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Synopsis

Weak lower semicontinuity theorems in the sense of Chacon’s Biting Lemma are proved for multiple
integrals of the calculus of variations. A general weak lower semicontinuity result is deduced for
integrands which are a composition of convex and quasiconvex functions. The “biting”” weak limit of
the corresponding integrands is characterised via the Young measure, and related to the weak * limit
in the sense of measures. Finally, an example is given which shows that the Young measure
corresponding to a general sequence of gradients may not have an integral representation of the type
valid in the periodic case.

Introduction

A well-known weak lower semicontinuity theorem in the multi-dimensional
calculus of variations is the following:

THEOREM A (Acerbi and Fusco [1]). Let Q = R" be bounded and open, and let
I(u) '—‘I f(x, u, Du)dx, ueW"P(Q;R"N),
Q

where 1 =p <=, and where f: Q X RY X M¥*"— R satisfies
(i) fis a Carathéodory function;
(i) 0=f(x, u, P)=a(x) + C(|Ju|” + |P|?), for every xeR", ueR" and Pe
MN*" where C >0 and a(-) € L'(Q);
(iii) fis quasiconvex in P.
Let u”’—u in W"?(Q; R"). Then

I(u) = lim inf () (0.1)

(for the relevant definitions and notation see Section 1.)

The main result of this paper (Theorem 2.1) generalises Theorem A by
replacing the inequalities in (ii) by the weaker condition

(ii)’ If(x, u, P)| = a(x) + C(|ul” +|P[?).
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Thus, for example, we can cover the cases when (a) p=2 and f=Q(P) is
quadratic and quasiconvex (equivalently, quadratic and rank-one convex), (b)
f =J.(P), where J,(P) is some rth order minor of P and p =r. However, in case
(b) it is known that for p =r the conclusion (0.1) does not hold ([9, Cou-
nterexample 7.3]), and thus (0.1) is replaced in Theorem 2.1 by a slightly weaker
assertion (see (0.2)). To describe this we draw attention to the following result,
known as Chacon’s Biting Lemma. For proofs and more general statements of the
lemma, see [13, 24, 10].

THeorEM B (Biting Lemma). Let Q  R" be bounded measurable, and let f
be a bounded sequence in L'(Q). Then there exist a function feL'(Q), a
subsequence f™ of f¥, and a nonincreasing sequence of measurable subsets
E, c Q with lim,_,.. meas (E,) =0, such that

fO—f in L\Q\Ey),
as v— « for each fixed k.

The results E, which are removed (bitten) from Q are associated with possible
concentrations of the sequence .
If u”?—u in W"P(Q; R"), then under hypothesis (ii) the sequence

fOx):=f(x, u”(x), DuP(x))

is bounded in L'(R2), so that Theorem B applies. The conclusion of Theorem 2.1
is then that

f(x, u, Du) dx = lim inf fix, u™, Du™)dx forallk. (0.2)
Q\E, v—= JO\E,
The proof of Theorem 2.1 is based on Theorems A and B and the identification
of the limit in Theorem B via the Young measure (v, ),.q corresponding to Du‘".
In fact, it is shown that for each k,

flx, u®, Du™)—I(x):=(v,, f(x, u(x), -)) in L'(Q\E,),
and that
I(x)Zf(x, u(x), Du(x)) for almost every x € Q.

Since f is bounded in L'(Q), we may extract a further subsequence, again
denoted u, such that

f, u®™, DU pu in M(Q),

where #(Q) denotes the space of measures on Q. We make some remarks
concerning the relationship between the measure p and /, and in particular
(Theorem 2.4) give a sufficient condition that u = 1.

As an application of Theorem 2.1 we recover (Corollary 2.3) a result of Zhang
[29] concerning the biting weak continuity of Jacobians in the critical case. As a
further application we prove in Theorem 2.6 a lower semicontinuity theorem of
classical type for integrands of the form

g(x, fix, u, Du), . . ., fu(x, u, Du)),
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where g is nonnegative and is a convex nondecreasing function of its last M
arguments, and where the functions f; satisfy the hypotheses of Theorem 2.1.

In Section 3 we make some remarks concerning possible extensions of our
results to the framework of the theory of compensated compactness. We also
disprove a plausible conjecture concerning the Young measure (V,)icq
corresponding to a sequence of gradients Du”; in particular, following an idea of
Ball and Murat [11], we exhibit such a Young measure which is independent of x
but is not realisable as the Young measure of any sequence D¢(jx) correspon-
ding to a function ¢ € W;X(R"; R") with D¢ periodic with respect to a given cube.

