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|. INTRODUCTION

The invariance principle, introduced by LaSalle [40] and subsequently
generalized by Hale [34], gives information on the structure of w-limit sets in
dynamical systems possessing a Liapunov function, and the principle and
related methods have been used to determine the asymptotic behavior of solutions
to a wide variety of evolution equations (see Refs. [4, 10, 17-19, 23-29, 34, 48,
51, 55, 56]). The principle has been extended by Dafermos [24] to compact
processes, a special class of nonautonomous systems, including, in particular,
dynamical and asymptotically dynamical systems, periodic, almost periodic,
asymptotically periodic, and asymptotically almost periodic processes. In this
paper we describe and apply some modified versions of the invariance principle
for a class of nonautonomous systems which we call generalized processes. A
generalized process is a natural extension of the concept of a process to evolu-
tionary systems whose solutions for given initial data are not, or are not known
to be, unique. Aside from treating nonuniqueness, this paper significantly
weakens two hypotheses which are customarily made in connection with the
invariance principle, namely, that the Liapunov function V7 be (1) continuous
with respect to convergence in the phase space, and (ii) nonincreasing along
solution paths.

The need for weakening (i) may be seen from the problem of proving that all
weak solutions z(x, t) of

Wy 4w, — At == 0, xe(2), ¢t -0,

(1.1)
w1, =0, t 0,

tend to zero as f — o0, where £ is a bounded open subset of #® with boundary
¢£. A suitable phase space for (1.1) 1s

X - WrH8) » LHQ).

For ¢ == {w,, w,} € X let T(t)$ += {w(t), w/t)}, where w is the weak solution of
(1.1) satisfying {z(0), ,/(0)} {20, , 7, }. A natural Liapunov function [7 : X' —> %
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is given by V(w, v) = [o[| Vo > 4 v® + lw?] dx, in terms of which the energy
equation becomes

V(b)) — V(Tty) =2 | e | (7) d. (1.2)
0

It is not obvious that the positive orbit € *(¢) == { J,c+ 1(t)¢ is precompact in X’
for each ¢ € X. Since precompactness of ("(¢) is essential for the existence of
a nonempty w-limit set it is tempting to give X’ the weak topology, since then it
follows from (1.2) that || T(¢)¢ |y is bounded for te#*, so that ¢(¢$) is
sequentially weakly precompact. Unfortunately, however, I is not sequentially
weakly continuous, and hence the standard invariance principle arguments
break down. This difficulty was overcome in a similar problem in [4], but in the
present paper a different remedy is adopted which is more amenable to abstract
generalization; in place of continuity conditions on }” itself we substitute lower
semicontinuity or related conditions on the change in 17 in fixed time along
solution paths. For example, it is easily seen from (1.2) that the function
¢ — V(é) — V(T(t)p) is sequentially weakly lower semicontinuous on X for each
te# . A less obvious property of F is that if ¢, s, and if V(s,) —
V(T(t)$,) — O for some t > 0, then V(d,) — V{(¢). These two properties are
special cases of the general conditions discussed in this paper. In the case of (1.1)
our results imply that T'(¢)¢ tends to zero (strongly) in X as t — oo for any ¢ € X.
In other examples we obtain convergence to some one of a number of steady-
state solutions. It should be noted that Dafermos [25] has proved an interesting
invariance principle for uniform compact processes on a metric space under the
assumption that ¥ itself be lower semicontinuous; simple examples for ordinary
differential equations in #? show, however, that this result does not extend to
compact processes in general.

The need for weakening hypothesis (ii), that I” be nonincreasing along
solution paths, is illustrated by the problem of determining the asymptotic
behavior of solutions of nonautonomous equations that in some sense become
autonomous as ¢ — oco. Under appropriate conditions such equations generate an
asymptotically generalized flow (cf. Section 3) on a suitable function space. It
may then happen that the autonomous equation possesses a Liapunov function,
77, which is nonincreasing along solution paths of the autonomous equation, but
which may increase along solution paths of the nonautonomous equation. In
such cases the rate of increase of V(¢) for large ¢ is not arbitrary, but is restricted
by the requirement that the nonautonomous equation is asymptotically auto-
nomous. Tvpically the following condition holds, that for any s ¢ #~

Bm[17(1) — 1°(t + 9)] > 0. (1.3)

Under conditions of this type, and under hypotheses such as those discussed
in the previous paragraph, our results have the following flavor: For the given
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solution there exists an interval / of real numbers such that for each y = I there
is an orbit in the w-limit set on which I takes the constant value y. In general, as
is shown in Section 4 by examples of ordinary differential equations in #2, one
cannot conclude that I i1s constant on every orbit in the w-limit sct. If, however,
it is known that there are only finitely many orbits on which I is constant, or if
certain other conditions hold, then stronger results may be obtained. Condition
(1.3) was motivated by work of Ball and Peletier [11], who considered the
asymptotic behavior of solutions of the one-dimensional heat equation with
asymptotically autonomous nonlinear boundary conditions. In {11] an invariance
principle was established for asymptotically dynamical systems defined on a
metric space, possessing a continuous Liapunov function I/, and with onlv a
finite number of rest points. The main idea of the proof is used in this paper.
Even for continuous [, however, the results presented here improve those in
[11] by weakening other continuity requirements, by allowing for nonuniqueness
of solutions, and by giving information when there are infinitelv many rest
points.

The plan of the paper is as follows. In Section 2 we prove the abstract results
for nonlinear semigroups defined on a limit space. In Section 3 we combine
devices of Dafermos [27] and Sell [50] to deduce corresponding results for
generalized processes possessing an asymptotic hull. In Section 4 the results for
asymptotically generalized flows are applied to ordinary differential equations in
#". Using work of Artstein [1] we give conditions under which everv bounded
solution tends to a rest point as ¢ — o0. In Section 5 we prove analogous results
for weak solutions of operator equations of the form

i == du — f(u, 1), (1.4)

where A is the generator of a strongly continuous semigroup 7(t) of bounded
linear operators on a Banach space X, and where f: X x # — X is a nonlinear
function which stabilizes as # — o0 to an autonomous function f: X -> .\"in the
sense that

pfocl
lim | supi f(u, 9) — fwyids -0 (1.5)
Ty neG
for every bounded subset G of A". Use is made of a result (cf. Balakrishnan [57],
Ball [8]) which establishes the equivalence between weak solutions of (1.4) and
solutions of the integral equation

ult) = T(t — 1) u(ty) — [Z T - ) fu(s), sy ds,  t 1. (1.6)

[0

The discussion is divided into two cases.
In Subsection (a) we consider the case when 7T(7) is compact for t ~> 0 and fis
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continuous in ¥. Under further natural hypotheses, and for the case when the
autonomous equation

i == Au + f(u) (1.7)

possesses a continuous Liapunov function I : X —#, we determine the
asymptotic behavior of weak solutions of (1.4). The necessary existence theory
for (1.4) and (1.7) is due to Pazy [43], and some improvements of his results are
described. The theory is applied to parabolic initial boundary value problems of
the form

u; = Au + o(u, t), xel, t oy,

(1.8)

Ulzo == 0, u {,_, prescribed,

where £ C #" is a bounded open set, and where g(u, t) stabilizes as t - oo to
an autonomous function g(u).

In Subsection (b) we consider the case when X is reflexive and f is sequentially
weakly continuous with respect to ». In this case it is necessary for applications to
consider Liapunov functions which are not sequentially weakly continuous, so
that the full strength of the abstract theory is required. Under further hypotheses
an existence and continuation theorem is proved for (1.4) using the Schauder—
Tychonov fixed point theorem; the theorem extends similar results for the case
of an ordinary differential equation in a Banach space (4 == 0) due to Chow and
Schuur [21], Fitzgibbon [33], and Knight [36]. Similar results to those in sub-
section (a) are proved concerning the asymptotic behavior of solutions of (1.4)
when (1.7) possesses a Liapunov function. The theory is specialized further to an
abstract damped nonlinear wave equation

@ -~ Bw + F(w, 2, t) == 0, (1.9)

where B is a densely defined positive self-adjoint operator on a real Hilbert
space H with B~ compact, and where F: D(B'/2) x H x # — H. Fairly strong
conditions are imposed on the asymptotic form of F as # — oo, Two special
cases of (1.9) are discussed in detail. The first is the nonlinear hyperbolic initial
boundary value problem

Wy + a(w, t) w, — dw 4+ (e, 1) = 0, xef t >y,
(1.10)

w |20 == 0, w |, and w0, |,_, prescribed.

"The second is an initial boundary value problem for a nonautonomous version
of a rod equation discussed by Ball [3-5], namely,

wy - (8 d(t)) wy 4 0w, — (B + b(1) 1k [1 we(&, 1Y d€) w,, = 0,

0

xef t >,

(1.11)

w =, = 0atx =0,/ 2!, . and w, |, prescribed.
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The existence and continuation theorems for (1.4) have applications to proving
rigorous blow-up theorems for certain nonlinear partial differential equations;
these results will appear in [9].

2. INVARIANCE PRINCIPLES FOR NONLINEAR SEMIGROUPS

In this section we shall be concerned with nonlinear semigroups defined on
a set 2. We shall suppose that 2" forms a limit space (see below); this turns out
to be more convenient, as well as more general, than assuming Z to be a topolo-
gical space. A similar point of view in a dynamical systems context has been

adopted by LaSalle [40].

DrriNITION. A set .4 forms a limit space if to each of certain infinite sequences
{x,:n = 1,2,...} in & (called convergent sequences) there corresponds at lcast
one element x of &, called a Iimit of x,, so that the following conditions are

. . . & . . 2
satisfied. (For convenience we write x,, = x if & is a limit of x,, .)

. Ka

(1) Ifx, == xforall n, theny, 5 &

.. x . &
() If x, 5 x and x, is a subsequence of v, , then &, — x.

Example. 1f Z is a topological space then # forms a limit space in which
convergence is the usual convergence of sequences in the topology of .7

We now make a number of definitions. Each has a natural topological counter-
part, but the reader is warned that if 7" is a topological space, then in general
none of the terms defined below have their usual topological meanings.

DerFINITIONS. A limit space 4 is Hausdorff it each convergent sequence has
precisely one limit.
If 7 is a limit space and A C 4" then A is precompact if any sequence in .4
has a subsequence converging to a point of 47; if B € % then the closure of B is
defined by €/B = {x € %" there exists {x,} © B with x, x X}

A map f A — % between limit spaces 2, % is continuous 1if v, A
implies f(x,) —>f(x)

A real-valued function g defined on a limit space 4 is lower semicontinuous
if x, = x implies g(x) << lim,, .. g(x,).

Let Z be a limit space. Let T'(*) be a semigroup on Z, that is a family of
continuous maps T(¢): & — &, te R+, satisfying (i) T(0) = identity, (ii)
T(s + 1) = T(s) T(t) for alls, te . Let V: 2" — A.

