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SETS OF GRADIENTS WITH NO RANK-ONE
CONNECTIONS

By J. M. BALL

ABSTRACT. — Examples are given for m2n=3 and n=2, m=4 of rank-one convex integrands

W:M™*" 5 R\ {+ o0} which are not quasiconvex in the sense of Morrey. The method is based on the

| construction of smooth mappings «: {2 — R™ with linear boundary values, where Q < R" is bounded and open,

* such that the set of gradients Du(€) has no rank-one connections. The integrands W take the value +co in
an essential way.

Using similar ideas examples are exhibited of bounded sequences of mappings » in W' * (Q; R™) such that
Du" has essential support in a closed set K = M™*" having no rank-one connections, but such that the Young
measure corresponding to Du'” is not a Dirac mass.

Finally it is shown that the same construction does not work for m=n=2, at least for sufficiently smooth
mappings u.

REsUME. — On donne ici, pour m=n=3 et n=2, m24, des exemples d'intégrandes
W:M™*" 5 R {+c0} qui sont rang-un convexes mais ne sont pas quasiconvexes au sens de Morrey. La
méthode repose sur la construction d’applications réguliéres u: @ — R™, ot Q = R" est un ouvert borné, avec
valeurs au bord linéaires, telles que I'ensemble de gradients Du (Q) n’a aucune relation de rang un; il est d’autre
part essentiel que les intégrandes W prennent la valeur + co.

En utilisant des idées semblables, on présente des exemples de suites d’applications ) bornées dans
W @ (Q; R™ telles que les supports des Du' sont contenus dans un ensemble fermé K = M™*" sans relations
de rang un, mais telles que la mesure de Young qui correspond 4 Du'” n’est pas une masse de Dirac.

On démontre enfin que la méme construction ne conduit pas 4 un contre-exemple pour m=n=2, au moins
pour les applications  suffisamment réguliéres.

1. Introduction

This paper is motivated by the problem of minimizing integrals of the form
(1.1) l(u)=.[ W (Du(x))dx
Q

among a suitable class of mappings u: Q — R™, where Q c R" is bounded and open,
Du(x) denotes the gradient matrix of w, and W: M™*" >R\ {+ o0} is a given
integrand. (Here M™*" denotes the set of real m X n matrices.) The integrand W is
said to be rank-one convex if it is convex along all line segments in M™*" whose endpoints
differ by a matrix of rank one (see Definition 2.1), while it is quasiconvex if linear
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242 | J. M. BALL

mappings ¥ minimize I among Lipschitz mappings having the same boundary values (see
Definition 2.2).

A significant problem of the calculus of variations, posed by Morrey ([16], [17]), is to
decide whether or not every rank-one convex W is quasiconvex, and the main purpose
of this paper is to provide a counterexample in the cases m=2n2=3 and n=2,
m = 4. Unfortunately, the integrand W in the counterexample takes the value + oo
except on a small set K of matrices, and it does not seem possible to modify it to give a
counterexample which is everywhere finite. In particular, the mapping » with linear
boundary values that violates the quasiconvexity inequality for W does not do so for
any everywhere finite rank-one convex function (Proposition 3.4). Thus the counter-
¢xample does not satisfactorily resolve Morrey’s question, and in particular is consistent
with the possibility that all sufficiently regular rank-one convex functions are quasiconvex.

The idea of the counterexample is to construct a smooth mapping u with linear
boundary values A x, such that the set K (1)={Du(x): xeQ} has no rank-one connec-
tions, that is, there is no pair of matrices A, A, eKgq(w) with rank (A; —A,)=1. If, in
addition, A ¢ K, (), then a suitable W may be defined by W (B)=0 if BeKg (), =+ 0
otherwise. For m=n = 3 it turns out (Proposition 3.2) that a radial mapping u can be
constructed with the above properties (with A=A1, A a real constant). On the other
hand, we prove that for m=n=2 there is no such smooth u, even among non-radial
mappings (Theorem 5.1).

The counterexample is easily adapted (Theorem 4.2) to provide an example in the
cases min(m, n) = 3 and n=2, m = 4 of a bounded sequence ¥ in W' ©(Q; R™) such
that DuY has essential support in a set K of matrices having no rank-one connections,
but such that the Young measure (v,) corresponding to Du is not a Dirac mass. The
contrary was conjectured by Tartar [24] in the more general context of the theory of
compensated compactness, on the basis that eliminating one-dimensional oscillations
might eliminate all oscillations. In the example, the diameter of supp v, may be made
arbitrarily small without changing K. Some cases when Tartar’s conjecture is known
to be true are listed in Section 4; these examples partly motivated this paper. The
negative observations in Theorem 5.1 might perhaps suggest that similar examples cannot
be constructed for m=n=2, but the author has not succeeded in adapting the arguments
to give a proof.