1. Notation and preliminaries

Throughout the rest of this paper Q denotes a bounded open subset of R". We
denote by MV*"=R"N the space of real N Xn matrices, with norm |P|=
(tr PTP)i. We write C,(Q) for the space of continuous functions ¢: Q— R having
compact support in Q, and define C{(Q)=C'(Q)NCy(RQ). If 1=p=w», we
denote by L?(Q;R™) the Banach space of mappings u:Q—>R", u=
(uy,...,uy), such that w; e LP(Q) for each i, with norm ||u|| v =
LN, 14l ) Similarly, we denote by W'?(Q; R") the usual Sobolev space of
mappings u € L?(Q; R") all of whose distributional derivatives du;/dx; = u,,
1=i=N, 1=j=n, belong to L*(Q). W"?(Q; R") is a Banach space under the
norm

1|l wre@:ryy = @l ;r™y + | DUl ri@;pvmys
where Du=(u;,). We sometimes write H'(Q;R")=W"*Q;R"),
H™'(Q; RY) =dual space of H}(Q;R"), where H}Q;R") is the closure of
CH(Q; R") in the topology of H'(Q; RY) and C'(Q; RY) = Cy(Q)".

Weak and weak * convergence of sequences are written — and =, respec-
tively. In the case of the space #(€2) of Radon measures on Q we say that a
sequence pu)* u in M(Q) if and only if

(WD, @)= (p, ) for all ¢ € Co(Q).
We also use the following special notation, motivated by Theorem B.

DerNiTioN 1.1, A bounded sequence f in L'(Q) converges weakly in the
sense of the Biting Lemma to a function f € L'(Q), written

fPLf inQ,
provided there exists a sequence E, of measurable subsets of €, satisfying lim,_,..
meas (E;) =0, such that for each k
fP—f in L'(Q\E,).

DEerFINITION 1.2. A function f: Q X RN X R*— R is a Carathéodory function if
(i) f(-, u, a) is measurable for every u € R, a e R’,
(ii) f(x, -, -) is continuous for almost every x € Q.

DEeFINITION 1.3. (see [19, 4, 5, 8]) A function f : MV*"— R is quasiconvex if

[ 1P+ Do) dx 27(P) meas (V)



370 J. M. Ball and K.-W. Zhang

for every P e MN*", ¢ € C}(U; R"), and every open bounded subset U = R". A
Carathéodory function f:Q X RN x MN*"— R is quasiconvex in P if there exists
a subset I = Q with meas (I) = 0 such that f(x, u, *) is quasiconvex for all x € Q\J,
ueR"

We make use of the following result (see [16]):

ProposiTioN 1.4. Let f: Q X RN X R*— R be a Carathéodory function, and let
u:Q— RN, v:Q— R* be sequences of measurable functions satisfying

u—u in measure, v?’—v in LY(Q;R®).
Then f(-, u’(:), vP()) = £ (-, u(-), v(-)) converges to zero in measure.

We also use the following theorem concerning the existence and properties of
Young measures. For results in a more general context and proofs the reader is
referred to [12, 2, 7].

THEOREM 1.5. Let z(’:) be a bounded sequence in L'(Q; R*). Then there exist a
subsequence z of z and a family (v,).cq of probability measures on R*,
depending measurably on x € Q, such that for any measurable subset A c Q,

f('* Z(V))_‘ <Vxl f(x! )) in LI(A)

for every Carathéodory function f: Q X R*— R such that f(-, z") is sequentially
weakly relatively compact in L'(A).

2. Biting lower semicontinuity theorems
The following lower semicontinuity theorem is the main result of this paper.

THEOREM 2.1. Let 1=p < and let f: Q X RN x MN*"— R satisfy
(i) f is a Carathéodory function;
(ii) |f(x, u, P)|=a(x)+ C(|u|” + |P|?), for almost every xeQ, ueR",
P € MN*", where C is a nonnegative constant and a(-) € L'(Q);