For s € X define the positive orbit through by Oy = e T(t ), the
o-limit set of Y by w() == {$ € Z: there exists a sequence t, — oo such that
Ty iqS} and the 7 w-limit set of $ by wp(y) = {¢€Z: there exists a
sequence f, — oo such that T'(z, ) -—>qS and V(T(t,)¢)— V($)]. Clearly
wp(h) C w(y) for any ¢ € Z, with cquality if I is continuous.

def
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A subset 4 of 2 is said to be positively invariant if T(t)4A C A forall t € %7,
and invariant if T(¢)A == A for all t € Z*. An invariant set consisting of a single
point is called a rest point.

Various forms of the following basic lemma are given in [13, 27, 34, 40]. The
proof, though well known, is included for the convenience of the reader.

LemMa 2.1, w(y) is positively invariant for each s € 2. If C+(4) is precompact
then w() is nonempty, and if in addition X is Hausdorff, then w(i) is invariant.

Proof. Let ¢ € w(), te #*. There exists t, — oo such that T(z, ) —>¢>
It follows from the continuity of T(t)ythat T(z 4 t,) = T(t) T(2, 2 T(t)$, so
that 7(t)¢ € w(y). Hence w() is positively invariant. Let ¢+(4) be precompact
and let ’2” be Hausdorff. Clearly w(i) is nonempty. Let ¢ € w(i), ¢, — oo,
Tt 2 ¢, t € A+. By the precompactness of () there exist a subsequence
t, of t, and an elemcnt x € w(yp) such that T(z, — ) - 5 x- Hence T(t, ) ==
T@) T(t — th 2 T(t)x. Thus T(t)y == $, so that w(¢) is invariant. |

Our first result 1s
THEOREM 2.2. Let y € Z and let V satisfy the condition

For any sequence ¢, — oo with T'(¢, ) EN ¢, and for any t € #t,

() V() — V(T()$) < Em[V(T(t, ) — V(T(t, - ).

n->2

Suppose that for each 7€ XA+
Hm{V(TER) = VT + 7] < 0

Then for each ¢ € w(p) the function V(T (t)¢) is nondecreasing on A+,
Proof. Let t, —» o0, T(t )b ¢, te B+ Then T(t, + t} 5> T(t)p, so
that by (A,) we obtain

V($) = V(Z(0) < Bm{V(T(0)) — V(T +1)4) < 0

The result follows since w(i) is positively invariant. [

Remark. Condition (A,) is satisfied in particular (for all s € Z') if for each
7€ Rt the map ¢+ [V($) — V(T(7)¢)] is lower semicontinuous on &. Under
this assumption, however, it is not so easy to deduce Theorem 3.5 from
Theorem 2.2.

ForyeZlet M, = {pc Z: V(T({)p) = y for all t e #+).

TaEOREM 2.3. Let iy € 2 and let V satisfy the condition

(B,) Ift, — o0, Tt 5 o, and V(T(t,)h) — V(T'(t, 4 m0) — O uniformly
Y \for T in compact subsets of B+, then V(T(t,))) — V(¢).
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Let Ot} be precompact, let the map t — V(T(tW) be comtinvous on (0, oo),
and let « = lim,_, V(T(@W), B = Tim, . V(T(W).
(1) Suppose that

1_1_11_1[ V(TaW) — V(T - )] =20 for every reR:,

and let B > —o0. Then o0 > B = a > —w0 and wp(p) N M, is nonempty for
each v € [, B].
(11)  Suppose that

hm[V(T () — V(T(2 - 7)) == 0 for every 7.

Then © > B = o > —0o0, wp(p) N M, is nonempty for each y e[, B], and
w(‘/’) = wV(‘/’) c Uve[a‘B] Mv .

Remark. Condition (B,) is satisfied in particular (for all 4 € Z) if ¢, Z é
and V{(¢,) — V(T(v)¢,) — 0 uniformly for 7 in compact subsets of #+ imply

that V(g,) — V().

In order to prove Theorem 2.3 we need the following lemma.

LemMAa 2.4, Let f be a real-valued continuous function on (0, o).
(1) Suppose
Hm[f (1) — f(t +5)] =0  for every sed+.

t>w

= Fooifa = —o0 or B = ). Then there exists a sequence t, — o such that
f(t, + 1) — y uniformly for r in compact subsets of #+ with (in the case y = -+ o0)
f(@,) —f(t, 4 7) — O uniformly for = in compact subsets of R .

(i1)  Suppose
Itijg[f(t) —f(t 49 =0 for every s € #+.

Then f(t) — f(t + s) — 0 as t — oo uniformly for s in compact subsets of #+.

Proof. (i) We first show that if 5, — 5, > 0 and 1, — oo, then

im[f(t,) — f(tn + 5,)] = 0. ()
n-r0

(We remark that (*) does not hold in general if 5, == 0.) Let 0 < a << b < 0.
For positive integers m, n let G, , == {se[a, b]: f(t) — f(¢ -+ 5) = —1/m for
all # 7= n}. Since f is continuous, G, ,, is closed. Also, for each m we have by



[0S
w2
—

GENERALIZED PROCESSES

hypothesis [a, b] -= U’ 4G, . By the Baire category theorem some G,
contains an open interval. Repeat this procedure for each [a, 8] C (0, c0) and let
G,, be the union of the corresponding open intervals. Clearly G, is open and
dense in (0, ). Let G == (,,_, G,, . G is dense in (0, o0). Lets, — 5,€ G. Itis
easy to see that (*) holds. Now let 5, => 0 be arbitrary and choose s; € G with
s << s, .Lets, —s,andt, — 0. Thent, — s, -5 — coandys, — 55 - 5, —>3,.
Hence

liﬁr‘n[f(t” = S0 — ‘\‘1) f(fn o sn)] ;3 0.

o

But by hypothesis
L%m[j(lrl) - f(ln Nj' So — SI)] ;: 01

so that (*) again follows. If « = 8 <C o0 then any sequence ¢, — oo satisfies the
conclusion of the lemma. If ¢ = f == o let¢, =1 + ma\{t ERT: f(t) < nj.
Suppose that 7, % 7. By (%) lim,.. [f(t, — 1) f(f,l +7,)] = 0. But
f@, — 1) —f@, +,) <0,sothat f(t, — 1) — f(z, + 7,) — 0. In particular
f(t, — 1) — f(t,) = 0. Therefore f(t,) — f(t, + 7,) > 0 as required.

Let « <2 f and let ye(«, §). Choose y, € (o, y). There exists a sequence
sy, — oo with f(s,,) = v, foreachm. Letr,, = min{t : ¢t = s, -- L and f(2) = y}.
The sequence r,, — s, — o0, since otherwise there would be a subsequence
r, — s, — 1 = 1. By (*) we would then have lim,_.. [f(s.}) — f(v.)] = 0, which
contradicts the fact that f(s,) — f(r,) =y, —y < 0. Lett, , =r, —n—1.
For fixed » and large enough m we have ¢, , 2= s, and f{z, ,, + 7} < y for all
7€ [0, n]. Further, by (*), for large enough m and all 7 € [0, =],

f(tn,m RE T) ﬁf(rm) \ *l‘/‘fl.
Hence there exists m(n) such that
Sty =) —y ! < Ijn forall rel0,n],

and ¢, =%y oy — o0 as n— oo, Clearly {#,} has the required properties.

Finally let o < 8 and y € [«, B]. Choose y, € («, B) with y,, — y. By the above,
for each n there exists ¢," e Z+ with "f(t,” +- 1) —y, | < l/n for all 7€ [0, #]
and t," — oo, The sequence {t,'} has the required properties.

(i) Lett, — oo, s, % 5. Applying (*) to = f we see that f(t, — 1) —
f(t»z - n) - 0. HCI‘ICC f(tn) - f(tn BN S,,) — 0. I

Proof of Theorem 2.3. (i) Let f(t) := V(T(@)), and let ye [« B] with
y # . Let {t,} be a sequence with the properties given in Lemma 2.4(i).
Since (’ (x/;) is precompact there exist a sub%equence {.} of {1,} and an element
¢ € w(ih) with T(2, ) —>¢ For any re#™, T(t, + 70 - A T(r)¢. By the lemma
V(T(t, - pp) — V(T(t, + 7 = 7)) — 0 umforml) for ¥+ in any compact

505/27/2-6
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subset of #7, so that by condition (B,) we have F(T(t, - 7)) — V(T(z)d) .
Thus wy($) N M, is nonempty. Suppose B == -0 (v = - o). Let {t,} be the
sequence in the lemma corresponding to y - -i-o0 (y == -~ o0). The same
argument as above shows that there is an element € w(y) with P(T(t, 35)--> 17($),
which is a contradiction.

(i) Letdew(y) and let 1, ~ oo, T(1, )b Ay By the given condition,
Lemma 2.4(i1), and condition (B,) we deduce that for every 72,
V(T(t, © o) > (). Hence w(y) = wp(h) © Uepoy M, and B > — . The

result now follows from part (i). |}

One way in which Theorem 2.3 may be apphied 1s the following. Suppose that
4" 1s a Hausdorfl topological space and that only finitely many of the sets
M.NE/C ), ye[a, B], are nonempty. Then under the hypotheses of
Theorem 2.3(i) we deduce that « = B, so that by Theorem 2.3(11), w()
wp() C M, . H, further, it is known that M, consists only of a finite number of
points, and if the map t —> T(#)y is continuous on #  (so that w(}) is conncctcd)
then it follows that w((/:) consists of a single rest point ¢, and that T(t) - 24,

V(T(W) — F(#)ast -

3. GENERALIZED PROCESSES

Let X be a limit space. For simplicity we suppose that X' is Hausdorff. We
denote by X" the set of all maps ¢: #+ — \ and give X% the limit space
structure of pointwise convergence, ie., ¢, -—*)(]S if and only if ¢,(¢) £ At )
forallte #° . If € X and r & # " the r-translate ¢, of ¢ 1s defined by $.(1) -
$(t — 7) for all t « # . Let A(X) denote the set of all subsets of X7 .

Derinrrion. A map G: # > A(N) is a generalized process on X if the
following properties are satisfied:
(i) Ifse# deGls),reH, thend e Gs - 7).
(i) Tf se # and ¢, & G(s) with ¢,(0) convergent then there exist & = G(s)
and a subsequence ¢, of ¢, such that ¢, X o.

A function ¢ & G(s) with $(0) v is called a path originating at (s, x). A
generalized process G which is a constant (i.c., G(s) -+ G(t) for all 5,1, = %) is
called a generalized flow. Let 2% denote the set of all subscts of X If G is a
generalized process on X' we mayv define a corresponding family of operators
Unl(t, )12V »2%by

Uty ) U a0, ECAN. (3.1
dEG(s)
b E
If v & X" we abbreviate Uq(t, s){x! by Ug(t, s)x. The following result is casily

proved.
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TueoreM 3.1. Let G be a generalized process on X, and let U(-, -) be defined
by (3.1). Then

U0, SECE  forall ses#, ECX (3.2)

and

Ui+ 7, YEC Ugt,s + YUy, YE  forall t,reH,ses, ECX. (3.3)

Note that equality need not hold in (3.3), since if se#, re £, ¢eG(s),
e G(s -+ 7), and ¢(7) — (0), then the function ¢ defined by §(t) = #(¢) for
0 <t << 7,¢(t) =t — 7)fort = = need not belong to G(s). Thus the defini-
tion of a generalxzed process allows for a type of history dependence. Note also
that it follows from the definition that if E is precompact then U (¢, s)E is
precompact for each te #+t, se £, xe X.