The reader is referred to [2] for a survey of the rank-one convexity/quasiconvexity
problem. We now briefly discuss two more recent developments. First, in the case
m=n=2 Aubert [1] and Gurvich [12] have constructed explicit examples of quartic
integrands W that are rank-one convex but not polyconvex. An algebraically simpler
version of Aubert’s example with the same properties, found by Dacorogna & Marcellini
[9], is given by W(A)=|A|“—(4/\/3_)|A|2(detA), where |A|=[tr (ATA)]'2. Tt is not
known whether these integrands are quasiconvex. Note that if it were known that any
finite quasiconvex function W satisfied the lower growth condition

(12) W (A) = — Const. (| A ™" ™ +1),

then it would follow immediately that W is not quasiconvex.
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SETS OF GRADIENTS WITH NO RANK-ONE CONNECTIONS 243

Secondly, Sivaloganathefn [22] has proved an interesting result, in the spirit of the field
theory of the calculus of variations, implying that if WeC? is rank-one convex, and if
u(a, ) is a one-parameter family of smooth solutions to the Euler-Lagrange equations
for I, then u(0, -) minimizes I among all mappings u, of the form u, (x)=u (¢ (x), x),
where ¢eC! with @ |,o=0. He has further suggested how such ideas might form part
of a proof that rank-one convexity implies quasiconvexity for smooth W. Another
suggestion for a possible proof, motivated by a result of Knops & Stuart [15] can be
found in [2]; however implementation of this idea would seem to require some new way
of using rank-one convexity to obtain some regularity or compactness properties for
solutions to the Euler-Lagrange equations, and at present the only regularity assertions
that come close to that required are those based on Evans [11], which have quasiconvexity
as a principal hypothesis.

2. Definitions and preliminaries

Let m=1, n=1. If EcR" is open we write ||v]|,=2%5"|v(x)| and denote by

xeE

W' © (E; R™) the Sobolev space consisting of measurable mappings u: E — R™ with finite

norm |ju||,, w""—i{” u||,+| Dull,. We denote by Wg * (E; R™) the closure of C3’(E; R™)
in the weak* topology of W! ®(E; R™), i.e. in the subspace topology induced by
regarding W' © (E; R™) as a closed subspace of a finite product of L™ (E) spaces each
endowed with the weak* topology.

Let W: M™*" > R U {+ o0} be Borel measurable and bounded below.
DEeFINITION 2.1. — W is rank-one convex if
2.1 W(EA+(1-0)B) < tW(A)+(1—-1)W(B)
whenever te(0, 1) and A, Be M™*" with rank (A—B)=1.

DerFINITION 2.2. — W is guasiconvex if
2.2) J. W(A+Do(x)dx = I W (A) dx = (meas E) W (A)
E E
for every bounded open set E < R" with meas dE=0, each AeM™™", and all

e Wy ©(E; R™).

DeriNiTION 2.3, — Let K « M™*". K has no rank-one connections if there is no pair
of matrices A, BeK with rank (A—B)=1.

Remarks 2.4. — 1. If (2.2) holds for one nonempty bounded open subset E < Q, and
for all AeM™*", all pe W} *(E; R™), then (c¢f. Ball & Murat [8], Prop. 2.3) W is
quasiconvex.
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244 J. M. BALL

2. Both quasiconvexity and rank-one convexity of W are necessary conditions for
Ie (u)=-[ W (Du(x)) dx to be sequentially weak* lower semicontinuous on Wt = (E; R™)
B

(see Morrey [16], Ball & Murat [8]).

3. If W is quasiconvex and continuous (with respect to the usual topology on
RU {+0}) then W is rank-one convex. This is false for general Borel measurable W
(Ball & Murat [8], Example 3.5).

Given an orthonormal basis {e;, ..., e,} of R" and a point xeR", we write
n—1

x'=7Y (x-e)e, x"=x-e, To avoid possible confusion we recall for the convenience
i=1

of the reader two standard definitions.

DEFINITION 2.5. — Let © c R" be open. We say that Q has a boundary of class C" if
given any x,€dQ there exist a corresponding orthonormal basis {es, - - -, e,} of R", a
neighbourhood U of x, and a C* function f: R"~! — R, such that

QN U={xeU: x"= f(x)}
and

QN U={xeU: x"> f(x)}.

DEFINITION 2.6. — Let Qc R" be open and let r=1 be an integer. Given
ueC (Q; R™) we say that ue C" (Q; R™) if there exists ve C"(R"; R™) such that v(x)=u(x)
for all xeQ.

Remark 2.7. — As is well known this is stronger than requiring that the derivatives
up to order r of u in Q extend to continuous functions on Q (c¢f. Whitney [26]).

It follows from Definition 2.6 that if e C" ({; R™) then the boundary values D* |y,
|a| < r, are well defined.

LemMA 2.8. — Let Q be open with Q=intQ. Then a necessary and sufficient condition
for Q to have C* boundary is that for some m Z 1 there exists a function u€ C'(Q; R™)
such that u(x)=0 and Du(x) # 0 for every x€dQ.

Proof. — Necessity. — This is easily proved (taking m=1) using the functions in
Definition 2.5 and a partition of unity. We omit the details since the necessity is not
used in this paper.