(iii) f is quasiconvex in P.
Then given any sequence u’— u in W"?(Q; R"), there exist a subsequence u’
and a family (v,).cq of probability measures on MN*", depending measurably on
x, such that

fx, u®, DUM) 2 I(x):=(v,, f(x, u(x), 1)) in Q (2.1)

and
(e, f(x, u(x), *)) Zf(x, u(x), Du(x)) almost everywhere in Q.  (2.2)
Moreover, if E, denotes the sequence of measurable subsets of Q in Definition 1.1
corresponding to (2.1) and satisfying lim,_,.. meas (E,) =0, then for each fixed k,

J f(x, u(x), Du(x)) dx =lim infj flx, u™(x), Du™(x))dx. (2.3)
Q\E, v—= Jog,
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To prove Theorem 2.1 we need the following lemma:

LemMa 2.2. Let f:Q X RY X MN*"— R satisfy assumptions (i), (ii) of Theorem
2.1 If u’—u in W"P(Q; R"), there exists a subsequence u" such that

fx, u™, DU & (v, f(x, u(x), -)) = f f(x, u(x), P)dv,(P) in Q,
MN!IU!

where (V.)req is the family of Young measures corresponding to the subsequence
Du™.

Proof. By assumption (ii), f:=f(x, u”’, Du?) and f9:=f(x, u, Du?’) are
bounded in L'(R). Hence by Theorem B there exists a subsequence u such that

[y FOEE inQ 2.4)

for some y, ¥ € L'(Q). By the compactness of the embedding W'?(Q) < Lf, (Q)
we may and shall assume that

u™—u almost everywhere in Q. (2.5)
By (2.5) and Proposition 1.4,
fM=Ff®->0 in measure. (2.6)

But it is well-known (and easily proved using Egorov’s theorem) that if a
sequence K’ —h in L'(A), and h”— H in measure in A, where AcR" is
measurable, then h = H almost everywhere in A. Applying this result to the
sequence h™:=f — f  we deduce from (2.4) and (2.6) that y = ¥ almost
everywhere. But g(x, P):=f(x, u(x), P) is a Carathéodory function and
F™(x)=g(x, Du'(x)) is weakly relatively compact in L'(Q\E,) for each k,
where the E, are the sets corresponding to f*) in Theorem B. Hence by Theorem
1.5

i(x) = (Vx* f(x’ u(x)’ )) almost everywhere,

for which the desired result follows. O

Proof of Theorem 2.1. Form=1,2, ..., let g,(t) =max (t, —m), t € R. Then
&m is convex and monotone, so that g, of is still quasiconvex in P. Also
-m=g,(f(x, u, P))=a(x)+ C(lu|” +|P|?), 2.7

for all xeQ, ueR", Pe M™*". Therefore by Lemma 2.2 applied to f, |f| and
gm°f there exists a subsequence u™ of u” such that

f(x, u™, Du™) &= (v,, f(x, u(x), -)) in Q, (2.8)
If(x, u®, Du)| 2= (v, |f(x, u(x), )|) inQ, (2.9)
gm(f(x, u®, DU™)) 2= (v,, gu(f(x, u(x), -))) inQ, (2.10)

as v— =, for each fixed m. Let E,, E,, ; be the sequences of measurable subsets
of Q in Definition 1.1 corresponding to (2.8), (2.10) respectively, and denote by
Xm,« the characteristic function of Q\E,, ;. Let ¢ € L*(Q2), 0= ¢(x) = 1 for almost
every x € Q. Let

8m i, U, P) = @(xX)Xm k(x)8m(f (x, u, P)).
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Then g, x + m is quasiconvex in P and so by (2.7) and Theorem A we have
liminf | g, «(x, u™, Du®™) dx éj‘ 8mi(x, u, Du) dx,
vo= Jg Q
that is

lim inf P (X)gm(f(x, u™, Du™)) dx =

CQN\E &

| e u Dupax. @1y
By (2.10) the left-hand side of (2.11) equals

[ 0w g7, uta), ) . 1)
Q\E,

.k

Since ¢ is arbitrary with 0= ¢ =1, and since lim meas (E,, ) =0, it follows from
(2.11), (2.12) that ke

(V,, gm(f(x’ u(x), ))) =
&m(f(x, u(x), Du(x))) almost everywhere in Q. (2.13)

But by (2.9),
(vy, If(x, u(x), -)|) < almost everywhere in Q,
and since |g,,.(#)| = |¢| for all ¢,

gm(f (x, u(x), P)I =|f(x, u(x), P)|,

for all x € Q, P e MV*". Passing to the limit m— o in (2.13) using Lebesgue’s
dominated convergence theorem, we therefore obtain (2.2), from which (2.3)
follows immediately. [

Notice that Theorem 2.1, which we have deduced using Theorem A, in turn
implies Theorem A. This follows easily from (2.3) using the fact that f =0.

