CONTINUITY PROPERTIES AND GLOBAL ATTRACTORS OF
GENERALIZED SEMIFLOWS AND THE NAVIER-STOKES
EQUATIONS

J.M. BALL

ABSTRACT. A class of semiflows having possibly nonunique solutions is defined.
The measurability and continuity properties of such generalized semiflows are
studied. It is shown that a generalized semiflow has a global attractor if and
only if it is pointwise dissipative and asymptotically compact. The structure
of the global attractor in the presence of a Lyapunov function, and its connect-
edness and stability properties are studied. In particular, examples are given
in which the global attractor is a single point but is not Lyapunov stable.

The existence of a global attractor for the 3D incompressible Navier-Stokes
equations is established under the (unproved) hypothesis that all weak solu-
tions are continuous from (0, co) to L2.

Dedicated to the memory of Juan Simo.

1. INTRODUCTION

Generalized semiflows are an abstraction of autonomous dynamical systems for
which there may be more than one solution corresponding to given initial data. The
need for a theory of such systems arises for various reasons. First, there may be gen-
uine nonuniqueness of solutions. Second, solutions may not be known to be unique
(as, for example, for certain semilinear wave equations with high power nonlineari-
ties, or for the incompressible Navier-Stokes equations in three space dimensions, an
example studied in some detail in the paper). Third, there may be free parameters
or controls that are not specified and lead to various possible solutions. The paper
discusses the measurability and continuity properties of generalized semiflows on a
metric space X, and their global attractors.

There are various possible ways of abstracting dynamical systems with non-
unique solutions. One method (see Sell [38]) is to recover uniqueness of solutions by
working in a space of semitrajectories ¢ : [0,00) — X and defining a corresponding
semiflow T'(-) by T(t)p = ¢, for t > 0, where ¢*(7) := @(t + 7). An interesting
example of the use of this method is the recent proof by Sell [39] of the existence of
a global attractor for the 3D incompressible Navier-Stokes equations. (For further
results see Chepyzhov & Vishik [14].) However, a disadvantage is that the direct
connection with the evolution of the system in the ‘physical’ state space is lost.
(In fact, the existence of a global attractor for the Navier-Stokes equations in the
original phase space remains an open problem; the existence is proved under a
continuity hypothesis on solutions in this paper.) A second method is to consider
a set-valued trajectory t +— T(t)z in which T'(t)z consists of all possible points
reached at time t by solutions with initial data z. This approach has been taken,
for example by Barbashin [10], Budak [13], Bronstein [12], Minkevic [30], Roxin
[36, 35], Szego & Treccani [41], Babin & Vishik [3], Babin [2] and Mel’nik [29].
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2 CONTINUITY PROPERTIES AND GLOBAL ATTRACTORS

However, the disadvantage of this method is that it is not phrased directly in terms
of solutions; in fact in some situations one has to recover solutions by selecting
suitable regular paths from the sets T'(¢)z.

The approach taken in this paper is more closely related to the second method
than the first, and takes as the primitive objects the solutions themselves; it is
an adaptation of that in [8, 9]. A generalized semiflow is defined in Section 2
to be a family of maps ¢ : [0,00) — X satisfying axioms relating to existence,
time translation, concatenation and upper-semicontinuity with respect to initial
data. It is shown in Theorem 2.1 that, under a mild technical hypothesis, for
generalized semiflows strong measurability of solutions with respect to time implies
their continuity on (0, c0), and hence (Theorem 2.2) that the upper-semicontinuity
with respect to initial data is uniform on compact subsets of (0, c0). These theorems
generalize corresponding results for semiflows due to Chernoff & Marsden {16] and
the author [6, 7).

In Section 3 global attractors for generalized semiflows are studied. It is shown
in Theorem 3.3 that a generalized semiflow has a global attractor if and only if it
is point dissipative and asymptotically compact. This result generalizes those for
semiflows of Hale [21] and of Ladyzhenskaya [27]. Related results in the the context
of set-valued semiflows have recently been announced by Mel'nik [29]. In Section
4 the connectedness of the global attractor is proved (Corollary 4.3) provided X
is connected and Kneser’s property holds, that is the set T'(¢){z}, consisting of
all points ¢(t) for solutions ¢ with ¢(0) = z, is connected. In Section 5 the case
of an asymptotically compact generalized semiflow with a Lyapunov function is
considered. As for semiflows the point dissipativeness can be verified by showing
that the set of rest points is bounded (Theorem 5.1).

Section 6 is motivated by results of Sell & You [40] on the Lyapunov stability
of attractors. In order to treat the case of a semiflow whose solutions are not
necessarily continuous up to t = 0, Sell & You were led to change the usual definition
of Lyapunov stability. We show by means of two examples, one finite- and the
other infinite-dimensional, that without such a change in the definition the global
attractor of such a semiflow need not be Lyapunov stable, even if the global attractor
consists of a single point. We also give a positive result (Theorem 6.1} giving
hypotheses under which the global attractor of a generalized semiflow is in fact
stable.