Sufficiency. — Since ue C* (Q; R™) there exists ve C' (R"; R™) extending u. Let x,€0Q.
For some i=1, ..., m, Dv'(x,) #0. Let {¢;} be an orthonormal basis of R" with e,
parallel to Dv'(x,), and write o' (x)=1'(x', x"). Thus (30'/0x") (x{, x5) # 0, and so by
the implicit function theorem there exist a C' function f: R"™' - R and a cylindrical
open neighbourhood U={xeR":|x'—x,| <3, |x"—x5|<e} of x, such that
(i) | f (') —x3| < €/2 whenever | x'—x;| < 8, and (ii) if xe U then v'(x)=0 if and only if
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SETS OF GRADIENTS WITH NO RANK-ONE CONNECTIONS 245

x"=f(x). Since Q=intQ there are points from each of the open sets Q, R™\Q in
U, and d(R\Q)=02Q. Let U*={xeU: x"> f(x)}, U"={xeU: ¥" < f(x)}. Since
any two points in U™ (resp. U~) can be joined by a continuous arc in U* (resp. U"7),
and since v (x)=0 if xedQ, it follows that U* =Q N\ U, U"=U\Q or vice versa. We
may suppose the first alternative holds by if necessary changing the orientation of
e,. Clearly 0QNU={xeU: x"=f(x")}. Hence Q has a boundary of class C'. O

Remark 2.9. — Hormander [13], p. 59, gives a definition of an open set with C!
boundary which is close in spirit to the above lemma.

If Q = R" is open and ue C! (Q; R™) we write
Kq (w)=rangeDu(-)={AeM™*": Du(x)=A for some xeQ}.

3. Rank-one convexity and quasiconvexity

The analysis is based on consideration of radial mappings u: B — R",
B={xeR": | x| < 1}, i.e. mappings of the form
r(R)
3.1) u(x)= —=x,
( () R
where R=|x|and r: [0, 1] > R. If reC" ([0, 1]) with r(0)=0, then defining u(0)=0 we

have ue C!(B; R") and

r(R)
R
Du(0)=r"(0)1,

_r® e
32) Du(x)= R l+( (R)

)8@3, R >0,

where 9=x/R. Given such a radial mapping we investigate whether
rank (Du(x)—Du(y))=1 for some pair of points x, yeB. The following elementary
lemma is useful. :

Lemma 3.1. — Letn 22, q, 5, teR, 9, 3, eR" with |8|=|8,|=1. The following table
gives necessary and sufficient conditions that the n X n matrix

(3.3 A=gq1+59®9+13, ® 9,
have rank 1.
n=2 n=3 nz4
9=+ 9, g(g+s+1)=0 g=0 q=0
sHE#0 s+t#0 s+1#0
9#+ 9, |(g+s)g+D) g=5=0,t#0 g=s5=0,t#0
=(9-9,)*st org=t=0,5#0 org=t=0,5#0
2g+s+t#0 org+s=q+t=0,9-9,=0,¢g#0
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246 J. M. BALL

Necessary and sufficient conditions that rank A <1 are given by omitting the inequality
conditions in the table.

Proof. — If 9= £ 8, then 3® 3=9, ® 3, and so in an orthonormal basis of R"
extending 9 the matrix of A is diag(g+s++¢, ¢, ..., q). The conditions given are thus
obvious.

If 9 # £+ 9, then 9, =« 9+ Bw, where w is a unit vector perpendicular to'9, o>+ p?=1,
a=9-9, # £ 1. Hence in an orthonormal basis extending {9, w}, the matrix of A is

g+s+oft  tof 0
tap g+p*t

q

The determinant of the 2x2 matrix in the top left hand corner is
(g+s5)(g+1)—o®st. Since a symmetric 2 X 2 matrix is of rank one if and only if it has
zero determinant and nonzero trace the result for n=2 follows immediately.

If n=3 then rank A < 1 if and only if either
q=0 and B2st=0
or
g+s+alt=q+p*t=tap=0.
If n >4 then rank A <1 if and only if ¢g=0 and B*>st=0. Since P # 0 this gives the
conditions stated in the table. [J

ProposiTiON 3.2. — Let n 2 3, let reC! ([0, 1]) and let u be defined as above. Then
Kg(#) has no rank-one connections if and only if r(R)/R is either nonincreasing or
nondecreasing on [0, 1].

Proof. — Given x,yeB we write x=R9, y=R,3,, where |8|=|9,|=1, R,
R, = 0. We can suppose that R, = R. Then by (3.2)
(34) Du(x)—Du()=R'r(R)—R;'rR)1+(FR)-R'r(R)I®I
_("'(Rl)_Rl_l r(Ry))9, ®3,

with the appropriate interpretation if R or R, is zero.

Let Kgz(u) have no rank-one connections, and suppose for contradiction that
f(R)=r(R)/R is neither nonincreasing nor nondecreasing on [0, 1]. Then there exist
R, R, €(0, 1) with f(R)=f(R,) but Rf"(R) # R, f'(R,). Choosing 3=39, we obtain
from (3.4) that

Du(x)—Du(»)=(RSf"(R)—R, /" (R)) 8 ® 9,
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which is of rank one, a contradiction.
Let f (R) be nonincreasing or nondecreasing. We apply Lemma 3.1 with

A=Du(x)—Du(y), ¢=R7'r(R)—R;'r(Ry),
s=r(R)—=R7'r(R), t=—("(R)-R{'r(Ry).