If G is a generalized process such that for each s € #, x € .\ there is precisely
one path originating at (s, x) then G is called a process. If G is a process then for
cach se #, v € X, and t € #7 the set Ugl(t, s)x consists of a single point, so that
U(t, s) induces a map from .Y into X, Furthermore equality holds in (3.2) and
(3.3).

Our definition of a generalized process is but one of a number of ways to give
an abstract framework for nonautonomous systems with possibly nonunique
solutions. For a survey of other methods see Bushaw [16]. Of particular interest
1s the work of Barbashin [12] on autonomous systems, extended and developed
by Bronstein [14], Budak [15], Minkevic [41], and Roxin [46, 47]. 'These authors
consider a family of operators possessing properties similar to those of the
Uq(, *), and then deduce from assumed continuity conditions the existence of
suitablv detined solution paths. Our approach, which takes as fundamental the
solutions themselves, makes the application of the theory to examples more

direct.
Let % be the set of all gcnuallzcd processes on \. We define convergence of
sequences in 7 as follows: G, = G if and only if for any subscquence G,, of G, ,

for anv s € #, and for any sequence ¢,, € G, (s) such that d),,,( ) 18 convergent,
there exist ¢ € G(s) and a subsequence ¢, of ¢, with &, i é. 1t is clear that
with this definition of convergence % forms a limit space. Note that in general 4 is
not Hausdorft, since if G, % Gand if Ge ¥ satisfies G(s) 2 G(s) for all se A
then G, 5 G.

If o € # then the o-transiate of a generalized process G on X is the generalized

process G, defined by

G(s) = G(s -~ o) forall se#.

DerFiNITION (compare Dafermos [23]). A subset J# of @ is said to be a hull
of the generalized process G if and only if the following properties arc satisfied:
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(1) Given any sequence o, in 4 there exist G« # and a subsequence »,
of o, such that G, 5 G,
m
2y Gea,
(3) . 1s translation invariant, e, if G2, o< # then G, = 7.

Remarks. 1 A" C % satisties (1) and (2), then 4 IG,:Ge A, oc#isa
hull of . A generalized process may have infinitely many hulls, or it mav have
none.

For the remainder of this section we suppose that (} is a gcneralizcd process on
X and that # is a hull for G. Let 77#] = {G,d} e # <« X¥ ¢ e G(s) for
some se-#}. We define convergence in /('[/] as follows. We say that
G, )~ lG ¢} if and only if there exists s € # such that ¢, € G, (s),
$eGs),and G, —> G, ¢, LAY Clearly #[#7 forms a limit space with this
convergence. ()mhlmng ideas of Dafermos [27] and Sell {50] we make the
following:

DrerFinitions. Forte #7, G # let
S(G = G, ,
and for t ¢ #1, (G, ¢} € X[ let
T(HG, ¢} = (G, b4}

It follows from the definitions that S(-) defines a semigroup, the semigroup of
translates, on # | and that T(-) defines a semigroup, the semigroup associated with
G and X, on Z[A#]. Note that the sequential continuity of S(-) and 7(-) for
1 € #* 1s immediate.

Since 4 1s a hull of G, the positive orbit through G of S(°) is precompact in 7.
The w-limit set is denoted J#, and is called the asymptotic hull of G in . Note
that, bv Lemma 2.1, 5, is positively invariant under S(¢), and that if 2 is
Hausdortt (with respect to convergence in %) then ), is invariant under S(-).

DsrFINITIONS (compare Barbashin[12]). A subset 4 of Xis said to be positively
quasi-invariant if for any x € - there exist G € #,, and a path ¢ € G(0) such that
#0)  xand H(#') C 4, and quasi-invariant if for any x € 4 there exist G € #,
and a map i # — A such that (0) = x and 4, € G(o) for all o c £, where
(1) =®(o - 1) forall te #*  If o€ A, 1 [0, o0) — X, the Q-limit set 0f¢> is
defined by £2(¢) - {x e X: there exists a sequence /,, > oo such that ¢(2,) - ——»A;.

RN let Y ((0): b= EL.

Lemyma 320 Let s A, ¢ € G(s), and let (G, ¢) be the w-limit set of {G, ¢} with
respect to T(). Let E - e X*7 (G, ) € (G, ¢) for some Ge A, Then
B Q)
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Proof.  Clearly EYC Q(¢). Let x € £(¢), so that g/)t”(O) 2 v for some sequence
1, — oo. There exist a subsequence ¢, of t, and {G, ¢} ¢ Z[#7] such that

T(t )G, ¢ AN {G, ¢s}. Hence & - z[/(()) belongs to /% so that 2(¢) C 1.}

Lemma 3.3, Let se R, ¢ € G(s) and suppose that ¢(H7) is precompact in .
Then the positive orbit (~({G, ¢}) of the semigroup T'(-) is precompact in 4[H).

Proof.  'This follows directly from the definitions. |

The next theorem describes the invariance properties of Q-limit sets.

Turorem 3.4, Let sc # and € G(s). Then §2(¢) is positively quasi-invariant.
If $(#*) is precompact then L(P) is nonempty, and if in addition # is Hausdorff then

L) is quasi-invariant.

Proof. Let x € £(¢). By Lemma 3.2 there exists {G, )} € w(G, ¢) such that
H(0) = x. By Lemma 2.1, (G, ¢) is positively invariant, so that, again by
Lemma 3.2, §(£*+) C 2(¢). Since € G(0) it follows that Q(¢) is positively
quasi-invariant. The rest of the theorem follows similarly, using Lemmas 2.1,

3.2,and 3.3. |

Let V: Z x X — Z. We suppose that for each G € H# there exists a function
Vei# X X~ <% such that for any sequence s, in # that is bounded below and
is such that G, L—»(; and for any te #, xc X,

lim V(s, 4+ t, &) == Ve(¢, x). (3.4)

Note that VGo(t, 2) =V +o,x)forall g, te R, xe X.

DerINITION.  We say that condition (C) is satisfied if and only if whenever
ty— o, Gy S Ged,, sed $,€G,(s), and ¢, 255 Fe G(s) then for
each t e 2+

VG(S 95(0)) - VG(‘Y -+ t, $(Z /> i [V(tn + 5 (]Sn(o)) - V(fn + s+t ¢’n(t))]

ras

TueoreM 3.5. Let condition (C) be satisfied, let s € R, ¢ € G(s) and suppose
that for each € A~

llm[V(t +5,6() — V(t 7 =5, +N] <0 (3.5
Then for each x € £X¢) there exist G € A, and a path$ € G(0) such that $(0) -

H(Z+) C Q¢), and V(t, §(t)) is nondecreasing on H+.

Proof. Let = {G, ¢}. Apply Theorem 2.2 to T(*) and s with & = CLC+(ih)
and with [: 2" — R defined by J(G, $) = Ve(s, $(0)).
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. - s £4 rv Tio
So as to verify condition (A,) let 7, -~ o0, {G; . | A—Efi»{ .ot Then

é € G(s). Let 7e #-. By condition (C) we ()btdm

HGd) — G $) L0y v ()
m{F (1, b, () = V(0 5 m b ()]

m{ (G, ) = JGo oy, )

3

—- =

3
<

so that (A,) is satisfied. Let v e £2(4). By Theorem 3.4 there exist G € #, and
a path ¢ € G(0) with $(0) vy (A ) T 8A$). By Lemma 3.2, the positive
invariance of w(G, ¢), and Theorem 2.2 it follows that I '¢(#, $(t)) is nonincreasing

on# . |

Derinitions.  Forse A, G € #, ¢ € G(s) we define the V-limit set of $ by
02, &(d) + {xe X: there exists a sequence f, -~ oo such that ¢(z,) A X and
Va0, #(t,)) — Va0, x). If y € # and G € ., let M [G] = {x € X there exists
& € G(0) such that §(0) == x and Ig(t,$(t)) == v for all t € #+}.

DEerINITION.  We say that condition (D) 1s satlsﬁcd if and only if whenever
— o0, GlaGef,,ACI(/),, G, (s), ¢,,—->¢€C(s) and
'(in ’l 5 ¢n( —F (fn bt 7 (67'(r) > O

uniformly for ¢ in compact subsets of £ then V(z, | s,$,(0)) —> Fa(s, $(0)).

t

"

Turorem 3.6. Let condition (D) be satisfied, let s € 4, ¢ € G(s), let §(# 1) be
precompact in .\, and suppose that the mdp t—> F(t - 5,4(t)) is continuous on

(0, o). Let o« - lim, ., V(t 5, 4()), 8 = lim,_, V([ - 5, (1))
(1) Supposc that for each 7 ¢ 4"

Gm[F(t 5, (8)  F(t - 7= s,d(t = )] =0 (3.6)

and let B - —oc. Then oo °- B - a > ~oo and for each ye[w, f] there
exists G e A, with £, ~(¢) N IL[G] nonempty.
(i1) Suppose that for each re A"

(1 5, d() - V(47 s b+ )] - 0. (3.7

Then oo > B - x = —o, for cach ye o, B] there exists G e A, with
9, () N M_[G] nonempty, and
od) - U Qe U MG

Ge ', Ge Aty
vE|x.B]
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Proof. Let J and ¢ be defined as in the proof of Theorem 3.5. We apply
Theorem 2. 3 to T( ) and . To show that condition (B,) is satisfied let ¢, — o0,
G, e ) > (G, $}. Suppose that

V(tn -5 q‘t“(o)) - V(tn ©8 ot d),”(t)) —-0

uniformly for ¢ in compact subsets of #'.
By condition D, J(G, ,¢, ) — J(G,¢) as required. The result follows by
Lemmas 3.2, 3.3 and Theorems 2.3, 3.4. ||

In several important cases certain hvpotheses of Theorems 3.5, 3.6 may be
replaced by simpler ones. We collect these cases together in the next theorem.

TueoreM 3.7. (i) If the limit in (3.4) holds uniformly for x in precompact
subsets of X, and if V¢ is continuous in x for each G € J, , then conditions (C) and
(D) are satisfied.

(i) If condition (C) is satisfied and if Ve(t — s, §(t)) is nonincreasing in
te Rt for any se R, $ € G(s), then (3.6) follows from the general hypotheses of
Theorem 3.6. In particular (3.7) may be replaced by (3.5).