The theory is applied in Section 7 to the case of the 3D incompressible Navier-
Stokes equations. The main results are that (Proposition 7.4) weak solutions satis-
fying an energy inequality form a generalized semiflow, in the usual phase-space H
consisting of L? vector-fields with zero divergence, if and only if all weak solutions
are continuous from (0,00) — H, and that (Theorem 7.6) under this hypothesis
there is a global attractor in H. Since weak solutions of the Navier-Stokes equa-
tions are not known to be continuous in time, these results may turn out to be
vacuous. However, it is notable that we assume neither additional regularity nor
the uniqueness of weak solutions.

A further application of the theory to damped semilinear wave equations (see
Example 2.3) will appear in [5]. This example in fact motivated the paper. This is a
more substantial application of the theory (though to a perhaps less interesting ex-
ample), since the corresponding generalized semiflows are asymptotically compact
but not compact, whereas the generalized semiflow for the Navier-Stokes equations
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(under the assumed continuity of solutions) is compact. For earlier work on at-

tractors for these equations also not assuming uniqueness of solutions see Babin &
Vishik [3].

2. GENERALIZED SEMIFLOWS

Let X be a metric space (not necessarily complete) with metric d. We write
B(a,r) for the open ball centre a € X and radius r. If C C X and b € X we set
p(b,C) :=inf.cc d(b,c). If B C X,C C X we set

dist (B, C) := sup p(b, C),
beB

and define the Hausdorff distance dy(B,C) by
dg (B, C) = max{dist (B, C), dist (C, B)}.
If C C X and € > 0 we write
NAC):={z€ X :p(2,C) < €}
for the open e-neighbourhood of C.

Definition 2.1. A generalized semiflow G on X is a family of maps ¢ : [0,00) = X
(called solutions) satisfying the hypotheses:

(H1) (Ezistence) For each 2z € X there exists at least one ¢ € G with (0) = z.

(H2) (Translates of solutions are solutions) If ¢ € G and 7 > 0, then ¢” € G,
where 7 (t) := o{t + 7), t € [0,00).

(H3) (Concatenation) If ¢, € G, t > 0, with 9(0) = ¢(t) then 6 € G, where

] eln) for 0 < 7 <t
0(r) := { Y(r—t) fort <.

(H4)( Upper-semicontinuity with respect to initial data) If ¢; € G with ¢;(0) — 2
then there exist a subsequence ¢, of ¢; and ¢ € G with ¢(0) = z such that
pu(t) — ¢(t) for each t > 0.

If for each z € X there is exactly one ¢ € G with ¢(0) = z then G is called
a semiflow. Equivalently, via the correspondence S(t)z = ¢(t), a semiflow can
be defined as a family of continuous maps S(t) : X — X, t > 0, satisfying the
semigroup properties

(a) S(0) = identity,

(b) S(s+t)=S5(s)S(t) for all 5,t > 0.
The simplest examples of generalized semiflows are those generated on R™ by au-
tonomous ordinary differential equations of the form 4 = f(u) for appropriate
continuous f : R™ — R" (see Sell [37}).

We consider the following additional measurability and continuity assumptions
that may be satisfied by G. Recall that amap f : (0,00} — X is strongly measurable
if there exists a sequence f; of measurable countably-valued maps converging almost
everywhere to f on (0, c0).

(C0) Each ¢ € G is strongly measurable from (0,00) to X.

(C1) Each ¢ € G is continuous from {0, 00) to X.

(C2) If p; € G with ¢;(0) — 2 then there exist a subsequence ¢, of ¢; and
@ € G with ¢(0) = z such that ¢,(t) — ¢(t) uniformly for ¢ in compact subsets of
(0, 00).

(C3) Each ¢ € G is continuous from [0, 00) to X.
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(C4) If p; € G with ¢;(0) — z then there exist a subsequence g, of ¢; and
¢ € G with ¢(0) = z such that ¢, (t) — ¢(t) uniformly for ¢ in compact subsets of
[0, 00).

We illustrate these definitions with some examples:

Ezample 2.1. Let X =[—1,1]. Define S(0)r =7, and fort > 0

1—et if—-1<71<0,
S(t)yr =
l—et(1—-7) 0<7<1.

Then it is easily verified that S(t) is a semiflow satisfying (C1) and (C4) but not
(C3).

Ezample 2.2. (The one-dimensional heat equation.)
For f € L*(0,1) define S(¢)f to be the unique solution u(:,t) of the problem
U = Ugz, 0< <1, >0,

u=0 atz=0,1,
u(z,0) = f(x).
Then S(t) is a semiflow on L°°(0, 1) satisfying (C1) (since u is smooth for ¢t > 0),
(C4) (since [|S(t)flloc < [|flloo), but not (C3) (since otherwise we would have

u(-,t) — f in L*>(0,1) as ¢t — 0+, implying that f is continuous).