We can apply Theorem 2.1 to give a different proof of the following weak
continuity result of Zhang for the determinants of mappings in W'*(Q, R"). (For
further developments see [20, 15].)

CoroLLARY 2.3 (Zhang [29, Corollary 2.2]). Let n=2 and u’—u in
W'(Q, R"). Then there exists a subsequence u™ of u"” such that

det Du' 2~det Du in Q.

Proof. Since det P is a null Lagrangian (cf. [4, 5]), +det P are quasiconvex, so
that the hypotheses of Theorem 2.1 are satisfied with p =n. Hence

(v,, det P) =det Du(x) almost everywhere in Q. 0O

Under the hypotheses of Theorem 2.1, the sequence f(x, u*, Du®™) is
bounded in L'(Q). We may therefore extract a further subsequence, again
denoted u™, such that as v—

f(x, u™, DU™) =y in M(Q).
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We also have, by Theorem 2.1, that
fx, u®™, Du™M)2~1 in Q.

As noted by Ball and Murat [10], for an arbitrary L'-bounded sequence there is
in general no relation between the weak * limit in the sense of measures and that
given by the Biting Lemma. In the present context, however, a relation can be
established under the further hypothesis that f is bounded below by an affine
function of the vector J(P)e R*™™ consisting of all the minors J,(P) of
P e MV*" of orders 1 <r <min (n, N). A key idea for the proof of the following
result was suggested to us by F. Murat.

THEOREM 2.4. Let p Zmin (n, N). Suppose that f, in addition to the hypotheses
of Theorem 2.1, satisfies

f(x, u, P)—a.J(P)—bZ0, (2.14)
forall x e Q, ueR", Pe MN*", where a € R°"™™ and b € R. Then pZ1.

Proof. Let ¢ € Co(Q), ¢ =0, and let E; be as in Theorem 2.1. Since +J(P)
also satisfies the hypotheses of Theorem 2.1, by the same proof as in Corollary
2.3 we may assume that

J(Du™)—J,(Du) in LY(Q\E,) (2.15)
for every k and a. Also, by [22], for every «
J,(Du™)*~J,(Du) in M(Q). (2.16)

From (2.14) we have that

J [f(x, u®, Du™) —a - J(Du™) — b]¢ dx
Q

z|  [fx, u™, Du®)—a-J(Du®)—blpdx (2.17)

Q\E,

for every k. Passing to the limit v— in (2.17) and using (2.15), (2.16), we
deduce that

(1, ¢) —j [a - J(Du) +b]¢dx§j [l - a - J(Du) - b]¢ dx.
Q Q\E,
Letting k— o and using the arbitrariness of ¢, we obtain the result. O
If f = f(P) is polyconvex, that is
f(P) = gU(P)),
where g: R*™™ — R is convex, then (2.14) follows from the inequality
gU(P)) = g(0) + A-J(p),
where A € 3g(0).

ExampLE 2.5. Let n = N = 2. The quadratic function

f(P) = |PP — (tr PY
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is used to prove optimal bounds in homogenisation theory ([27, 21]). The identity
f(Du) = %(“:,;‘ = ) (i — ) + (i) ; — () (2.18)

for smooth u shows that f is polyconvex. (In (2.18) the usual summation
convention is in force.) Note that f is unbounded below.
Let u”?—u in W"*(Q; R"), and let 1" be a subsequence such that

f(Du™)*pu in M(Q),
f(Du™) 21 in Q.

A direct application of polyconvexity, or of the basic lemma of compensated
compactness (see Section 3) implies only that the measure u satisfies

u=f(Du) in the sense of measures.
However, Theorem 2.1 implies that
!=f(Du) for almost every x € Q,

and Theorem 2.4 shows that this is potentially a stronger result. In fact if 0 € Q
and we let uf = &' ""?¢(x/¢e), us=...=ut =0, where ¢ € C5(R"), ¢ #0, then it
is easily checked that as e— 0
u*—0 in W"3(Q;R"),
Du*—0 uniformly outside any neighbourhood of 0,

so that [ =0. But if ¥ € C5(Q) then

iim [ fOuypax=([ 3, #ay) 00,

=0 Jg R® j=2
so that u = ([ z= D7z ¢% dy)8o# I. (Of course the same argument shows that u #/
in the simpler case f(P)=|P|*.)