(ii1) Suppose that each G € A, is a process. Suppose also that

Vsy +t = 7,6(8)) — Vet 4- 7, Uglt, 7).(0)) — 0 (3-8)
whenever s, — o0, G,,n 2 Ge H,, teA, TreA, ¢, ¢ Gh."(r), and $,0) s
convergent. (This is a stronger condition than (3.4).) Then conditions (C) and (D) are
implied by the following conditions (C') and (D), respectively.
(C'y For any Ge A, and any t € R+ the function
xt—> Fa(0, x) — Va(t, Uglt, 0)x)
ts lower semicontinuous on X.
(D)) If Ged#,, x, >x, and if Vg0, x,) — Valt, Us(t, 0)x,) — 0 for
all t € 77+, then V (0, \”,,1) — Ve(0, x).
Proof. (i) This is trivial, since if s, — o0, G L Ge Hoyy Xy, X x, and
t € # then
lim Vs, + ¢, x,) = hm Vel x,) = Valt, x).

n*

(if) Let the general hypotheses of Theorem 3.6 be satisfied, let e At and
let 7, — oo. Without loss of generality we may assume that G; 5> Ge #, and

¢ ¥ §e G(s). Thus by (C)
]l%n;[V(t" s, (1) = V(t, 1 45, $(t, + 1))
= Vs, $0)) — Vals - =, d(r),

which is nonnegative by assumption.
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(iif) Let (C) hold, let 1, >0, G, > Ge o, se s b, G, (1),
AT , '
b, L2 ¢ e G(s), and { € #*. 'Then using (3.8) and (C") we obtain

Fe(s, ¢(()) - gy 4+ f q‘> I (s, q,’;(O)) - els L Ug(t, 5) ¢ (O\)
lm{Fo(s, 4,000 Fals 1, Ualr, 96,(0)]

l_im[ry([n ‘ RN QSN(O)) o ,'(/” -5 L (/’n(l))]
so that (C) 1s satisfied. .
Let (D) be satisfied, let 1, - «, G, > Ged,, sedh, e, (),
by 2 a% deGs), and (t, | 5,¢,00)) — F(t, - s =1, ¢,() >0 for all
te #+. Then

lir)r{l‘ V(t, + s, ¢,(0) - hm V(s ,(0)) (s, §(0)), so that (D) holds. ||

Remark. 'The advantage of conditions (C") and (D’) is that they are cxpressed
solely in terms of the limiting processes G, and thus can be easier to verify.
Finally in this section we mention the special case of asymptotically generalized

flows.

DErFINITION. A pair {G, G}, where G is a generalized process on X and G is a
generalized flow on X, is an asymptotically generalized flow if #° = {G} U User G,
is a hull of G and 4%, = {G}.

If {G, G} is an asymptotically generalized flow then G, — %, G for any sequence
s, ~> o0. Clearly V¢ is independent of ¢, so that Ve: X5

4. APPLICATIONS TO ORDINARY DIFFERENTIAL EQUATIONS IN #”

Consider the ordinary differential equation in #*
&= f(x, 1), 4.1)

where f: %" X A — H" satisfies the Carathéodory conditions, i.e., f is con-
tinuous in x for each fixed ¢, measurable in ¢ for each fixed x, and for each
compact K C #" there exists a locally integrable function my such that

(e, ) <0 mg(2) (4.2)

for all x € K. A solution of (4.1) on an interval [a, 5] is by definition a continuous
function x: [a, b] — Z" satisfying

(1) = ) + [ £, ) (4.3)
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for all s, t € [a, b). We study the asymptotic behavior of solutions of (4.1) when,
in a sense to be specified shortly, f(-, ) tends to a continuous function f: #% — %"
as + — o0. The associated autonomous equation is

¥ == (). (4.4)

Solutions of (4.4) arc defined in the same way as for (4.1).
We make the following further assumptions on f and f.

(1) For every compact KC#" there is a nondecreasing function
px: [0, c0) = [0, 0], continuous at 0 with pg(0) = 0, such that whenever
@, be # and u: {a, b} — K is continuous fuj(u(s ) ds 1s defined, and

-0
) [ Ful), ) ds | = pxlb — o). @.5)

(2) Torany a, be #, any sequence u,, — u, in C([a, b]), and any sequence
tk —> 00,

f{ lb Fuls), s + 1) ds — [ b F(uy(s)) ds.

Assumptions (1) and (2) follow Artstein [I1]. Let X = %", R > 0. For se %,
u: [s, 00) — X, define u e X#' by u(t) = u(s — ¢) for all t € #+. For se X let
G(s) = {x, € X® : x:[s, 0) > X is a solution of (4.1) satisfying | x2(c)] < R
for all oels, oo)} Let G ={xeX? :x is a solution of (4.4) satisfying
| ()] < R for all ¢ € #+}.

Lemma 4.1. {G, G} is an asymptotically generalized flow on X.

Proof. We first show that G'is a generalized process. Property (i) of the defini-
tion is clearly satisfied. To prove (ii) let s € % and let x,,: [5, 0) — X be solutions
of (4.1) satisfying | x,(0)| < R for all o €[5, 00). Let [a, 8] C [s, 00). By (4.3),
assumption (1), and the Arzela-Ascoli theorem the functions x,, are precompact in
C([a, b]). It follows by a diagonal argument, and by using (4.2) and the dominated
convergence theorem, that there exists a subsequence x, of x,, , and a solution
x 1 {s, 00) — X of (4.1), such that x, X% x. This proves (ii).

A similar proof shows that Gis a generahzed flow. If 6,,— ¢ in & then another
equicontinuity argument shows that G, - G,, while if o, — oo then we
deduce using (2) that G, —» G. This completes the proof. ||

THEOREM 4.2. Let V:9%" — A be continuously differentiable and satisfy
VV(x) - f(x) < O for all x € A" Let sc # and let x: [5, 0) — %" be a bounded
solution of (4.1). Let o = lim, ., V(x(2)), B = Tim,.., V(x(t)). For yc R let
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M, = {yeHhm There exists a solution x: A+—> A" of (4.4) such that 3(0) - v and
(x(t)) = vy for all t € #}. Then (x) N\ M, is nonempty for each y € [x, f].

Proof. Choose R >» 0 large enough so that xe G(s). We apply Theorem
3.6()with I” - I’z = [7and ¢ -~ x. By Theorem 3.7(i) conditions C and D are
satisfied, and hence by Theorem 3.7(i1) so 1s (3.6). The result follows. |

CoroLLARY 4.3. Let V" be as in Theorem 4.2. Suppose further that for each
y € X the set M., is either empty or contains only rest points of (4.4). (i.e., zeros of o),
and that each vest point of (4.4) 15 isolated in A*. Then every bounded solution
x: fs, o0) —> A" of (4.1) converges to a rest point of (4.4) as t — .

Proof. Only finitely many of the sets M, N {yve#": v, <7 R}, ye [qa, B] are
nonempty. By Theorem 4.2, « == . By Theorem 3.7(i1), £(x) contains only rest
points. Since £(x) is connected and each rest point is isolated the result
follows. |

TurorEM 4.4, Let V' be as in Theorem 4.2. Let 1: # X A" — A satisfv

lim F(s, - 8, 8) o P(),

noo

Jor any sequence s, — <o and for any t € A, the limit holding uniformly for x in
any bounded set. Let s € A, let x: [s, 00) — A" be a bounded solution of (4.1), let
a == limg_, V(t, 2(2), B - Tim,., V(¢ x(t)), and let

Lim[V(f, () — V( + 7,5t =7))] < 0 forevery teR.

ot
Then Q(x) N M, is nonempty for every y € [a, B] and £2(x) C U, e, M -
Proof. Apply Theorem 3.6(ii). |

The preceding results should be compared with those of Strauss and Yorke
{52, 53] for the case when there is a single rest point.
Finally we give two illustrative examples.

Exampres. (1) The number of rest points of (4.3) can be finite with every
solution of (4.4) converging to some rest point, but a bounded solution of (4.1)
may have nontrivial orbits in its £2-limit set.

Consider the system

F o= —r(r — 1),

. (4.6)
6 = cos® 8 = f(1),
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where f: # — #* is continuous, f(t}) — 0 as 1 — oo, but f;f(t) dt = oo, and
where (r, 8) are plane polar coordinates. If one changes to Cartesian coordinates
(%;,%,) == (rcos §,7sinf) it is easy to verify that (4.6) satisfies our general
hypotheses, so that it generates an asymptotically dynamical system. The phase
portrait of the limiting autonomous system

7 - ,,,,‘(,- . l)‘_"

§ - cost il

(@.7)

is shown in Fig. [. Every solution of (4.7) converges to one of the three rest

points (x, , &) == (0, 0), (0, 1), (0, —1). However, it follows from (4.6) that

o

ity = 60) ~ | f(s) ds,

0

Frcure |

so that, for example, any solution with initial data on the unit circle has limit set
the whole of the unit circle. In this example the autonomous system has no
Liapunov function ¥ for which the corresponding sets M, contain only rest
points, so that Corollary 4.3 does not apply. Similar examples may be constructed
using homoclinic orbits.

(2) Every solution of (4.4) can converge to some rest point, there can
exist a Liapunov function [ satisfying the hvpotheses of Theorem 4.1, but a
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bounded solution of (4.1) may have nontrivial orbits in its Iimit set. Here the
trouble arises because the rest points may not be isolated. Consider the system

0. (), w2 8 72, (4.8)

cos* 8 - f(1), w2 < 8 32,

where f1s as in the preceding example. In this case the limiting autonomous
system has for rest points the origin and the right half of the unit circle, and every
solution converges to one of these. Let A(f) be a smooth 27-periodic function
satisfying O << A(f) ~ 1 for all 6, 7" 0 for 8¢ [72, 37/2], and definc

'(r, 6) = r2[1 — h(6)].

It is easy to check that I is continuously differentiable and is nonincreasing along
solutions of the autonomous system, decreasing strictly unless the solution is a
rest point. But, as in the preceding example, any solution of (4.8) with initial
data on the unit circle has limit set the whole of the unit circle. Notice that
Theorem 4.2 applies in this case. FFor discussion of a related point see Artstein

[2, Sect. 8].

5. APPLICATIONS TO NONLINEAR EvortuTioN EQuaTioNs IN BANACH Space

Let X be a real or complex Banach space with dual space XA*, and let A be the
generator of a strongly continuous semigroup T(-) of bounded linear operators
on X. It is well known that there exist constants 3 > 0, w e #* such that
FT@) < Me! for all t e Z1. Let A* denote the adjoint of 4 and let D(A) € X
D(A*) C X* denote the domains of A, 4%, respectively.

Consider the formal equation

- Au = f(u,t), (5.1}
where f: X > Z — X is a given function.