Ezample 2.3. (A semilinear wave equation.)
Let, @ C R™, n > 3, be bounded and open with boundary 92. Consider the
damped semilinear wave equation

(2.1) uge + Puy — Au+ fu) =0  in Q,
with boundary condition

(2.2) ulaq = 0,

and initial conditions

(2.3) u(z,0) = up(x), us(z,0) =wi(z),

where 8 > 0 is a constant and f : R — R is continuous and satisfies the growth
condition
|F(u)] < collul==% +1),

for some constant ¢o > 0, and sign condition

Hm inf ______f(u) > =1,

|[uj—o0 U
where \; is the first eigenvalue of —A with the boundary condition (2.2} . Let
X = H}() x L2(Q). Then given {ug,u1} € X there exists at least one weak
solution ¢ = {u,u:} on [0, 00) to (2.1)-(2.3), and the set G of all such weak solutions
is a generalized semiflow satisfying (C3) and (C4). This is proved in [5]. Note that
we do not assume any Lipschitz condition on f, so that there is no reason to suppose
that sclutions are unique.

Our first result is a simple extension to generalized semiflows of that of [7]. We say
that G has unique representatives if whenever ¢, 9 € G with ¢(t) = ¥(t) for a.e.
t > 0 we have o(t) = 9(t) for all t > 0; it is easily seen that this property holds for
semiflows.
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Theorem 2.1. Let G have unique representatives and satisfy (C0). Then G satis-
fies (C1).

Proof. Let ¢ € G. Following the proof in {7], which uses an argument of Auerbach
[1},let 0 < a < a+ 6§ < oo and let I,J denote the open intervals (a,a + 8} and
(a+6/3,a+28/3) respectively. It suffices to show that ¢ is continuous in J. Since ¢
is strongly measurable, by a version of Lusin’s theorem (see Oxtoby [31], [7]), there
exists in I a closed set F; of measure greater than 6 — 1/ 42 on which the restriction
of ¢ is continuous. The continuity being uniform, there exists ; € (0,6/3) such
that t,t + h € F; and |h| < n; imply that d{p(t + h), ¢(t)) < 1/j.

Suppose for contradiction that there exist to € J and a sequence h; — 0 with
o(to + hj) # ¢(to). Extracting a subsequence, we may assume that

(2.4) d(p(to + hy), e(to)) > €
for some € > 0 and all j, and that |h;| < n; for all j. Let
E;={teJ:t,t+h; € F}}
=F;nN(F; —h;)NJ.

Then meas (J\F;) < 1/52, meas (J\(Fj — h;)) = meas ((J + h;)\F;) < 1/5%. Thus
meas (J\E;) < 2/j%. Hence meas (J\ liminf; . E;) =0, and so o(t + h;) — ¢(t)
for a.e. t € J. In particular there exists t1,t3 € J, t1 < to < to, With ¢(t; + h;) —
o(t;) for i = 1,2. By (H2) ¢*1 1% is a solution, and since ' (0) — ¢(t1), by
(H4) there exists a subsequence ¢!+ and a solution ¥ with @' 15 () — 4(¢) for
all t > 0. But then 9(¢) = p(t +t;) for a.e. t € (0,a+2§/3 —t1). Now define ¥ by

o [ et +t) for0<t <ty -ty
’/’(t)—{w(t) for t > tg — 1.

By (H2), (H3) ¥ € G, and 1/2(1&) = 2(t) for a.e. ¢t > 0. Since G has unique
representatives it follows that () = 1(¢) for all ¢ > 0. In particular ¥(to — t1) =
¥(to — t1), and hence ©(to + h,) — ¢(to), contradicting (2.4). O

Next, we extend a result for semiflows of Chernoff & Marsden [16] (see also [6]).

Theorem 2.2. Let G satisfy (C1). Let p;,¢ be solutions with ¢;(t) — ¢(t) for
all t > 0. Then p;(t) — @(t) uniformly for t in compact subsets of (0,00). In
particular G satisfies (C2).

Proof. Let 0 <a <b< oo0,and fore>0,n=1,2,..set
Sne = {t €la,b] : 5 > n implies d(p;(t),¢(t)) < e}

Sn.e is closed by (C1), and by assumption U2, Sp c = [a,b]. By the Baire Category
theorem, some S, . contains an open interval. Since we may apply this argument to
any [a, b] C (0, 00) there exists a dense open subset S, of (0, 00) such that if tg € Se
there exist an open neighbourhood N(to) of to and r.(to) with d(p;(t),¢(t)) <e
whenever § > r.(to), t € N.(to).

Let K =Ng2,8Sy/;. Clearly o;(t;) — ¢(t) whenever t; — ¢ and ¢ € K. Again by
the Baire Category theorem, K is dense in (0, co).