If n =4 then ¢=0 implies that f is constant on the line segment [R, R;]. If R=R,
then s+ ¢=0, while if R < R, then s=¢=0. Hence by the lemma rank A # 1. Ifn=3
we have to check the additional possibility ¢g+s=¢+1=0, 8-9,=0, ¢ #0. But this
gives

(3.5 r(R)=r(Ry)/R;, rR)=r(R)/R, r(Ry)/R, #r(R)R.

Suppose that f is nondecreasing. Then r'(R) = r(R)/R, r'(R,) 2 r(R,)/R,, contradict-
ing (3.5). A similar contradiction obtains for f nonincreasing. This completes the
proof. O

Fix Le R, and choose re C* ([0, 1]) such that r(R)/R is nondecreasing or nonincreasing,
r(1)=2A, ¥(1) #A. [For example, r(R)=AR+(R—R?).] Let u be the corresponding
radial mapping given by (3.1). Let g: M"*" - R be any finite and continuous function
(we can take g = 0). Define

(3.6) W (A)= { g(A), AeKy),

+ o0, A¢Kg (u).

THEOREM 3.3. — Let n=3. Then W: M"*" >R {+ o0} is lower semicontinuous,
bounded below and rank-one convex, but is not quasiconvex.

Proof. — Since Ky(u) is compact, W is lower semicontinuous and bounded
below. Given A, B with rank (A—B)=1, by Proposition 3.1 at least one of A, B does
not belong to Ky(x). Hence if 1€ (0, 1) the right-hand side of (2.1) is +c0. Hence W
is rank-one convex.

To show that W is not quasiconvex we note first that since r(1) # A and r(R)/R is
monotone, r(R)/R=A only for R=1. Hence, by (3.2), A1¢K. Define
o (x)=u(x)—Ax. Then e W *(B; R") and

J‘ W(?Ll+D(p(x))dx=J‘ W(Du(x))dx=.[ g (Du(x))dx < oo,
B B

.[ W (A1) dx=+ oo,

contradicting (2.2). O

The next result concerns everywhere finite rank-one convex functions.
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PROPOSITION 3.4. — Let n = 1, let W: M"*" = R be rank-one convex, and let u be given
by (3.1) with re C* ([0, 1)), r(0)=0, r(1)=A. Then

3.7 .[ W (D u(x))dx = j W (A1) dx=(meas B)W (A 1).

B

Proof (cf. Ball [2], Sivaloganathan [22]). — First suppose that W is smooth and rank-
one convex. By (3.2) and rank-one convexity

W (Du(x)) 2 WR™'r(R) D+ R)-R'r(R)DWR'r(R)1)I® 9.

Integrating over B and using the fact that .[ O®9—n"11)d3=0,

sn-l
J‘ W (Du(x)) dx.= j .[1 R" !
B s"~1 Jo
x(WR 'r(R))+n" (¢ (R)—R"'r(R))'DW(R"'r(R)1)1)dR d3

v

"_lL.-s J: % (R"W (R™!r(R)1))dR d9

=n“j ) W(xl)a@=f W (A1) dx.

Now suppose that W is everywhere finite and rank-one convex. Then (¢f. Morrey
[17], p. 112) W is continuous. Let peCyM"™"), p =20, J. pdA=1, £€>0,

Ml Xnm
Pe (A)=r::"'2 p(e"'A). Then (¢f. Morrey [17]) W,=p, * W is smooth and rank-one con-
vex, and W, —» W uniformly on compact subsets of M"*" as g — 0, so that passing to
the limit € — 0 we obtain (3.7) for W. O

PROPOSITION 3.5. — Let n> 3 and ¥ ={W: M"*" > R: W rank-one convex, W < W}.
Then

sup W# W.
L

Proof: It suffices to show that sup W(A1) < W(A1). Let u be the radial mapping
We¥

used in the construction of W. Then W (Al)=+ co, but by Proposition 3.4, for any
We?&,

WO < (measB)“J W(Du(x))dxé(measB)".[g(Du(x])dx< 0. O
B

Remark 3.6. — The question of whether a lower semicontinuous rank-one convex
function W: M™*" > R {+ 0} can be written as the supremum of finite rank-one
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convex functions, answered negatively in Proposition 3.5, was raised several years ago
in discussions between R. V. Kohn and the author. In response, Tartar [25] produced
an interesting model example of a lower semicontinuous separately convex func-
tion f: R > R {+co} which is not the supremum of everywhere finite separately
convex functions, and for which this supremum can be calculated explicitly. '

We now show how the above construction can be generalized to the other dimensions
mentioned in the introduction. To handle the cases n=2, m = 4 we use the following
lemma.

LemMA 3.7. — Let n=2. Defineu: B— R* by

Rx
3.8 = , R=|x]|.
(.3) e (sz) |x]
Then Ky (x) has no rank-one connections, and

1 0

0

F= . o ¢ Kg ().
0 1

Proof. — Let v(x)=Rx, w(x)=R?x, xeB. Now let x, yeB and write x=RY,

y=R1 31- By (3-4)
Dv(x)—Dv(»)=(R-R,))1+RI®3—-R, 3, ®9,,
Dw(x)—-Dw(»)=(R?*-R»)1+2R?29®9-2R?9, ®9,.