DerinNITION.  Let #; = 1,. A function we C([t,, ¢,] : X) 1s a weak solution
of (5.1) on [ty, 8] if f(u("), ) el (4, t;; X) and if for each ve D(A*) the
function <u(t), @) is absolutely continuous on [, , t,] and satisfies

(d]dt)u(t), v = {ult), Aoy - flule), 1), o (52)

for almost all te[t,, t,].
The following result is an immediate consequence of Ball [8] (se¢ also
Balakrishnan [57]).
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TueoreM 5.4, Let t; > t,. A function u : [ty , {,] — X is a weak solution of
(5.1) on [ty , t] if and only if f(u(-), ) € L\t , t;; X) and u satisfies the variation
of constants formula

D
%)
Nt

) T a) - [T ) F) ) d (

forallteft,, 1]

We consider the asymptotic behavior of weak solutions of (5.1) when, in a
sense to be specified precisely, f(:, t) tends to a function f: X' - X as ¢ — o.
The associated autonomous equation is

u - Au — f(u). (5.4)

In Subsections (a) and (b) below we consider two different sets of hypotheses on
X, 4, f, and f. The discussion in Subsection (a} applies mainly to “parabolic”
problems; that of Subsection (b) is particularly suited to hyperbolic problems,
but may be relevant in other situations also.

Subsection (a)
We make the following hypotheses:

(a;) T(t)1s a compact operator for each t > 0.

(@) f(u, ) is strongly measurable for each ue X, f(-, ¢) is continuous
for almost all t € #, and for each bounded subset G of X there exists a locally
integrable function m; on # such that

I f(u, Dl << mg(t) for all # € G and almost all t € Z.

(a;) Foreachtye

AR
lim sup I me(7) dr = 0.
sy Y

(a,) fis continuous and for each bounded subset G of X

tim [ sup 1/, 9) — Fa) ds = 0.

ueG

Remarks. (1) It follows from (a;) and (a,) that f maps bounded sets to
bounded sets.

(2) It would be possible to develop the material in this situation under
weaker assumptions generalizing (1} and {2) in Section 4, but for simplicity
we have not taken this course.
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Using just hypotheses (a;) and (a,) we obtain the following local existence
and continuation theorem; an analogous result obviously holds for weak solutions

of (5.4).

THEOREM 5.2. Let uye X, t,& #. There exists a weak solution u(t) to (5.1)
satisfying u(t,) -- u, and defined on a maximal interval of existence [t , tmax),
where tmax " ty . For any such solution with tyax <= o0 there holds

t

» P

[ ), 7yidr oo (

Sl

)
n
s

Proof. A routine adaptation of the proof of Pazy [43, Theorem 2.1], who
assumed f to be continuous, shows that a continuous solution # of (5.3) exists on
some interval ¢, , #;) with f, >= ¢, . By Theorem 5.1, u is a weak solution of (5.1)
on [t,, ). By Zorn’s lemma this weak solution mav be extended to a weak
solution, again denoted w, defined on a maximal interval of existence [f,, fmax)-
Finally, if tjay < 5¢ and (5.5) does not hold then for ¢, =7 s <Z
have that

I =7 fTmax WC

u(t) — u(s) 1[0~ 1) — T(— 1) u)

| T~ ) - T - )] F(u(z), 7). dr

( VT ) f(ule), ) dr

"N

It follows from the dominated convergence theorem that u(t,) is a Cauchy
sequence for any sequence 7, tending to fyay from below. Thus limg, o u(f)
exists, so that ¥ may be continued into some interval [¢,, 1,) with £, = faux,

which is a contradiction. |}
It follows from (a,) and (5.5) that if fmax < oC then

Hm Ga(t) - .

s

which is the result of Pazy [43, Theorem 3.1]. Actually one may replacelim by
lim (cf. [9]).

The following result improves Pazy [43, Theorem 4.1]. Observe that hypothesis
(a,) is not used in the proof.

Lemma 5.3, Let t,c # and let u: [t , 50) -~ X be a bounded weak solution of
(5.1). Then u has precompact range.
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Proof. Let| u(t)i << Rforallteft,, ®)andlet B = {xe X:|[|xj < R}. If

{t,} is a bounded sequence in [t,, 00) then clearly u(¢,) has a convergent sub-
sequence. Let t, — oco. Then

u(t,) = T(1) u(t, — 1) + J: T — ) flu(t, —~ s — 1), 1, +5— 1) db.

Since the sequence u(f, — 1) is bounded, the sequence T(1) uft, — 1) is pre-
compact. It therefore suffices to show that the sequence

det r1
o [T = 9 Sty s 10 b D) ds

1s precompact. Let 0 << 8 << 1. Then

Ry o= T(S),Vu ’%— Fus

where
J1-8
Yy = J T — 8 —5) fult, +s5s— 1), t, —s— 1) ds,
[
1
— J T(1 — ) fu(t, ~s— 1), 1, +5— 1) ds.
-8
Clearly

ty
Ur | Mee f my(r) dr.

ty—b

Given e > 0, by (a;) there exists § ™ 0 such that| r, || < ¢/2. Since

ts
Fynll <X Mew r mp(7) dr << oo,
* ’nfl

the set 7'(8) v, is precompact and thus totally bounded, so that 7(8) v,, is covered
by a finite number of open balls of radius €/2 and centers x4 ,..., x,, . Given n
there exists 7, 1 < 7 <C m, such that|! T(8) v, — a1 <C ¢/2. Hence

\“ 2,) - X[} =~ “ rn 1 - T(S)}’,, - ‘\‘i ‘ < €

Therefore {z,} is totally bounded and thus precompact. ||

Let R > 0. For se #, u: [s, ©) — X, define u, € X% by u(t) = u(s - 1)
forallte #*. Forse #let G(s) = u, € X2 : u:[s, ) — X is a weak solution
of (5.1) satisfying || u(a)| < R for all o € [s, 00)). Let G = {u e X#": u is a weak
solution of (5.4) satisfying | u(c)ll <C R for all ¢ € #+}. Let X" have the limit space
structure induced by the norm topology of X
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THEOREM 5.4. [G, (G} is an asymptotically generalized flow on X.

Proof. Let se#, let u:[s, oo) - X be a bounded weak solution of (5.1),
and let o, > oo. By Lemma 5.3 the scquence u, (s) is precompact. Let v, - 5.
An argument similar to that in the proof of Pazy“[43, Theorem 2.1], and using
(ay), shows that the functions n, are precompact in C([s, s;] : .X). It follows by a
diagonal argument that there exist a subsequence u, of u, and a continuous
function u: s, ) — .\ such that uw, > u unxforml\ on compact subsets of
[s, 0). Let t & #-. We have that ’

ot

Mo (5 1) = Tty u, () = | T(t—7) fu, (s 7), 0, =5 = 7)dr.

0

But
_‘;: T(t— ) fu, (s - 7)o, 4 s —7)— fluls + )] dr ‘
RN O R R (O )|
U flug (s = 7)) — flu(s = )] d,

which tends to zero as p — o0 by (a,) and the fact that f maps bounded sets to
bounded sets. Hence u is a weak solution of (5.4).

Similar arguments show that G is a generahzed process, that G is a generalized
flow, and that if o, > o in #", then G, > G, . This completes the proof of
the theorem. |

DeriNtTiON. A continuously Fréchet differentiable function F: X' — % is
said to be a Liapunov function for (5.4) if and only if

CAu | flu), Vi(w)» << 0 for all we D(A).

LemMA 5.5. Let V be a Liapunov function for (5.4) and let u : [0, co) — X
be a weak solution of (5.4). Then V(u(t)) is nonincreasing on [0, o).

Proof. 1t suffices to show that F{u(t)) << V{(u(0)) for all te #+. Let T > 0,
define F(t) - - f(u(t)), and let F, ->F in C([0, T]: X)) with F, e CY[0, T]; X)
for each n == 1, 2,.... Let 7/"0_\; u(0) with v,,€ D{(A4) for each n. Define
v, € C([0, T] : X) by

1
ety = T(t) Ty | T(t— s) F(s) ds
0
Then v,(t)e D(A), v, e CY[0, T]; X), and 9,(t) == Av,(t)+ F,(t) for all
1 € [0, T (cf. Pazy [42]). Thus

V(e,()) — V() [ ]' (A (s) -+ Fo(s), V(@a(s)s ds

R — f) V@ s) ds, (5.6)

0
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Define z,(t) = v,(t) — u(t). Then
12
|30 <5 Me | 5O + [ Me | Fofs) — F(s) ds,
1)

so that v, — u in C([0, T']; X). In particular the set {v,(s): s € [0, T}, n = 1, 2,...}
is precompact in X, so that there exists a constant K > O such that
1V (@(5)iys < Kforallse{0, T] and # = 1, 2,... . Thus passing to the limit
in (5.6) we obtain F(u(t)) < V(u(0)) for all 2 € [0, T'] as required. ]

If 2w € X is a rest point of (5.4) then
{w, A*vy = (f(w), v> == 0 for all ©e D(A*),
so that, by a lemma in Ball [8], @ € D(A4) and
Aw - f(z) — 0.

We can now write down results corresponding to Theorem 4.2 and Corollary
4.3 for ordinary differential equations in #". The proofs are the same as for the
ordinary differential equation case.

THEOREM 5.6. Let V' be a Liapunov function for (5.4). Let se¢ R and let
u:[s, 00) — X be a bounded weak solution of (5.1). Let o = lim,..,, V(u(t)),
B =lim,_. V(ut)). For ye R let M, = {ye X: there exists a weak solution
: A" — X of (5.4) such that #(0) ==y and V(a(t)) = vy for all t€ #+}. Then
u) N M, is nonempty for each y € [«, B].

CoroLLArY 5.7. Let V be a Liapunov function for (5.4). Suppose further that
Jor each y € R the set M, is either empty or contains only rest points of (5.4), and
that each rest point of (5.4) is isolated in X. Then every bounded weak solution
u: s, ) — X of (5.1) converges to a rest point of (5.4) as t — 0.

Remark. One may also easily prove a result corresponding to Theorem 4.4.

Exampre. Let £ C 2" be a nonempty bounded open set with boundary 602
Consider the initial boundary value problem

uy = du -+ g(u, 1), xeQ, t >,

(5.7)
Uz =0, u |, prescribed,
and the corresponding autonomous problem
u, = du -+ g(u), xef 1 >0,
(5.8)

ulzo ~ 0, u {,., prescribed.

505/27/2-7
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We make the following assumptions on g and 2.

(1) g(u, ) and g,(u, -) are mecasurable for each u € #, and for almost all
te#, g(,t)is continuously differentiable.
(2) (0, t) = 0 for almost all # € #, and g(0) == 0.

(3) There exists a nonnegative locally integrable function m(t) satistying

Jtis

lim sup J m(r) dr - 0 (5.9)
§90 >4 Vi
for each t, € #, such that
| &(u, 1) :
e t) < m(t
1 %7 | u i + ]gu(u’ )l <\ "1( ) (5.10)

for all u e # and almost all t e A.

(4) & is continuously differentiable, and there exists 2 nonnegative locally
integrable function %(t) satisfying

A1
lim j n(s) ds = 0
oo ¢

such that
I g(u, t) — g(ﬁn_

1+ fu|

A g, 1) — )] << 9(2) (5.11)

for all u € # and almost all £ € #. (If n = 1, then (5.10), (5.11) may be replaced
by the inequalities

18w, 1)) - 1 g, 1), < omt) p(u), (5.10')
and
L8, 1) — 8@ + [ gu(u, 1) — gulw)l < n(t) p(w), (5.11)

respectively, where p is a continuous function of u.)