Now let ¢ > 0 be arbitrary and t; — ¢, and suppose for contradiction that
@;(t;) # ¢(t), and without loss of generality that

(2.5) d(p;(t;), () > 6
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for all j and some § > 0. Now let s € K, s < t and consider the solutions
P = cpjj+s—t, which are well defined for j large enough. Since s € K, 1;(0) — ¢(s),
and so by (H4) there exist a subsequence 1, and a solution ¢ with Y (1) = (1)
for all 7 > 0. But if s+ 7 € K then (1) = 9;(t; + s —t+7) — (s + 7). Since
K is dense and ¢, 1) continuous on (0,00), it follows that 9(7) = ¢(s + ) for all
7> 0. Hence @, (t,) = ¥u(t — s) — ¥(t — s) = ¢(t), contradicting (2.5). |

If X is locally compact then for semiflows (C3) implies (C4), a result first proved
by Dorroh [19]. We next show that the same result holds for generalized semiflows,
adapting the simple proof by Chernoff [15] of Dorroh’s result.

Theorem 2.3. Let X be locally compact. Let G satisfy (C3). Then G satisfies
(C4)

Proof. Let ¢; € G with ¢;(0) — z. By Theorem 2.2 there exist a subsequence
¢, of p; and ¢ € G with (0) = z and @,(t) — ¢(t) uniformly for ¢ in compact
subsets of (0, 00). It thus suffices to show that if ¢, — 0 then ¢, (t,) — z. Suppose
not. Then there exists a further subsequence, which we do not relabel, such that
d(pu(ty), z) > € for some ¢ > 0. We may assume also that d(p.(0),2) < e. Hence
by (C3) there exists s, € [0,,] with d(p.(s,),2) = €. Since X is locally compact
we may assume further that @,(s,) — y, where d(y,2) = e. Thus by (H3),(H4)
there exists ¥ € G such that for a further subsequence @, (s, + t) — ¥(t) for all
¢ > 0. But for t > 0 we have ¢, (s, +t) — ¢(t), and so ¥(t) = ¢(t) for all ¢ > 0.
Letting ¢t — 0 we deduce from (C3) that y = z, a contradiction.

Chernoff [15] gives an example of a semiflow on a Hilbert space satisfying (C3)
but not (C4); we give another more explicit example in Section 6.2.

3. EXISTENCE OF GLOBAL ATTRACTORS

We first extend to generalized semiflows various standard definitions for semi-
flows.
Let G be a generalized semiflow and let E C X. Define for t > 0

(3.1) TE = {¢(t) : ¢ € G with p(0) € E},

so that T(t) : 2X — 2%, where 2% is the space of all subsets of X. It follows from
(H2), (H3) that {T(t)}:>0 defines a semigroup on 2%, i.. (a), (b) hold for T'(¢).}
Note that (H4) implies that T'(¢){z} is compact for each z € X,¢ > 0.
The positive orbit of ¢ € G is the set Y7 () = {p(t) : t > 0}. If E C X then the
positive orbit of E is the set

7*(B) = | JT®F

£>0
= U{fy"'((p) : ¢ € G with ¢(0) € E}.

1This semigroup has various interesting properties; for example, it is monotone with respect
to the partial order of set inclusion (i.e. E C F implies T'(t)E C T(t)F for all t > 0) and its rest
points are the invariant sets of G. When restricted, for example, to the space K (X) of compact
subsets of X endowed with the Hausdorff metric, it inherits from (H4) the upper semicontinuity
property that K; — K implies that dist (T(t)K;, T(¢)K) — O forallt 2 0. If G is a semiflow
then we have the stronger property that K; — K implies T'(t)K; — T(t)K for all ¢ > 0, so that
T(-) is a semiflow on K(X).



If 7> 0 we set
¥ (E) = |JTOE = +*(T(1)E).
t>T
The w-limit set of ¢ € G is the set

w(p) = {z € X : p(tj) — z for some sequence t; — oo},

A complete orbit is a map ¥ : R — X such that forany s e R, ¢* € G. If ¢ is
a complete orbit then the a-limit set of 1 is the set

a(¥) = {z € X : ¢(t;) — z for some sequence t; — —oo}.
If E C X the w—limit set of F is the set

Ww(E) = {z € X : there exist ; € G with ¢;(0) € E, ;(0) bounded,
and a sequence t; — oo with ¢;(t;) — z}.

(When E is unbounded this definition differs from the usual one, in which it is not
assumed that the ¢;(0) are bounded.)

The subset A C X attracts a set E if dist(T'(t)E, A) — 0 as t — oo, and is locally
attracting if A attracts a neighbourhood of A.

We say that A is positively invariant if T(t)A C A for all ¢ > 0, that A is
quasi-invariant if for each z € A there exists a complete orbit ¢ with ¥(0) = z
and ¥(t) € A for all t € R, and that A is invariant if T(t)A = A for all t > 0.
Note that if A is quasi-invariant then A C T'(t)A for all ¢t > 0 (this is taken as the
definition of quasi-invariance by Barbashin [10]); from this it follows easily that A
is invariant if and only if A is positively invariant and quasi-invariant. Note that
even for semiflows a set A may be invariant but there may be solutions ¢ € G with
©(0) ¢ A and ¢(t) € A for some t > 0.

