQij;k ¼
2=jxj2. Thus Q 2W1;pðXÞ only for p < 2. An interesting consequence of
the theorem is that this line field cannot be modified in a cylindrical core

x2
1 þ x2

2 � e2 so that it has finite (constant s) Landau-de Gennes energy.
For if this were possible the line field would be orientable, and our ear-

lier reasoning applied to the domain x2
1 þ x2

2 > e2 shows that this is not
the case. This can be contrasted with the case of a line disclination given

by the orientable director field nðxÞ ¼ ðx1=r; x2=r; 0Þ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
,

which has infinite Oseen-Frank energy, but for which the analysis in

[13] shows that n may be modified in a core x2
1 þ x2

2 � e2 by ‘escape into
the third dimension’ so that it has finite energy.

4. DIFFERENCES BETWEEN THE TWO THEORIES

In this last section we restrict ourselves to two-dimensional planar
domains and consequently we take the line fields to lie in the plane.
This is a physically relevant geometry, for instance for thin films.

We are interested in studying situations when both orientable and
non-orientable line fields can exist, and thus we consider domains with
holes, as in Figure 3, that is domains that are of the form G ¼ X n [N

i¼1Ui

where X is a simply connected domain out of which one cuts n holes,
each hole Ui again being simply connected. The boundary @G of this
domain consists of N þ 1 parts, namely the outer boundary, the bound-
ary @X of X, and the boundaries of the N holes, denoted @Ui.
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Each of the N þ 1 components of the boundary of G is a loop, on
which non-orientable boundary conditions can thus be imposed. It
can be shown (see [11]) that imposing non-orientable boundary con-
ditions, on any part of the boundary, has the effect of excluding any
orientable line field from matching them. Thus there is no finite
energy (in W1;2) line field that is orientable in G but matches the
non-orientable line boundary conditions.

On the other hand, if one puts orientable boundary conditions on all
N þ 1 components of the boundary then one cannot find a finite-energy
line field that is non-orientable and matches the orientable boundary
conditions. In this sense one can recognize the orientability just by
checking it at the boundary.

Nevertheless, if one puts boundary conditions just on one part of the
boundary, say on @X, one could have on the remaining components,
@Ui; i ¼ 1; . . . ;N, either orientable or non-orientable boundary con-
ditions. In fact it can be shown that if one imposes orientable boundary
conditions just on a component of the boundary then in general one
can match those boundary conditions both with orientable and non-
orientable line fields. In order to see this we need to introduce a device
that allows us to think of line fields in terms of auxiliary vector fields.

We can think of any line in the plane as determined by two vectors
of length one having opposite signs. In complex notation a line is
determined by the pair fz;�zg with z ¼ x1 þ ix2; x

2
1 þ x2

2 ¼ 1. We

FIGURE 3 A domain with holes.
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associate to such a line the unit length vector AðzÞ ¼ z2 ¼ x2
1 � x2

2

þ2ix1x2. One can check that for each such unit vector there exists a
unique line and also that the line field and the auxiliary vector field
are in the same W1;p space. Moreover it can be checked that if we have
a line field Q on a loop, then to it corresponds a vector field A(Q) that
has even degree if and only if Q is orientable (for the definition of
degree see [14,15]).

As an application of the auxiliary line field, we show how it can be
used for extending a continuous line field on the outer boundary to a
continuous line field on the whole domain. To this end it is useful to
recall a well known theorem from topology (see [13,14]) which says
that one can extend a unit vector field from the boundary to a unit
vector field on the whole domain, provided that the unit vector field
on the boundary has degree zero.

Thus if we put a continuous line field qX on the outer boundary, @X,
we can associate to it the auxiliary vector field AðqXÞ, which has a cer-
tain degree, let us call it w0. In order to apply the above mentioned
result we need to have a degree zero unit vector field on the whole
boundary of G. Hence we take some arbitrary line fields mUi

on the
boundary @Ui for i ¼ 1; 2; . . . ;N. If we denote by wi the degree of mUi

the condition that the unit length vector field on the whole boundary,
@G, has degree zero becomes, in terms of degrees, w0 þw1 þ � � �
þwN ¼ 0 (note that one can always find vector fields mUi

; i ¼
1; 2; . . . ;N so that this last condition is satisfied). Using the above men-
tioned topological result we extend the continuous unit length vector
field on the boundary @G to a continuous unit length vector field mG

on G. Then A�1ðmGÞ is a continuous line field on G that matches the
boundary condition qX on @X. In order to know whether the line field
is orientable or not it suffices to observe that this can be determined
at the level of the auxiliary vector field. Namely the line field
A�1ðmGÞ is non-orientable if and only if at least one of the numbers
wi; i ¼ 0; 1; . . . ;N, is odd.

In the first section we hinted that although the elastic energies can
be taken to be the same in the Oseen-Frank and Landau-de Gennes the-
ories, the result of the energy minimization might be different because
there are ‘more line fields than vector fields’. Thus the Oseen-Frank
theory would miss those minimizers that are non-orientable line fields.

In Figure 4 we present a geometry in which the global minimizer is
necessarily non-orientable, even though the configuration admits both
orientable and non-orientable line fields. We consider a stadium out of
which two disks are removed. We impose tangential boundary con-
ditions on the outer boundary of the stadium. However no restrictions
are imposed on the boundaries of the two disks. The line field on the
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outer boundary can be oriented in two ways (that differ only by change
of sign) and one orientation is shown in the Figure 4b. A line field
matching the boundary conditions is shown in Figure 4a. We do not
claim that the line field shown in Figure 4a is the global energy
minimizer. What we can say is that if the distance between the two
disks is large enough the line field configuration in Figure 4a will have
lower energy than any possible vector field configuration in Figure 4b.
This can be seen by observing that along a line AB the directional
derivative will be zero in the case of the line field in Figure 4a, while
for the situation in Figure 4b, along almost any such line AB there
will be a non-zero gradient, a configuration of minimum energy (just
along AB) being shown.
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