Let X be the Sobolev space Wi'*(£2). Define D(A) == {uc X; duec X}, 4 -= A.
It is well known that 4 is the generator of a semigroup T(-) on X such that T'(2)
is compact for ¢ > 0. Define the functions f and f by f(u, #)(x) == g(u(x), #) and
fl)(x) = g(u(x)), respectively. It follows from (1)-(3) that, after possible modi-
fication on a set of # measure zero, f: X X # — Xand f: X X. (If n = | one
uses the fact that W}**(R2) is continuously imbedded in C({2).) We claim that
hypotheses (a,)-(a;) are satisfied. First note that by Ekeland and Témam [32,
Chap. 8, Proposition [.1] the functions (¢, x)+> g(u(x), t) and (¢, x) >
Zu{u(x), t)u,(x) are measurable on K < £2 for any compact subset K of # and
any fixed x e X. Let 0, , 0, € L3(2). By (5.10) the functions g(u(x), t) 8,(~) and
Zu(u(x), t) u,(x) 0,(x) are integrable over K < £2, so that by Fubini’s theorem
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the function t — [ [g(u(x), ) 0,(x) + g,(u(x), ) u,(x) 8,(x)] dx is measurable on
K. Hence [ (u, -) is weakly measurable, thus strongly measurable by Dunford and
Schwartz [31, Theorem II1.6.11]. That f(-, ¢) is continuous for almost all ¢ #
is a consequence of (5.10) and the Vitali convergence theorem. (For a similar
result, see Krasnosel’skii {37, Theorem 2.3].) The other statements in (a,)—(a,)
are easily checked using (1)~(4). We now write (5.7) in the form

= Au - flu,t) (5.12)
and apply the preceding theory. Note that since for all v € D(4), ¢ € CF(£2),
(d2,4) =~ (e, 49),

where ( , ) is the inner product in L3(£2), any weak solution u of (5.12) satisfies
(5.7) in the sense of distributions.
Let

G = [ a0y, (5.13)
and define
V() = | [ Va(9) — Glu)] dr. (5.14)
Since by (5.10), (5.11), (5.13),
1G@) < C|[ 11+ 1rdr|
S C(v]+ 3o,

where C is a constant, it follows that V: X — % and is continuously differentiable.
Furthermore, if u € D(A4) then

CAu A+ Ja), V@) = =[] du(w) + g@)P dx <0,

so that I/ is a Liapunov function for (5.4).

Next we show that if y € & then M, is either empty or consists only of rest
points of (5.4). Let u be a weak solution of (5.4) satisfying V(u(t)) = y for all
t e Z*. Suppose for a moment that u(t) € D(A) for all # € #+. Then for t € #+,
$ e CR(Q),

0, 8) = @) ) < [ 166) #)] s
<Qﬁwwmﬁmqw%mﬁm

= [V(u(0)) — V(]2 2 [|¢ |2 -
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(u(1), #) — (w(0), $)] == [V((0)) — V(@(@)]'* 1% ¢ 129 (5:15)

But inequality (5.15) in fact holds for any weak solution of (5.4), as may be shown
by a method analogous to that used to prove Lemma 5.5. Thus u(t) = »(0) for
all £ € #+, which is our assertion.

From Theorem 5.6 and Corollary 5.7 we obtain

THEOREM 5.8. Let s€ A, and let u: [s, o0) — W3 *($2) be a weak solution of
(5.7) that is bounded in norm. Let ~ == lim, .. V(u(t)), B == lim,_, V(u(t)). Then
Jfor each v < [, B] there exists a rest point v of (5.8) belonging to £(u) with V(v) - - y.
If the rest points of (5.8) are isolated in VW *($2) then u(t) converges to a unique rest
point as t — o.

Results similar to the above may be proved for weak solutions of (5.7) with
less smooth initial data by exploiting the fact that 4 generates a holomorphic
semigroup on L), but the hypotheses on g and ¢ required differ somewhat
from (1)-(4); for an exposition of some of the techniques that would be required
the reader is referred to Henry [35] and Pazy [42, 43]. There is also no difficulty
in applying our method to the case when 4 is replaced in (5.7) by a strongly
elliptic operator of order 2m, m -~ 1, and g by the gradient of a function of the
derivatives of # of order less than m.

We remark that sometimes it is possible to prove boundedness of a weak
solution of (5.7) by use of maximum principle arguments.

Subsection (b)
We make the following hypotheses:

(b;) A is reflexive.

(by) f(u, ) is strongly measurable for cach ue X, f(-, t) is sequentially
weakly continuous for almost all t € #, and for each bounded subset G of X'
there exists a locally integrable function m; on # such that

HfQu, t)F <5 m(t)
for all # € G and almost all 1 € #.
(b;) For each tye#
tis

lim sup I~ me(r) dr = 0.

So0 1oty o

(by) f is sequentially weakly continuous, and for each bounded subset
Gof X

PR
1ir}} ' sup  f(u, s) — f(u) ds - 0.

vt neG
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Using just hypotheses (b;) and (b,) we can state the following local existence
and continuation theorem (an analogous result holds for weak solutions of (5.4)).

TuroreM 5.9. Let uge X, tye A. There exists a weak solution u(t) of (5.1)
satisfying u(ty) = uy and defined on a maximal interval of existence [f,, tmax),
where tmax = t, . For any such solution with tmax << co there holds

tmﬂk
[ fue), ) dr = oo, (5.16)
J,

Remark. 1t suffices for the theorem that f be defined on B,(x,) x [¢,, 1] for
some v > 0, #; > t,, where B (u) =% {ve X :|lv —u," < r}.

In order to prove Theorem 5.9 we require two lemmas.

Lemma 5.10. Let G be a weakly compact subset of a Banach space Y, and let
F: Y — Y be sequentially weakly continuous. Let F' ' ; denote the restriction of F 1o G.
Then F |;: G — Y is weakly continuous.

Proof. We use a method similar to that of Ball [6, Lemma 3.1]. Let 4 C ¥ be
weakly closed, and let ¥ belong to the weak closure of F-1(4) N G. There exists
a sequence {v,} CFYA4) N G such that y, Xy (see, for example, Wilansky
[54, Theorem 13.4.2]). Since F is sequentially weakly continuous, Fv, BA Fy,
so that y e F-1(4) N G. Hence F-1(4) N G is weakly closed, which proves the
assertion, |

Lemma 5.11.  The map (t, x) > T(t)x is jointly sequentially weakly continuous
on %+ < X, ie,ift, % t and x, K s then T(t,)x, A T(t)x.

Proof. For each t € #+ the map T(t): A" — X is linear and continuous, thus
sequentially weakly continuous by Dunford and Schwartz [31, p.422]. Let
t, —>1tin R, x, — & in X. The sequence T(¢,)x, is bounded. Since X is
reflexive there exist subsequences ¢, and ~, such that 7'(¢,)x, — v for some
v e\ But by Theorem 5.1 with f = 0,

~y
{T()x, = &, 00 = | (T(s)x, , A*v ds
Y
for all v e D(A%*). Passing to the limit we obtain (v, v == {T(#)x, v for all
ve D(A*). Hence y == T(t)x. Thus the whole sequence T'(z,)x, converges
weakly to T()x. |

Remark. One may also deduce Lemma 5.11 from general results for non-

linear semigroups (cf. Ball [7, Corollary 3.4], Chernoff [20]).

Proof of Theorem 5.9. Let r > 0, let m, = mp (., , and choose £, > ¢,
such that (1) || T(¢) < 2M for all t {0, £, — 1], (1) || Tty — u, << #/2 for

all £ € [0, t; — t,], and (iii) ﬂi m,(t) dt < rj4M. Let X, denote X endowed with
the weak topology, and let Y —= C([t,, #]; -Y',.), the space of continuous functions
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from {t,, t;]into X, . Let K = {ue ¥ (u(t) —uy| << rforall te{s,, 1] For
we Kand telt,,t,] define

(Pu)(t) = T(t — 1) uy + ‘j”j T(t — s) f(u(s), 5) ds. (5.17)

tn

If u € K then by Hille and Phillips [38, p. 73], « is strongly measurable. Thercfore
by a lemma in Knight [36], f(u(-), -} is strongly measurable. It follows that if
1€[ty,1;] then T(t — s) f(u(s), ) is strongly measurable in s on [t,,t]. But
[T - ) f(u(s), ) <0 2Mm,(s), and thus T(r —- 5) f(u(s), s) is integrable over
[ty , 1]- Hence (Pu)(t) is well defined.

We claim that for any 711, 4], ¢ - 0, ¥* e X", there exists an open
neighborhood N(t, 8%, €) of t in [t,,t,] such that if 7e N(t a% ¢) then
I(Pu)(t) - (Pu)(r), x* < e for all w € K. To establish this it suffices to show
that if 7, -» 7 in {¢,, 1;], then (Pu)(t) — (Pu)(t,), ™ < e for all e K and
all large enough . Firet we consider n for which =, - 1. For such

(Pu)() — (Pu)(r,), | = KT — 1) thg — T — o) o5 X7

AT 9~ TG = ), 9, ds|

._,“ |

DTG, — ) f(u(s), ), 4% ds .
"The first term on the right-hand side tends to zero as # — oc, while the third
term is bounded by

[ (s) ds,

v

DAL aF

X+

. < . t
which also tends to zero as n — oc. The second term is bounded by a, f,u 11,(s) ds,

where
def . , o
a, == sup [T — s) - T(r, - $)jv, a* L.
i<
[H ISy,

But since the closed unit ball in X is weakly sequentially compact, it follows
from Lemma 5.11 that a, — 0. Hence the second term tends to zero uniformly
for u € K. For n such that r, <0 t we argue similarly using the inequality

| {u(t) — u{ry), &% KT(?‘ — by g — T(ry, - ty) 1y, X

[f ST - 5) — T(r, — ] f@s), s), 87 7 x,(s) ds

Fr

. ! .‘;’ ‘/./T(Z‘ — S) f(u(s)v S)v ’\'YT" ds l!'
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where y, denotes the characteristic function of the interval [#,,7,]. This
establishes the existence of the neighborhoods N(f, x*, ). In particular
Pue C([ty, 1]; X,) for each uc K. Butif uc K, t € [t , ;], then

Wt
(Pu)(t) =y < T(t) g — g+ 2M | Cm(s) ds
ty
Thus P: K — K.