The following is a general lower semicontinuity result for variational integrals:

THEOREM 2.6. Let

I(u) = L g(x, fi(x, u, Du), . . ., fu(x, u, Du)) dx,

where g: Q X R™ — [0, +=] is a Carathéodory function such that for x € Q almost
everywhere,
(i) a—g(x, a) is convex for a=(a,, . .., ay) € RY,
(ii) g(x, a) is nondecreasing in a; €l for 1=Sj=M, where ,cR is a closed
interval (finite or infinite), and where for 1=j=M,

(iii) f;:QXRY X MN*"> [,

(iv) f; satisfies the hypotheses of Theorem 2 1 for some p independent of j.
Let u’—y in W"?(Q; R™). Then

I(u) = lim inf I(u).
j—pm
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Proof. Assume that a = lim inf /(u”) <. Then by Theorem 2.1 there exists a
;—'m

subsequence u‘ of u"” such that

lim I(u™) = a, (2.19)
fi(x, u™, Du™) 2= 1(x) Zf(x, u, Du), 1=j=M, (2.20)
’) 7 ]

where we may assume that the sets E; corresponding to (2.20) are independent of
j. Since g(x,.) is convex and nonnegative, a standard lower semicontinuity
theorem (see [17, 14, 2]) implies that

aztiminf [ g(x, filx, u, Du), ..., fule, u, Du™)) d
Vot Q\E;

= glx, Li(x), ..., L(x))dx

Q\E,

z g(x, filx, u, Du), . .., ful(x, u, Du)) dx,

Q\E,

where we have used hypotheses (ii), (iii) and (2.20). Letting k— %, we deduce
that I(4) = a, which by (2.19) gives the result. O

Remark 2.7. The use of the Biting Lemma to prove lower semicontinuity
theorems follows Balder [2] and Lin [18].

ExampLE 2.8. Theorem 2.6 can be applied to the case of polyconvex integrands
by setting M =s(n, N), fi(x, u, P) = J(P), provided p = min (n, N). This recovers
as a special case the improvement by Zhang [29, Theorem 3.1] of a result of Ball
and Murat [9, Theorem 6.1].

3. Remarks on Young measures and compensated compactness

It would be of interest to prove a version of Theorem 2.1 in the framework of
compensated compactness. It does not seem obvious how to do this even in the
quadratic case. To make this more precise, suppose that

(i) u”—uin L*(Q; RY) as [ >,

(ii) L, a; du®/3x, € compact set (for the strong topology) of Hpe(Q), for
i=1,...,q. Here the ay are constant coefficients.

Define

V= {(ll, E) GRN X Rn: zaqkljgk:(),i: 1, ‘e ey q}
ik
A = {A€R": there exists £ #0 with (4, §) e V}.
Let Q be a quadratic form on R" such that

Q(A)=0 forall AcA. (3.1)

Since Q(u®) is bounded in L'(R), we can extract a subsequence u of u”’ such
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that
Q™) *pu in M(Q), (3.2)
Q™))% inQ, (3.3)
where by Theorem 1.5
I(x)=(v,, Q(-)) for almost every x € Q. (3.4)

The fundamental theorem of compensated compactness ([25, 26, 21]) says that
the measure u satisfies

u=0(u), (3-5)
so that in particular (applying the theorem to +Q), if Q(A) =0 for all A € A then
u=0(u). (3.6)

The analogue of Theorem 2.1 is the following
CoNJECTURE 3.1. Under the above hypotheses
1= Q(u) almost everywhere in Q. 3.7

Theorem 2.1 is a stronger statement of this conjecture in the gradient case, that
is when u® = Dv. For general coefficients a;, the proof of Theorem 2.1 does
not apply, and the conjecture remains unproved. Another result consistent with
the conjecture is that of Zhang [29, Theorem 2.6}, namely that if

U=y, v—y in L*(Q; R"),
curl u"” € compact set of H™(Q; R™),
div v € compact set of H™'(Q),
then there exist subsequences 4, v such that
u® . vMly v inQ.
Another open question is whether the limits in (3.2), (3.3) satisfy the inequality
uZl in MQ). (3.8)

This question is not completely resolved even in the case of gradients, since there
exist by the results of Terpstra [28] and Serre [23] (see also [6]) quadratic
functions Q(P), P e M™*", min(n, N)=3, which are quasiconvex but not
polyconvex, so that Theorem 2.4 does not apply.