Suppose for contradiction that rank (Du(x)—Du(y))=1. Then rank (Dv(x)—Dv(y)) = 1,
rank (Dw(x)—Dw(y)) < 1, and so by Lemma 3.1 (n=2),
(3.9 2(R-Ry)*=(1-(8-9,)")RR,,
(3.10) 3(R2—R%)?=4(1—-(9-9,)) RZR2.
Eliminating 1—(9:9,)? it follows easily that R=R,. Hence by (3.9), (3.10) either
R=R,=0or R=R, and 9= % 9,, and in both cases Du(x)=Du(y), a contradiction.

That F¢ Ky (u) is an easy calculation. O

Suppose that for some m, n there exists ue C* (B; R™) with u |3 =F x for some Fe M™*",
and such that Kg(«) has no rank-one connections and F¢ Kz (). Then if ge C(M™™")
and W is defined by (3.6), the proof of Theorem 3.3 remains valid, showing that W is
lower semicontinuous and rank-one convex, but not quasiconvex. If M > m we may

define #eC' (B; RM) by #(x)=(u(x), 0). Then i|;=F x, where F‘=(l;) and 0 is the

zero (M —m) x n matrix. Clearly K (%) has no rank-one connections and F¢ K, (@), so
we may repeat the same construction. On account of Theorem 3.2, Lemma 3.6 we have
thus proved
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TueoremM 38. — Let m=n=3 or n=2 m2=4. Then there exists W
: M™*" » R {+ 00} which is lower semicontinuous, bounded below and rank-one convex,
but is not quasiconvex.

It seems probable that similar counterexamples could be constructed for all m, n = 2,
except perhaps in the case m=n=2 (see Theorem 5.1), but we do not attempt this here.

4. Rank-one connections, compensated compactness and Young measures

Let Q c R" be open and K = R® be closed. Given any bounded sequence 89 in
L*(Q; R with 99 (x)eK a.e., there exists (cf. Tartar [24]) a subsequence 9™ and a
family of probability measures (v,) on R®, depending measurably on x€Q, with
suppv, < K a.e., such that for any continuous f: R* - R,

(4.1) f(9"")—**<\'x,f>=.[ f(A)dv.(A)
®e

in L™ (R"). (v,) is called the Young measure associated with 9®. If for a.e. xeR"v, is
a Dirac mass, that is v, =8, ,, for some 8 (x)€R’, then by (4.1)
*
fFO)—f(3() in L*(Q),
which implies (taking f (c)=o, f (c)=|c|?) that
¥ 59 in LE (Q; R°) strongly,
forallp,1 < p < o0.
Suppose now that 99 is a bounded sequence in L*(Q; R°) and that a suitable
subsequence, which we now again call 39 for convenience, is extracted as above so that
*
4.2) SN —(v, f) in L*(Q),
for every continuous f: R*— R. Suppose further that
4.3) Y a*® @/oxh8P=0, i=1,...,q,
k1
where the @™ are real constants. (More generally we may assume, for example, that

the left-hand sides of (4.3) belong to a compact subset of H™'(Q; R°).) Following
Murat [18] and Tartar [23] define the characteristic cone

4.9 A={LeR*: 3EeR™\ {0} such that ) a3, §=0,i=1, ..., q}.
k, 1

If K has a A-connection, that is A—BeA for some pair A, BeK, then it is easy to
construct a bounded sequence 9 in L (R"; R®) satisfying (4.2), (4.3), and with
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99 (x)eK a.e., such that v, is not a Dirac mass. For example, if A—B=\ we may
take 99 (x)=B+9(jx-E) A, where £ is the corresponding vector in (4.4) and 9 is the 1-
periodic extension to R of the characteristic function of [0, 1/2); in this case
v, =(1/2) (8, + 8p).

Motivated by the idea that preventing such one-dimensional oscillations might eliminate
all oscillations, Tartar [24] made the conjecture that if K has no A-connections and 99
satisfies (4.2), (4.3) with supp v, = K a.e., then (v,) is a Dirac mass a.e.. In applications
of compensated compactness to systems of nonlinear differential equations, the linear
partial differential equations (4.3) are supplemented by nonlinear relations
(e. g. constitutive equations) that are incorporated in the set K. Thus the conclusion of
the conjecture is that one can pass to the limit in the resulting nonlinear equations using
weak convergence.

For the case of gradients considered in this paper, we identify M™*" with R™=R*
and 99 with Dz, where z? is a bounded sequence in W' © (Q; R™). The differential
equations (4.3) are taken to be the compatibility conditions

8P a9 _

(4.5) o o =0, forall i=1,...,m, k/I=1,..., n

The corresponding cone A is the set of all rank-one m X n matrices. Thus for this case
Tartar’s conjecture implies the following:

CoMiECTURE 4.1. — Let K = M™*" be closed and have no rank-one connections. Let
z¥ be a bounded sequence in W' ® (R", R™) satisfying Dz (x)eK a.e. and such that
f(DzY) is weak* convergent in L (R") for every continuous f: M™*" —» R. Then the
Young measure (v,) associated with Dz is a Dirac mass.