Let K, = {ue K: {u(t) — u(r), )| < e whenever tefty,t,], >0,
x% e X*, and 7€ N(t, 8%, €)}. It is easily checked that K] is a nonempty, closed,
convex subset of the product space X[/o%1) with the product topology. Also K
is a subset of B,(u,)l'ot1), and is thus compact by the reflexivity of X and
Tychonov’s theorem. We have already shown that P: K, — K . To show that P
is continuous, let #; be a net in K converging to . By Lemma 5.10, f(u5(s), §) X
F(u(s), s) for almost all s € [¢,, 1,]. Thus if £ € [t,, ¢,], ¥* € X'*, then

Tt — ) fQuale), ), 3% — CT( — ) f(a(s), 8), 3%

for almost all 5 € [¢, , t]. It follows from the dominated convergence theorem that
Pu;— Puin K, . Hence P is continuous. By the Schauder-Tychonov theorem
(Dunford and Schwartz [31, Theorem V. 10.5]), P has a fixed point # in K, .
By Theorem 5.1, u is a weak solution of (5.1). Clearly u(t,) == u,. By Zorn’s
lemma x mayv be extended to a weak solution, again denoted #, defined on a
maximal interval of existence [#; , #max)-

The continuation assertion of the theorem is proved in the same way as the
corresponding statement in Theorem 5.2. |

For 1, > t, let C([¢t,, #,]; X,) have the topology of uniform convergence on
[ty , t1] (cf. Wilansky [54, Sect. 13.2]). We shall need the following variant of the

Arzela-Ascoli theorem.

Lenma 5120 Let SCC([t,, t,]; Xy} satisfy the properties

(1) - w(t)li < C for some constant C and for allue S, te[ty, t];

(i) for each x*c X* the maps {{u("), x*>;ue S} are equicontinuous in
(1 > 1))
Then S is sequentially precompact.

Proof. Let u, be a sequence in S. Since X is reflexive it follows from (i) that
for each 1 € [t , #;] the set {u, ()] is weakly sequentially precompact. A diagonal
argument shows that there exists a subsequence u, of u, such that for every
rational 7 € [1, , #;] the sequence u,(r) is weakly convergent in .\ to a limit u(r).
From (ii) we deduce that for each x* € X'* the function {u(r), x*> is uniformly
continuous on the set {r € [#,, t,]; r rational}. It is not hard to show that ¥ may
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be extended to the wholc of [ty, #;] in such a way that # € C([t, t,]; .X,.), and
that v, — u in C([#,,4,]; X.). |

Let R > 0, and for se # let G(s) = {u,e X7 u:[s, 00) > .\ is 2 weak
solution of (5.1) satisfying || u(c)|| << R for all o€ [5, o)} Let G == {uc X% :u
is a weak solution of (5.1) satisfying ;| u(o)] < R for all o € #+}. Let .\ have the
limit space structure induced by weak convergence in .

TueoreM 5.13. {G, G} is an asymptotically generalized flow on X .

Proof. Let se i, let u:[s, o)~ X be a weak solution of (5.1) satisfying
llu(o)] < R for all o €[5, 0), and let o, — oo, Let mp = mp ) . Let s >,
t € [s, 5,] and suppose that t, — ¢ in {s, 5;]. For x* e X* Jet

ar = sup [{[T(t, — =) — T(t — 7)]e, ¥}

il
snTd

If t, 2= t then
[t (1) — (01, 5
ST~ ) T 9] ), ¥
[~ ) = T = ) Flt o, 0+ ),

- " r ‘(iT(f,- — T)f(ua”(f), o, + T), \*] dr

vt

ot

a, [R - "s mg(o, +7) dr]

Ry

e Mee )
“t

mp(a, =- 7) dr.

But we showed in the proof of Theorem 5.9 that a, — 0 as » — oc. Thus by
(bs), [<u, (t,) — u, (1), x*>| tends to zero as » — o uniformly in ». Appl\'ing a
similar argument for t, << t we deduce that the functions {u, (*), x*}, - 1,2,
are equicontinuous in C([s, , 5,]). It thus follows from Lemma 5.12 and a dlagonal
argument that there exist a subsequence u, of #, and a weakly continuous
function u: [5, 00) — X such that U, > U in C(K, ‘\u) for any compact subset
K of [s, o). For any # € Z* and x* ‘e X* we have that

Qg (s + 1), &> == (T() uy, (8), ¥*>

[ ) Fl s+ 7, s ), 7 d
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Using (b,) it is easily shown that

<u@—+t}x*>::<TU)u@Lx*>{-if(TU——r)f@@—%r”,x*)dn

Since fi T(t — 7) f(u(s -+ 7)) dr exists (see the proof of Theorem 5.9), it follows
that u, e G.
The rest of the theorem is proved similarly. ||

We make the following further hypothesis:
(b;) There exists a continuously Frechet differentiable function V': X' — #,
and a continuous function g: X — #Z* such that
() <Au - f(u), V'(u)> = —g(u) for all ue D(A),
(i) V': X — X* maps bounded sets to bounded sets,

(iif) ¢ is sequentially weakly lower semicontinuous.

THEOREM 5.14. Let tye€ X and let u: [t, , ©) — X be a bounded weak solution
of (5.1) satisfying lim,_,, ﬂ“ g(u(r)) dr = 0. Let Q(u) = {z € X: there exists a
sequence t, — oo such that u(t,) X 2). Then if zcQu) there exists a weak
solution i of (5.4) with #(0) = z such that g(ii(t)) == 0 for all t € X+,

Proof. Suppose that || u(o)l| < R for all o € [¢;, o). Define V(¢, ) = Va(*) =
V() for all 1 € Z. We first show that condition (C) of Section 3 is satisfied. Let
t,— 0,S€X, u, € th(s)’ u, e G, and let t € #+. By ‘the same method
as in Lemma 5.5 one can show that

V() = V() = — [ glun(r) dr
Pl s + b 1) = ), V)

By (b,), (b;ii) the second integral tends to zero as # — c0. Thus by (biii) and
Fatou’s lemma

lim [ (,(0) = V(n(6)] = lim [ (ua(r) dr

n-rw

WV

ﬂﬁﬂwh
= V(@(0)) — I'(a()),

which is condition (C).
A similar argument shows that for each r € #+

[V (u(t)) — V(u(t + 7))] = 0.

The hypotheses of Theorem 3.5 are thus satisfied, and since Bg(0) is
sequentially weakly closed, we conclude that if 2 e Q2(u) there exists a weak
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solution # of (5.4) satisfying #(0) -~ 3 and such that ﬂ,g(ii(r)) dr =: 0 for any
t > 0. Since the map r —> g(#(7)) is continuous on #* it follows that g(a(r)) 0

for all te#*. |

In order to apply Theorem 3.6 we need to make further hypotheses; those
made in the following theorem, while theyv should not be thought of as in anv way
fundamental, will prove useful in the example considered later.

TueoreM 5.15.  Suppose that there exists a continuously Frechet differentiable
Sfunction J: N — A, and a continuous function hi: N ->#, bounded beloze on
bounded subsets of X, satisfying the properties

(1) J is sequentially weakly continuous, and [': X —> X maps bounded sets
1o bounded sets,
(ity <Adu -+ f@), J'@); - h(u) for all u e D(A),
(i) Let z, LS z, g(z,)—>0. Then k()< lim,., k(z,). If, further,
h(z,)— h(z), then I'(z,)— I'(2).

Let tye#, let u:lt,, 0)— X be a bounded weak solution of (5.1). Let
a == lim,., F(u(t)), B == Tim, ., V(u(r)). Define 2, (1) -- {z € X: there exists a
sequence t, - > oG such that u(t)) Ky and (u(t,)) — V(2)}, and for yc R
define M., = {z € X': there exists a weak solution u of (5.4) with %(0) == = such that
V(a(t)) = v, g(@(t)) == 0 for all t € #*}. Then oc > B 7 o > —0 and for each
y € [o, B the set 2,(u) N M., is nonempty.

If, further, for each y € [a, 8] there are only finitely many elements of M., in the
weak closure of the range of u, then o« - B, and for some z,€ M, u(t) Xs,, and
Fu(t)y— F(sg)yast -» o

Proof. Suppose that ;u(o) <2 R for all oet,, ). Define F(4, )
Va(r)y - F(o) for all t e #. We begin by showing that condition (D) is satisfied.
Let se A, t,—> %, u,€G,(5), u, X7 4e G and suppose that F(u,(0)) —
V(u,(t)) — 0 uniformly for ¢ in compact subsets of #~. Suppose that J(1,(0)) -
7(7#(0)). Without loss of generality we may assume that | V(z,(0)) - V(@(0)); =
e = 0 for all n. Let T > 0. From the proof of Theorem 5.14 we see that
lim,_., rg g(u, (7)) dr - - 0. Since g : 0 there exists a subsequence «,, of u, such
that

g(u, (7)) = 0 == g(a(r)) for almost all € [0, T.

Similarly,
tim [ ) dr () — o, O)
- JE(TY) — J(O)
“;)T h(ie(v)) dr,

where the second equality follows from the sequential weak continuity of J.
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Let S = {7 [0, T]: h(#(r)) < lim, ... #(u,(7))}. Since % is bounded below on
bounded sets it follows from (iii) and Fatou’s lemma that .S has measure zero.
Hence we may assume without loss of generality that for some #, < [0, T},
g(u,(t,)) — 0 and h(u,(t,)) — h(i(t,)). Thus by (iii) we have F(u,(1,)) — V(a(t,)).
But I(u,(t)) — V(1 (0)) = 0 and V7(i(t)) == V(#@@0)). Hence 1(x,(0)) —
V(#(0)), which is a contradiction. Thus condition (D) is satisfied.

Since T and u are continuous, so is the map ¢ — F(u(t)). The set u([z, , 00))
is clearly sequentially weakly precompact. Also, by Theorem 3.7(ii) and the
proof of Theorem 5.14, (3.6) holds. By (b,ii) and the representation

1
F(x) = V(O + | <2 Vi) o,

I” maps bounded sets in X to bounded sets. Therefore f# > —oc. Thus by
Theorem 3.6(i), o0 > 8 22 a >> —o0 and for each y € [«, f] the set Q,(u) N M,
is nonempty.

The last statement of the theorem follows from the weak connectedness of

Qp@). §

Exampre. Let H be a real Hilbert space with inner product ( , ) and norm
Il . 1. Let B be a positive self-adjoint operator densely defined on H and such that
B-1is defined on all of H and is compact. Let Hy denote the domain of B/2,
Hj is a Hilbert space with inner product (, )z and norm !! - [l , where | v iy
| BY2z: | for all v e Hy . We identify H with its dual. It is clear that Hy is dense
in H, that H is dense in H*, and that both imbedding maps are compact. Let
X == Hy ~ H. Under the norm {w, 2}y == (le!% ~ 122, X forms a
Hilbert space.

Consider the abstract damped wave cquation

@ - Bw - F(w, @, 1) = 0, (5.18)
and the corresponding autonomous equation
@ + Buw - D(w, @) - F(w) = 0. (5.19)

We make the following hypotheses on F, F, and D.