Finally, we highlight the complicated structure of the Young measure (v,):eq
corresponding to an arbitrary sequence of gradients by disproving a conjecture
which would have led to simple proofs of lower semicontinuity theorems. The
motivation for the conjecture is the following. Suppose for simplicity that Q < R"
is an open cube, and that ¢ € Wi 2(R"; R") with D¢ Q-periodic. Define
u(x)=j"'¢(jx), x € Q. It is well-known (see, for example, [26] and [9, Lemma
A.1)]) that if f € Co(MV*™) then

e 1 .
fOu) 2t | FDOONdy in L)
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Hence the Young measure v = v, corresponding to Du” is independent of x and
given by

f)= [rsona. £ ecum. (39)

meas (Q)

The conjecture is that the Young measure (v,),.q corresponding to an arbitrary
weakly convergent sequence u') in W'?(Q; R") (after extraction of a suitable
subsequence) has a similar representation

Ve ) = sy | /DA Ny, feCum™™,  @10)

for some function ¢(x, y) satisfying ¢(x, ) € W"?(Q; R") for almost every x.
Were this true for a ¢ that was, for example, Q-periodic in y, then the
quasiconvexity condition (cf. [8])

1 _ .
W(Q)I Fxa, o, DY) dy ZF (o, U eas (0) I Dy(y)dy) (3.11)

for all x,€Q, upe R and Q-periodic y € Wi;2(R"; RY) would imply under
appropriate growth hypotheses that

(Ve, fx, u(x), -)) Zf (x, u(x), (vx, P)) =f(x, u(x), Du(x)),

where 4™ —u in W?(Q; R"), which is the result (2.2) of Theorem 2.1.
We disprove the conjecture by considering the sequence u”: Q— R?, given by

u(x,, x;) =j~ " sin (jx,), } G.12)
uf(x,, x;) =j 2 cos (jx,) sin (jx,), ‘
which is of the type considered by Ball and Murat [11]. Since
. ] 0
DU, x)=(_, U . 2 ) 613
@1 52 =t in (jxy) sin () 008 () cos (2xn)) 1)

it follows that u¢” is bounded in W"=(Q; R?). Let (v,),cq be the Young measure
corresponding to Du'”. It is easy to see that v, is independent of x; in fact, it
suffices for this to check that M(Du?) has a weak* limit in L*(Q) that is
independent of x for any monomial M(A), and this is easily verified using test
functions of the form 6(x,)x(x;). Then we have

ProrosiTioN 3.2. Let v=v, be the Young measure corresponding to the
sequence of gradients Du') given by (3.13). Then there is no function ¢ €
W'(Q; R?), Q = (0, 1)?, such that

(v.f)= [ FDO) dx for allf € CoM™), (3.14)

In particular, there is no ¢ € W;X(R?; R?) whose gradient is Q-periodic such that
D¢(jx) has the same Young measure v as Du).

Proof. Since Du'? is uniformly bounded, supp v, is bounded. Hence, by the
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monotone convergence theorem, it follows from (3.14) that f(D¢) € L'(Q) and
(v.1) = Do) (3.15)

for all f e C(M**?)
In (3.15) we first choose f(A) =g(A,,), g € C(R). Then since

(v, f) = lim f F(Du®) dx, (3.16)
= Jo

we deduce that

80)= [ 8(¢2.0)

for all g € C(R), from which it follows easily that ¢, , =0 in Q. Similarly ¢, ,=0
in Q, so that

$1=P1(x1),  P2= Pa(x2). (3.17)
Next we choose f(A) = (A;;)% Then from (3.15)-(3.17) we obtain

E (¢1)* dx; = lim J-l cos (jx,) dx, = 3. (3.18)
J==Jp
Choosing f(A) = (A,,)*, we obtain
[ @92 dra=tim ([ cos v [ o (Pry i) =1 @19
Then, choosing f(A) = (A;,A)*, we get
[ @iran @ dr=tim ([ eost e e[| o (P dea) = . 320
b 1 1 Jrom L 1 1 2 16+ .

Combining (3.18)—(3.20) gives the desired contradiction. O
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