(Note that Tartar’s hypothesis supp v, < K has been strengthened to Dz (x)eK a.e.).

To construct a counterexample, suppose that for some m, n there exists ue C' (B; R™)
such that u|z=Fx for some FeM™*" K,(u) has no rank-one connections, and
u # Fx. We construct z using the method of Ball & Murat [8). Let Q=(0, 1)". By
Vitali’s covering theorem (Saks [21]) there exist & > 0, ;e R" and a subset N = R" of
measure zero such that

Q=U (a;+gB)UN,
i=1

and such that the sets a;+¢; B are disjoint. Define z: Q - R™ by
(4.6) z(x)=Fa;+eu(e ' (x—a)), xea;+gB.

It is easily shown (Ball & Murat [8]) that z(x)=Fx+o@(x), a.e. xeQ, with
@eWy ®(Q; R™. Extend z to R" so that Dz is periodic with respect to Q, and define
29 R" - R™ by

4.7) 29D (x)=j"" z (jx).
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Then
DzY (x)=Dz (jx)=Du(e; ' (x—ay))

for some i=i(x, j). Hence Dz (x)eKy(u) a.e. xeR". If f: M™*" - R is continuous,
%
f(Dz‘-")—AJ. f(Dz)dx in L*(R").
Q
But

J. f(D2)dx=Y £ (Du(e ' (x—ay)))dx
Q

i=1 Ja;+¢ B

=Y ¢ J‘ f(Du(x))dx={» f (Du(x))dx,
i=1 B B

where :F () dxd:(meas B)! J (-)dx. Hence the Young measure (v,) corresponding to
B B

Dz? is independent of x a.e. and given by
(4.8) (Ve [ =][ f (Du(y))dy.
B

It follows easily from (4.8) that supp v,=Kg () a.e. and in particular that v, is not a
Dirac mass. Since by Proposition 3.2, Lemma 3.7, a suitable u can be constructed in
the cases m=n = 3 and n=2, m=4, we have shown that Conjecture 4.1 is false for these
dimensions.

To handle the cases of larger n, note that if z is constructed as above for m, n and if
N = n then

A (x)=z9(x"), xeRN, x'=(x', ..., x")
defines a sequence 7V satisfying
fujl\Fx' in Wi = (RN; R™).
Let R={(A, 0): AeKg(u)}, where 0 denotes the zero mx(N—n) matrix, with the

obvious convention if N=n. Then Dz?(x)eR a.e. and K has no rank-one
connections. Furthermore the Young measure (v,) corresponding to Dz is given by

<Vx!f>=f S (Du(x"), 0) dx’

for feC(M™*N; R) and is not a Dirac mass.
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Let ge C(M™*N; R) and define W by

g(A), Aek
+ o0, otherwise.

W(A)={

Then W is lower semicontinuous and rank-one convex. But if Q = RN is bounded and
open

lim | W (D29 (x))dx= lim J‘ g(DéU’(x))dx=(mcasQ)J: g Du(x"), 0)dx’ < oo,
Q B

j-om a j—om

while provided F ¢ K (),

j W (F, 0)dx= + 0.

Hence
In(2)=f W (Dz (x)) dx
0

is not sequentially weak* lower semicontinuous on W= (Q; R™).
We have thus proved

THEOREM 4.2. — Let min (m, n23o0orn=2,m=>4. Then Conjecture 4.1 is false, and
there exists a lower semicontinuous rank-one convex Junction W: M™*" R {+ o0} such
that 1o (-) is not sequentially weak* lower semicontinuous on W' © (Q; R™).

Remark 4.3. — Notice that the mapping z: R" - R™ constructed above is Lipschitz
but is not C', since Dz takes all the values of Du in the neighbourhood of an accumulation
point of the @, Nevertheless Kg (2) has no rank-one connections.

There are a number of cases when Tartar’s conjecture is known to be true for gradients
under supplementary hypotheses on the set K.

() K={A,, A,} with rank (A, -~ A,) > 1 (Ball and James [5p.

(i) m=n>1,K=S0(n) (Kinderlehrer [14]). In fact, more generally, let » > 1 and

K,={tR; 120, ReSO (n)}.
Then we have

Tueorem 4.4. — (a) K, has no rank-one connections.
(B) Let Q< R", n > 1, be bounded, open and connected. Let 79 W'+ (; R™) be such
that

(4.9) sup f V(| Dz dx < o0
i Ja
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for some continuous \: [0, c0) » R satisfying lim Y (1)/t=o00. Let (v,) be the Young

=+
measure corresponding to Dz (it being understood that an appropriate subsequence of zY
has already been extracted so that (v,) is well defined), and suppose that supp v, < K,
a.e.xef). Then

(4.10) V,=0p, (v a.€.,
where z: Q — R" is a smooth conformal mapping, and
Dz® - Dz strongly in L"(Q; M"™").