The subset A is a global attractor if A is compact, invariant, and attracts all
bounded sets.

The generalized semiflow G is eventually bounded if given any bounded B C X
there exists 7 > 0 with v7(B) bounded.

G is point dissipative if there is a bounded set By such that for any ¢ € G
(t) € By for all sufficiently large t.

G is asymptotically compact if for any sequence ¢; € G with ¢;(0) bounded, and
for any sequence t; — 00, the sequence ¢;(t;) has a convergent subsequence.

G is compact if for any sequence ¢; € G with ¢;(0) bounded there exists a
subsequence ¢, such that ¢, (t) is convergent for each ¢ > 0.

Proposition 3.1. Let G be asymptotically compact. Then G is eventually bounded.

Proof. Let a € X, let B C X be bounded, and suppose for contradiction that " (B)
is unbounded for all 7 > 0. Then there exist ¢; € G with ¢;(0) € B and {; — c©
with d(p;(t;),a) — oo. But ¢;(t;) has a convergent subsequence by asymptotic
compactness. O

Proposition 3.2. Let G be eventually bounded and compact. Then G is asymp-
totically compact.

Proof. Let ; € G with ¢;(0) bounded, and let t; — oo. Since G is eventually

bounded <p;j -t (0) is bounded. Since G is compact, for some subsequence cpfj"—l (1) =
@u(ty) is convergent. O
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Theorem 3.3. A generalized semiflow G has a global attractor if and only if G is
point dissipative and asymptotically compact. The global attractor A is unique and
given by

(3.2) A =| J{w(B) : Ba bounded subset of X} = w(X).
Furthermore A is the mazimal compact invariant subset of X.

Theorem 3.3 generalizes a corresponding result for semiflows given in Hale [21],
Ladyzhenskaya [27] and having antecedents in the work of Billotti & LaSalle [11]
and Hale, LaSalle & Slemrod [26]. Note, however, that we make no assumption
that the positive orbits of bounded sets are bounded. A closely related result in
the context of a set-valued semiflow T'(t) is announced in Mel'nik [29]; the main
differences are that in [29] (i) the global attractor A is not asserted to be invariant,
but only to satisfy the property A C T'(t)A for all ¢ > 0 (this can be traced to the
weaker hypothesis made in [29] that 7'(t) satisfies T'(s + t){z} C T(s)T'(t){z} for
all z € X, s, > 0, whereas our concatenation hypothesis (H3) implies equality),
(ii) the definition of point dissipative is stronger, (iii) the semiflow is assumed to
be eventually bounded. For other results on global attractors and applications see
Temam [42] and Babin & Vishik [4].

In order to prove Theorem 3.3 we need to suitably modify the corresponding
arguments for semiflows. Our treatment is closest to that of Ladyzhenskaya [27].

Lemma 3.4. Let G be asymptotically compact.

(i) Let B C X be nonempty and bounded. Then w(B) is nonemply, compact,
quasi-invariant and attracts B. If T{to)w(B) C B for some tg > 0 then w(B) is
invariant.

(i1) If ¢ € G then w(p) is nonempty, compact, quasi-invariant, and lim;.co
p(p(t), w(p)) =0.

(iii) If v is a bounded complete orbit then (1)) is nonempty, compact and quasi-
invariant, and lim;_._ o p(Y(t), a{2P)) = 0.

Proof. (i) Let v € B. By (H1) there exists some ¢ € G with p(0) = v. By
the asymptotic compactness ¢(j) has a convergent subsequence, and so w(B) is
nonempty. Since w(B) C 47(B) for any 7 > 0, and since G is eventually bounded,
w(B) is bounded. It is easily seen that w(B) is also closed.

Let 2z € w(B). By definition there exist ¢; € G with ;(0) € B and a sequence
t; — oo such that ¢;(t;) — 2. By (H2), 903:"' € G. Since cp;j (0) — z, by (H4) there
exist a subsequence, which we do not relabel, and a solution 1y with 19(0) = z, such
that goz-j (t) — 1o(t) for all t > 0. Clearly ¥o(t) € w(B) for all £ > 0. Now consider
the sequence <,0;-j_1. Since cp;j_l(O) = ;(t; — 1), by the asymptotic compactness
and (H4) we have (after extraction of a further subsequence) that cp;j _1(t) — 1(t)
for all ¢ > 0, where 9; € G. Clearly 9} = 1. Proceeding inductively, we find for
each r = 1,2,... a solution 1, such that 1} = ¢, and ¥,(t) € w(B) for all t > 0.
Given t € R define 9(t) to be the common value of (¢t + r) for r > —t. Then ¢
is a complete orbit with ¥(0) = z and ¥(¢) € w(B) for all t € R. Hence w(B) is
quasi-invariant.