(ei) F: Hy x H x # — H; for each {w, v} € X the map F(w, v, ) from #
into H is strongly measurable, and for almost all £ € 2 the map F(-, -, t) from .X
into H is sequentially weakly continuous;

(eii) for each bounded subset G of X" there is a locally integrable function
m on # such that
PF(w, v, t) << mg(t)
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for all {z, v} € .\ and almost all ¢ € #, and for each t, & #

[
lim sup [ me(r) dr = 0,
s20 flity VS

(eiii) the maps D:X — / and F:Hy-> H are sequentially weaklyv
continuous, and for each bounded subset G of .\
ot

lim ’ sup | F(w, v, 5) — D(w, v) — F(w)i ds -~ 0;

taes vt fw,riel
(eiv) there exists a continuously Fréchet differentiable function @: H, > #
such that @'(w) == F(w) for all we Hy (thus {z, ®'(w)> == (F(w), v) for all
w, v € Hy);
(ev) the map {w, v} — (D(w, v), v) is sequentially weakly lower semi-
continuous on X; furthermore, for each bounded subset I" of I there exists a
strictly increasing continuous function kp: #+ — #+ with k(0) == 0, such that

inf(D(w, ©), ) > ke(je )

for all v e H.
Before analyzing (5.18) and (5.19) we mention two special cases of these
equations.

Special Case 1. Let £2 be a nonempty bounded open set in #* with boundary
082. Let H = 1.3(2). Consider the problem

wy, - afw, t) wy — dw + ¢(w, t) = 0, xel,t >,

(5.20)
@ a0 = 0, w s and w,|,_, prescribed,
and the corresponding autonomous problem
wy + aw) w, - dw - d(w) — 0, xef, >0,
oy 4 alw) w, B(w) (5.21)

W iro o= 0, w _q and 2, |,_, prescribed.

We suppose that
(i) a:# X A #; a(w, ) is measurable for each we X, and a(-, #) is
continuous for almost all t € #; a: # > A is continuous and satisfies

a(w) =8 ~ 0

for all w € #, where 8 is some constant;
(it) ¢: A < A — A is measurable in ¢ for cach fixed w and continuous in
for almost all t; ¢: # > # is continuous;
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(iii) there exists a nonnegative locally integrable function m(t) satisfying

St
lim supJ m(r)ydr = 0

50 3 Vi

for each 7, #, such that if n — |

ae, 1)) b, )< () By,
for all «w € # and almost all t € #, where §,: # — # is continuous, and if n > 1

Hﬁ(% gl

+ )

[a(w, t)] - = om(t),
for all we # and almost all te#, where | Ly < oo if n =2, | <y
n/(n - 2)ifn > 2
(iv) there exists a nonnegative locally integrable function »(t) satisfying
41
lim [ w(r) dr =0,

such that if n = 1, H

| a(w, t) — a(w); + | $lw, 1) —Pw) < 7(t) bufw),
for all 7w € # and almost all t € #, where 6,: Z — # is continuous, and if n > 1,

ot 1) — ate) + 12D =N
for all 2= # and almost all t€ X, where | <y <o if n =2, 1 <y <
nf{n —2)ifn > 2.

Let D(B) = {w € Wy*(Q): dw € L¥($2)}, and let B = —A4. Then Hy = W3¥£).
Put (e, 1) == awe(), 1) o) (), 1), Dl ) = a(e() o), Fle) =de())
B(w) - jgﬂ,‘ ® &(r) dr dx. We claim that hypotheses (ei)(ev) hold. The
measurabxllty assertions follow in the same way as for the example in Subsection
(a). The fact that (D(w, v), ¢) is sequentially weakly lower semicontinuous is
a consequence, for example, of Ekeland and Témam [32, Chap. VIII, Theorem
2.1]. The other assertions are not hard to prove; as an example we show that
F(- -, t) is sequentially weakly continuous from X into H for almost all e Z.

W) . .
Let zc,, W, v, L2 7. Then by the imbedding theorems, Mazur’s

theorem, and (i)—(iii),

a(w,(-), 1) == a(w(), 1),

and
Bw,(), 1) —EC d(a(), 7).

Hence a(w,(*), t)e, L2 a(w(-), t)v, and the result follows.
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Special Case 2. We consider a crude model for the transverse deflection
of an extensible elastic rod of length / = 0. 'This model has been studied in the
autonomous case by Dickey [30] and Ball [3-5]. If the ends of the beam arce
clamped then the appropriate initial boundary value problem is

W
Wy - (8 - d(t)) wy - O e = (ﬁ + b(t) + k ' 70§(§, t)2 dé:) Wy = 03
Yo
reld t s

{(5.22)
w=:a, - Qatx =0, w |, and @, |, prescribed.

In (5.22), £ == (0,1}, and 8 > 0, « = 0, B, k =- 0 are constants. The measurable
real-valued functions d(') and &(") represent perturbations to the damping
coefficient and the axial load, respectively. We assume that

tim [ (1 d(s) + 16611 dr = .

Let 1 == L¥R), D(B) -- {w e Wy*(Q): w,,., € LA(Q)}, B = o(d%/dx*). Then
Hy = WP¥Q). Put Fw, v, t) - (5 - d(t))e(-) — (B -+ b(t) -+ k| e, Be,,(),
D(w,v) — So(), Flw) ~ —(B -+ klw, Puwnl), Bw) — (B2) ©, * @
(k/4) || w, ||*. Tt is easily verified that hypotheses (ei)-(ev) hold.

Returning now to the study of Egs. (5.18) and (5.19), we proceed to verify
that the hypotheses of Theorem 5.15 hold. Define D(4) = D(B) » Hy, C X,
A({w, v}) == {v, —Bw}. Standard results from linear semigroup theory show
that 4 generates a strongly continuous group on .\ Define f: X« # — X by
fw, v}, t) = {0, —F(w, v, t)}. If w = {w, ,}, then (5.18) has the form (5.1).
Similarly, if f({z, ¢}) == {0, —D(w, v) —- F(z)} then (5.19) has the form (5.4). It
is clear from (ei)—(eiii) that hypotheses (b,)~(b,) are satisfied. Define I7: X' > #
and g: X — Z by

Ve, ) = e, vy - @(w), (5.23)
g(w, v) = (Dw, v), v), (5.24)

for {w, v} € X. It is casily verified that }7 is continuously differentiable and that
(bsi) holds. Since D is sequentially weakly continuous it follows that g is con-
tinuous. The fact that 7" maps bounded sets to bounded sets follows from the
sequential weak continuity of F. Hence (b;) is satisfied.

Define J: X' — # and h: X — :# by

J(eo, @) = —(ae, T),
hze, @) = e l3 - (D(w, ), w) + (F(w), w) — o]

for {w, v} € X. It is casily checked that [ is continuously differentiable, that J’
and A map bounded sets to bounded sets, and that (Au - f(u), J'(w)> = h(u) for
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all u € D(A4). Since the imbedding of Hj in H is compact, [ is sequentially weakly
continuous. Let w, Ha, w, v, - 0. Then w, il w, D(w,,v,) A D(w, 0),
F(wn) A Fw), ||w|; < lim, . | w,|3. Hence A(w,0) < lim, . A, ,2,).
Suppose further that A{w, , v,) — &(w, 0). Then [[w, | — [w |y . Therefore
w,, Hs, w, and thus V(w, , v,) — V(x, 0). We have thus shown that conditions
(1)-(iii) of Theorem 5.15 are satisfied. Applying the theorem we obtain

TreOREM 5.16. Let tye R, and let {z, w}: [t,, ©©) — X be a weak solution of
(5.18) that is bounded in norm. Let V be given by (5.23), let o = lim;_, V(z(2),
wy(t)), and let B = Tim,,,, V(w(t), w,t)). Define Q(w) = {1 € Hy: there exists a
sequence t, — oo such that {w, w}(t,) X {v,0}} and for ye A define M, ==
{30} X:yeD(B),By -F(») =0, V(3,0) =y} Thenoo > B 2> a > —o0
and for each y € {o, B] the set Q (w) N M, is nonempty.

If, further, for each y € [«, 8] there are only finitely many elements of M, in the
weak closure of the range of {w,w,}, then « = f and for some {y,0}e D,
{2o(t), ()} > {v, 0} as t > co.

Remarks. (1) If in special case 1 the function a(w, ¢) depends also explicitly
on x € £, and vanishes for x outside some compact subset of 2, then (ev) does
not hold. This is an example of “weak damping.” For results in the linear case
the reader is referred to Dafermos [22, 24, 28]. For decay estimates in the linear
case see Rauch [44] for the case of strong damping and Russell [49] for weak
damping.

(2) In special case 2 there are only finitely many equilibrium positions for
the rod (cf. [4]), so that the last statement of Theorem 5.16 holds. An existence
and uniqueness theory for (5.22) could be given using the fact that the corre-
sponding f(u, t) in (5.1) satisfies a Lipschitz condition with respect to u (cf.
Ball [5], Reed [45]); in this case, however, a separate argument is required to
prove the necessary weak continuous dependence results.

Finally we discuss an example which does not fit directly into the theory
developed in this paper, but can be handled by similar methods. Let £2, § be as
in special case 1, let H =L3Q), X\ = Wy¥Q) x L¥(Q), and consider the
autonomous problem

wye - (1 + | Voo [P) w, — dw +¢;(u) =0,

(5.25)
W lpq =0, {w, w,}(0) € X.

Assume for simplicity that there are only finitely many solutions y € W2%() of
the steady-state problem

dy = $(»). (5.26)

As before we may write (5.25) in the form

u = Au + f(u),
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where A({w, v}) — {v, dw}, f({w, v}) = {0, —(1 + | Va [D)v — $(w)}, etc. But
J is not sequentially weakly continuous, so that the preceding theory does not
apply. Nevertheless any weak solution {w, w,}(?) of (5.25) converges strongly in
Xast — oo to{y, 0} for some solution y € W3(92) of (5.26). To prove this let .Y
have the limit space structure of weak convergence, and let 2" == {ue X# ;1 -

{w, w,;} is a weak solution of (5.25)}. For r € #*, ue Z, define R(r)u to be the

7-translate u, of u. We claim that R satisfies the relaxed continuity property:

(*) ift, — oo and R(z,)u ¥ v, then ¢ = {=, 0} and
Y%+ ~
R(t) R(t,)u =— R(t)v for any e #+

To prove (*) note that the energy equation

¢
% lee, w3 + D@)], + [ (1 4+ [ Vo) [ 2,2 dr — 0

holds for weak solutions of (5.25), so that |, Ve 1%(¢) is bounded for all t € #+ and
f;c L |2 dr < co. Property (*) follows by using these facts, the variation of
constants formula, and our previous techniques. We now observe that (*) is
sufficient for the arguments of Section 2 to go through. Strong convergence of
{z, w;}(t) to {y, 0} as t — oo can then be proved as for special case 1. Certain
other damping terms depending on Ve may be treated similarly.

Note added in proof. The methods of Section 5 are applied in Ball and Slemrod [58]
to some semilinear control problems in Hilbert space.

In a recent paper Webb [59] has shown that one may prove strong precompactness of
bounded orbits for autonomous equations of the form (5.4) when f: x — x is compact and
I T@) < Met for all t e R*, with @ -7 0. Some results for equations (5.18) and (5.19)
can be obtained by this method.
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