Remark 4.5. — In the statement and proof of the theorem we make use of the
following more general construction of the Young measure (cf. Ball [3], Ball & Knowles
[7]). Given a sequence 3“: Q — R° of measurable mappings satisfying a mild bounded-
ness condition (satisfied, for example, if 99 is bounded in L1(Q; R)) there exists a
subsequence 9* and a family of probability measures (v,), depending measurably on x,
such that

FO®)—=(v,, f) in LYQ)

for every continuous f such that f(8%) is sequentially weakly relatively compact in
L' (Q).

Proof of Theorem 4.4. — (a) Let A, BeK, withA-B=a® b,a, beR". Then A=sR,
B=tR fors, =0, R, ReSO(n). Thus

sQ=tl1+a®ec,
where Q=RRT, c=Rb, and so
P1=(t1+a®c)(t1+c®a)=(1+c®a)(t11+a®c).

It is easily deduced from this, using detQ=+1, that A=B. Hence K, has no rank-
one connections.

(b) We combine ideas of Kinderlehrer [14] and Reshetnyak [20]. Consider the function
(4.11) f(A)=|A|"—n"?detA.

Then f = 0, and if det A 2 0 then AeK, if and only if /(A)=0. By (4.9) and the de
la Vallée Poussin criterion, f (Dz?) is sequentially weakly relatively compact in L' (Q),
and hence

f(DzU’)—* (v, f) in L1(Q).
Also
Dz? (v, A)=Dz in L"(Q),

for some ze W' "(Q; R").
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By a result of Reshetnyak [21] (see also Ball, Currie and Olver [4])
detDz —detDz, in L'(Q),

so that

vy, detA)=det{v,, A) a.e..
Since supp v, = K,, we thus have that |
0=V f)=(Vy |[A]")—n"* {v,, detA) 2 | (v, AD|"—n"? det {v,, A) 20,
where we have used Jensen’s inequality. Hence
4.12) (Vs |AI")=[{vy, AD|" a.e. xeQ,
which implies, since | - |" is strictly coh_vex, that
(4.13) V,=0p,(xy a.€ xeQ.

Clearly Dz(x)eK,a.e, so that z (by definition) is conformal, and hence
(Reshetnyak [20]) smooth. Finally, by (4.12), (4.13) ||Dz%||»— || Dz||;s, so that
Dz? - Dz strongly in L"(Q; M"*"). O

(iii) (In this example we consider the general framework of compensated compactness
described at the beginning of this section.) K is a finite-dimensional C! manifold
imbedded in R’, for every AeK the tangent space T, K contains no elements of A, and
supp v, is sufficiently small (DiPerna [10], Tartar [24]). In connection with this result it
is interesting to note that our counterexamples can be easily modified so that supp v, is
arbitrarily small without changing K. To do this we just need to replace
B={xeR" |x| < 1} by B,={xeR" |x| <&} in the above constructions while retaining
the same fixed radial mappings v. The set K=Kj(u) is not contained in a C! manifold
having the required properties.

5. Negative results for m=n=2

In this section we prove that the method used to construct the counterexamples does
not work in the case m=n=2, at least within the class of smooth functions u.

THEOREM 5.1. — Let Q = R? be bounded and open, and let Ae M?*2.

(i) There does not exist a mapping ue C' (Q; R?) with u|sq=Ax, such that Ko () has
no rank-one connections and A ¢ K, (u).

(i) If ue C* (Q; R?) with u|sq=A x is such that Kq (1) has no rank-one connections then
u(x)=Ax.

Proof. — We assume without loss of generality that A=0. The general case then
follows by replacing u(x) by u(x)— A x.

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES.



256 J M. BALL

(i) Suppose for contradiction that u has the given properties. We first show that
without loss of generality we may assume that Q is connected and has a C! boundary. In
fact let Q,=int . Then O, =0, 0Q, = 0Q, us, =0 and ueC!(Q,; R?). Hence u has
the same properties with respect to Q;. But Du/sg, # 0, so that by Lemma 2.7, Q, has
a C! boundary. Now let Q, be a connected component of Q,. Clearly Q, has a C!
boundary and u has the same properties with respect to Q,. At each point yedQ
there is a well defined unit outward normal #n(y), and n(y) depends continuously on
y. Furthermore, since Q is bounded, by touching  from the outside by straight lines it

is easily shown that {n(y): yedQ}= S’d;f{pe R2:|p|=1}. Since u|;n=0, Du (p) is paral-
lel to n(y) for each yedQ, i=1,2. Also 0¢ K () implies Du(y) # 0. Thus

(.1 Du()=a() ®n(), ye,

where a(y)eR? is nonzero. Note that if y, ze dQ are such that n(y) # + n(z) then
Du(y) # Du(z) and hence, by the hypothesis that K has no rank-one connections,
det (Du(y)—Du(z)) # 0. On the other hand, if y, z€ aQ with n(y)= % n(z) then by (5.1)
rank (Du (y)—Du(z)) < 1, and since K (4) has no rank-one connections it follows that
Du(y)=Du(z).

Given neS! denote by A(n) the common value of Du(y) for those yedQ with
n(y)=n. Note that A(n)=A(—n). Since Q is compact and n(-), Du(") are continu-
ous, A(-) is continuous. We claim that either

(5.2) det(A(n)—A(m)) >0 forall n,meS', n# +tm,
or that
(5.3) det(A(m)—A(m)) <0 forall n,meS', n# +m.