Now suppose z; € w(B). By the quasi-invariance z = 5 (k) where 1 € G and
¥ (0) € w(B). By the boundedness of w(B) and the asymptotic compactness z
has a convergent subsequence. Hence w(B) is compact.
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Suppose w(B) does not attract B. Then there exist & > 0, ¢; € G with ;(0) € B
and a sequence t; — oo with ¢;(t;) € N.(w(B)). But by asymptotic compactness
¢;(t;) has a convergent subsequence, and the limit belongs to w(B), a contradiction.

If T(to)w(B) C B for some to > 0 then by the quasi-invariance of w(B) we have
w(B) C B. Let ¢ € G with ¢(0) € w(B) and let t > 0. By the quasi-invariance and
concatenation we have that, for each k > 0, ¢(t) = i (k) for some ¥ € G with
¥r(0) € w(B). But then 1 (0) € B and so ¢(t) € w(B). Thus w(B) is invariant.

(i) The proof is similar to (i) but easier.

(iii) If ¢; — —oo then ¥(t;) = ¥*i(—t;) and ¥*(0) is bounded, so that by
asymptotic compactness ¥(¢;) has a convergent subsequence. The rest of the proof
is as for (ii).

|

Lemma 3.5. Let G be pointwise dissipative and asymptotically compact. Then
there exists a bounded set By such that given any compact K C X there exist
e=¢(K)>0,t; = t1(K) > 0 such that T(t)N(K) C By for all t > 1.

Proof. Let § > 0. Since by Proposition 3.1 G is eventually bounded there exists
7 > 0 such that B, := 77 (N5(Byp)) is bounded. Suppose for contradiction that there
exist a compact set K and sequences £; — 0, t; — 00, @; € G with ¢;(0) € N, (K)
and ;(t;) & B1. Since p;(t;) = ¢} (t; —t) it follows that ©4(0) = p;(t) & Ns(Bo)
for 0 < t <t; — 7. We may also assume that ¢;(0) — z € K. Hence by (H4) there
is a subsequence ¢, and ¢ € G with ¢, — ¢ pointwise, ¢(0) = z, and ¢(t) & Bo
for all t > 0. This contradicts the point dissipativeness of G. O

Proof of Theorem 3.3. Let A be a global attractor for G and let By = N;(A) for
some § > 0. Given ¢ € G the set consisting of the single point {¢(0)} is bounded
and thus attracted to A. Hence o(t) € By for ¢ sufficiently large, and hence G is
point dissipative. If ¢; € G with ¢;(0) bounded, the set {;(0)} is attracted to A,
and thus if ¢; — oo we have p(y;(t;), A) — 0. Since A is compact this implies that
©;(t;) has a convergent subsequence, and thus G is asymptotically compact.

Conversely, let G be point dissipative and asymptotically compact. Let B; be
as in Lemma, 3.5 and let A = w(B;). By Lemma 3.4 A is compact and attracts B;.
We show that A attracts bounded sets. Let B be bounded and let K = w(B). By
Lemma 3.4 K is compact and attracts B. Let e(K), t; = ¢;(K) be as in Lemma 3.5,
andlet 0 < ¢ < e(K). Since K attracts B, T'(to)B C N.(K) for some to > 0. Hence
T(t() + tl)B = T(tl)T(t())B - T(tl)Ne(K) C B;. Thus T(to + &+ t)B C T(t)B1
for all £ > 0, and since B, is attracted to A so is B. Since by Lemma 3.5 we also
have that T'(t2)w(B;) C By for some ty > 0, it follows from Lemma 3.4 that A
is invariant. This proves that A is a global attractor, and that w(B) C A for any
bounded B, so that (3.2) holds.

Suppose A; is compact and invariant. Then w(A4;) = A; and so A; C A by
(3.2). Hence A is the maximal compact invariant subset of X. |

4. CONNECTEDNESS

Proposition 4.1. Let G be asymptotically compact and satisfy (C1). If p € G
then w(yp) is connected. If ¢ is a complete orbit then a(v) is connected.

Proof. This is standard. By Lemma 3.4 w(p) and a(y) are compact. If w(p),
say, were not connected then w(y) = A; U Ay for nonempty disjoint compact sets
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Ay, Ap. Let Uy, U, be disjoint open sets with Ay C U, Az C Us. By (C1) there
exist t; — oo with ¢(t;) € Uy U Uz, and by asymptotic compactness this implies
that there exists z € w(p)\(41 U Az), a contradiction. O

We say that G has Kneser’s property if T(t){z} is connected for each z € X, > 0.
Any semiflow has Kneser’s property since T'(t){z} is a point.

Theorem 4.2. Let G satisfy (C1). If G has Kneser’s property and if E C X is
connected then w(E) is connected.

For a related result see Mel’nik [29].

Proof of Theorem 4.2. Suppose E is connected but w(E) is not. Then w(E) =
Ay U Ay, for nonempty sets A;, Az, where A; NA; = AN A; = 0. Since X is a
metric space, it is completely normal (see [23, p. 42]), so that there exist disjoint
open sets Uy, Uy with Ay C Uy, Ax C Ua. (If w(E) is compact this conclusion is
obvious.) Fori = 1,2let E; = {2 € E : dist (T'(t){z}, 4;) — 0 ast — oo}. We claim
that E1, E are disjoint nonempty relatively open subsets of £ with E1 U Ea = E.
Since E is connected this is a contradiction.

To show that the E; are disjoint, note that if z € Ey N Ep then T'(t){z} C Ui
for ¢ large enough and T(t){z} C U, for t large enough, which is impossible since
UinU; = 0.

To show that Ey U E; = E suppose z € E. Then dist (T'(t){z},w(E)) — 0 as
t — oo, and so there exists T > 0 such that T(t){z} C Uy UU; for all £ > T.
By Kneser’s property we thus have that for each ¢t > T either T(t){z} c Uy or
T(t){z} C Us. But if T(r){z} C U1, T(s){2z} C Uz for T <1 < s then there exists
v € G with p(0) = z, p(r) € Ux, (s) € U, and ¢(t) € Uy UU; for t € [r,s]. This
is impossible by (C1). Hence z € E, U Es.

To show that Es, say, is nonempty suppose that E = E;. Let a € A, so that
there exist p; € G with ¢;(0) € E, ¢;(0) bounded and t; — oo with p; (t;) — a.
Let B = {p;(0)}. Since B is bounded, by Lemma 3.4 B is attracted to w(B) C
w(E). Hence there exists 7' > 0 with ¢;(t) € U1 UU; for all t > T and all j. But
since ;(0) € E1, p;(t) € Uy for all j and all t > T. This contradicts a € Az.

Finally, to show that E, say, is relatively open, let z € E» and suppose for
contradiction that there exist z; — z with z; € Ey for all j. Thus there exist
¢; € G with ¢;(0) = z; and for each j and for all sufficiently large ¢ we have
@;(t) € Uy . Since {p;(0)} is bounded, as argued above we have that there exists
T > 0 with p;(t) € UyUU; for all t > T and thus ¢;(t) € U, for all j and allt>T.
But by (H4) we may assume that ¢;(t) — @(t) for all t > 0, where ¢ € G with
©(0) = 2. Since z € E, there exists 7 > T' with ¢(7) € Us, and hence (1) € Uz
for j sufficiently large, a contradiction. O

Corollary 4.3. Let X be connected, and let G satisfy (C1) and have Kneser’s
property. If A is a global attractor then A is connected.

Proof. This follows since A = w(X). O

For similar but not identical results for semifiows see Ladyzhenskaya [27) and Sell
& You [40)%.

2However the proof in [27] that the global attractor is connected if X is connected makes use
of the incorrect remark that a bounded subset B of a connected metric space X is contained in
a bounded connected subset of X; a counterexample is provided by the metric subspace X of R?
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5. LYAPUNOV FUNCTIONS

A complete orbit 1 € G is stationary if ¥(t) = z for all t € R for some z € X.
Each such z is called a rest point. (Note that in general, if z is a rest point there
may also exist nonconstant ¢y € G with ¥(0) = z.) We denote the set of rest points
of G by Z(@). 1t follows easily from (H4) that Z(G) is closed.

We say that V : X — R is a Lyapunov function for G provided

(i) V is continuous,
(i) V((t)) < V(p(s)) whenever o € G and ¢t > s > 0.
(#i3) if V(¥ (t)) = constant for some complete orbit ¢ and all ¢ € R then ¢ is
stationary.

Since a global attractor A is quasi-invariant, given any a € A there exists a
complete orbit ¢ with ¥(0) = a. In the presence of a Lyapunov function the
behaviour of such complete orbits can be characterized.

Theorem 5.1. Let G be asymptotically compact, let (C'1) hold, and suppose there
ezists a Lyapunov function V for G. Suppose further that Z(G) is bounded. Then
G is point dissipative, so that there exists a global attractor A. For each complete
orbit ¥ lying in A the limit sets a(¥),w() are connected subsets of Z(G) on which
V is constant. If Z(G) is totally disconnected (in particular, if Z(G) is countable)
the limits

2o = lm (1), 24 = fim ()

ezist and z_, z4 are rest points; furthermore, @(t) tends to a rest point as t — oo
for every p € G.

Proof. Lete > 0, By = N.(Z(G)). If ¢ € G, by properties (i), (ii) of V and Lemma
3.4 we have that V(2) = lim;_o V(p(t)) € R for all z € w(yp). Since w(yp) is
quasi-invariant, by property (ii) w(y) C Z(G) and hence ¢(t) € By for ¢ sufficiently
large. Thus G is point dissipative. If % is a complete orbit in A then we have
by the above and Proposition 4.1 that w(y)) is a connected subset of Z (G}, and
the corresponding result for a(¢)) holds similarly. The rest of the theorem is then
obvious. O

6. STABILITY

The subset A C X is Lyapunov stable if given £ > 0 there exists § > 0 such that
if E C X with dist (E, A) < & then dist (T(£)E, A) < e for all £ > 0. It is easily seen
that a subset A4 is Lyapunov stable if and only if given ¢ € G with p(¢;(0), A) — 0
and t; > 0 we have p(p;(t;), A) — 0. We say that A is uniformly asymptotically
stable if A is Lyapunov stable and is locally attracting.