We have already shown that det (A (n)—A(m)) # 0 for n # £ m. If the claim were false
there would therefore exist pairs (12, m), (n®, m®) with n® £ 4+ m® i=1, 2 and

(5.4) det (A (n")— A (m™M)) < 0 < det (A (n¥)— A (mP)).

However, it is easy to find a continuous path t(n(f), m(t)), te[0, 1], such that
(n(0), m(0)=(n®, mV), (n(1), m(1))=(®, m®) or (m®, n'®), and

(5.5) (n(1), m(1))eS' xS, n(1)# £m(r) forall telo, 1].

(For example, move m'*) towards n'V along the shorter of the two arcs joining them
until they are a small positive distance part. Then move the two points as a pair,
preserving the arclength between them, until they are both on the shorter of the two
arcs joining n® and m®. Finally move them apart to meet n® and m?.) Since
det (A (n(£))— A(m(1))) # 0 for all t€[0, 1] and A is continuous, this contradicts (5.4) and
proves the claim.
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We suppose (5.2) to hold. If (5.3) holds the same argument will apply with the
inequality signs reversed. Given neS! define

(5.6) S(n)={xeQ: det(Du(x)—A(n)) < 0}.

Since det (- —A(n)) is a null Lagrangian and u|,, =0, and since det A (n)=0,
(5.7) J. det (Du(x)—A(n))dx= j det(0—A(n))dx=0,
4] 0

(Since Q has a C' boundary this calculation may be justified directly using integration
by parts.) But det(Du(x)—A(n)) is not identically zero in Q by (5.2) and the continuity
of Du(-). Hence S(n) is nonempty and open, and Q\ S(n) is non-empty. We will
prove that S(n) and S(m) are disjoint for m # n. This gives the desired contradiction
because an arc in S' of length less than m contains uncountably many vectors n no two
of which are parallel, and Q cannot contain uncountably many disjoint open
sets. Suppose that xedS(m) N\ Q. Then det(Du(x)—A(m))=0, and since K has no
rank-one connections it follows that Du(x)=A(m). Thus by (5.2) x¢S(n). Hence
S(n) N 3S (m) N Q is empty, and similarly S(m) N 3S (1) N Q is empty. So

SmNSHNQ=SmM)NSH N,

which implies that S(m) N S(n) is both open and closed with respect to the connected
open set Q. Since Q\ S () is non-empty, S(m) N S(n) N Q # Q, so that S(m) and S (n)
are disjoint.

(i) Let ueC?*(; R?) be such that u|,=0 and Kg(#) has no rank-one
connections. By part (i) 06 K, (u). We use the following lemma.

LemMA 5.2. — Let E < R? be bounded and open, and let ueC?(R?; R?) satisfy
w'u?,=u'u?,=0on 0E. Then

‘[ det Du(x) dx=0.
E

Proof. — A standard construction, involving mollification and the fact that the function
dist (x, OE) is Lipschitz, shows that there exists a sequence {9} = C& (E) such that for
x€E, @¥ (x)=1if dist (x, E) > 1/j, 0 < ¢ (x) < 1 and | De?(x)| < Const. j. Then

(5.8) J‘ oY det Dudx=J (' u?y @Y —u' u?, o)) dx.
E E

Since u' u?,, u' u?, e C' (R%; R?) and are zero on JE, it follows that

| (x)u?y (x)|+|u* (x)u?, (x)| < Const.dist (x, dE),  xeE,
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and hence from (5.8) that

< Const. meas {xeE: dist (x, E) < 1/j}.

J oY det Dudx
E

Letting j — oo establishes the lemma. [J

Remark 5.3. — It is not obvious to the author that Lemma 5.2 remains valid for
ueC! (R?*; R?) (¢f. the example of Whitney [27]).

Continuation of proof of Theorem 5.1. — By Lemma 5.2,
(5.9) .[ det Du(x)dx=0.
0

(In fact this conclusion holds even if ueC*(R?; R?), as a simple modification of the
proof of Lemma 5.2 shows.) Suppose for contradiction that Du is not identically zero
in Q. Since K (#) has no rank-one connections and 0€ K, («), det Du is not identically
zero. Hence by (5.9) det Du takes both positive and negative values in Q. Let E be
a connected component of the open set {er: det Du(x) > 0}. If xedE M JQ then
u(x)=0. If xedE N Q then det Du(x)=0 and since K, () has no rank-one connections
Du(x)=0. Applying Lemma 5.2 to E we deduce that

j det Du(x) dx=0.
E

But det Du(x) > 0 on E, a contradiction. [

Theorem 5.1 leaves open the possibility that there could exist a non-affine mapping
ue W' © (Q; R?) with u|,q=A x and a subset K of M?*? without rank-one connections
such that Du(x)eK a.e.. In fact, on the basis of an example in [5], p. 48 (see also Ball
& James [6]), R. D. James and the author have speculated that such a ¥ may exist whose
gradient takes only a finite number of values.
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