Since a global attractor is compact, invariant and locally attracting, the following
theorem gives in particular conditions under which a global attractor is uniformly
asymptotically stable.

Theorem 6.1. Let G satisfy (C1) and (C4), and let A be a compact invariant set
that is locally attracting. Then A is uniformly asymptotically stable.

given by the union of the sets C;\Qj, j = 1,2, ..., where C; is the circle centre (0, j) of radius j
and Q; is the square (0,1/5)2. The intersection B of X with the ball B(0, 2) is not connected,
but the only connected set containing B is X itself.
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Proof. We must show that A is Lyapunov stable. Suppose not. Then there exist
¢; € G and t; > 0 such that p(p;(0), 4) — 0 but p(p;(t;), A) = € for some ¢ > 0.
Since A is compact we may suppose that ¢;(0) — z € A and thus by (H4) that
@;(t) = @(t) for all ¢ > 0 for some ¢ € G with ¢(0) = 2. Since A is invariant
o(t) € A for all t > 0. We may also suppose that either t; — oo ort; — ¢ > 0.

If t; — oo, then since A is locally attracting we have p(y; (tj), A) — 0, a con-
tradiction. If t; — ¢ > 0 then since G satisfies (C1), by Theorem 2.2 we have
©;(t;) — »(t) € A, a contradiction. So it remains to consider the case t; — 0.
By (C4) we have, after the possible extraction of a further subsequence, that
d(p;(t;),p(t;)) — 0. Since A is invariant there exists § € G with (1 + 1) = (1)
for all 7 > 0, and so by (C1) p(¢;) — ©(0). Hence p;(t;) — ¢(0) € A, a contradic-
tion. O

Corollary 6.2. Let X be locally compact, let G satisfy (C3), and let A be a compact
invariant set that s locally attracting. Then A is uniformly asymptotically stable.

Proof. This follows immediately from Theorems 2.3, 6.1. a

Let G satisfy (C1) and let A be a compact invariant set that is locally attracting.
Then the proof of Theorem 6.1 shows that given ¢ > 0, 7 > 0 there exists § > 0
such that if E ¢ X with dist (E, A) < § then dist (T'(¢)E, A) < ¢ for all t > 7.
For semiflows Sell & You [40] take this conclusion as the definition of Lyapunov
stability, and prove an equivalent result.

We now give two examples of semiflows {S(t)}:>0 on a metric space X satisfying
(C1) for which A is a single point but is not Lyapunov stable.

6.1. An example with X = R2. In the first example X = R? is locally compact.
Thus by Corollary 6.2 (C3) cannot be satisfied.
Consider the differential equations in R?

(6.1a) 7= —r%h(f),

(6.1b) 6 = — 2r~2 sin(6/2)h(6),

where (r,8) are plane polar coordinates with 0 < 6 < 27 and where
(6.2) h(f) := 072 (2m — )2

Writing z = rcosf, y = rsinf, we see that (6.1) defines a C* vector field in
U = R2?\L, where L = {(z,0) : z > 0} denotes the positive semi z-axis. Note that
the integral curves of (6.1) are given by

(6.3) r = Ctan(8/4)

where C' > 0 is a constant. These curves do not intersect L, and approach the
origin tangent to it from the first quadrant (see Fig. 1a). Since h(f) > T4, we
have that

(6.4) r !

(0) - §7T_4t.

Hence for any z € U, the solution (z(t), y(t)) of (6.1) with initial data (2(0),y(0)) =
z reaches the origin in a finite time ¢, = t.(z) > 0. We define for z € U

ol
tojm

B <r

(z(t),y(t)) f0<t<t.,

(6.5) R(t)z = {(0, 0) if t > te.
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FIGURE 1. a. Phase portrait for the semiflow R(t). b. Phase
portrait for the semiflow S(t).

For z = (,0) with > 0 we define

z ift=0,

(6.6) R(t)z {(0,0) if ¢ > 0.
Thus R(t) : R? — R? is defined for all ¢ > 0, and clearly R(0) = identity, R(s+t) =
R(s)R(t) for all s,t > 0. We show that R(t) is continuous for each ¢ > 0. Let t >0
and z; — z. We must show that R(t)z; — R(t)z. This is easily proved if z € U or
z = 0, using the fact that by (6.4) the origin is stable, so we assume that z € L. By
(6.6) we may also assume that z; € L for all j. The result then follows provided
we can show that t.(z;) — 0, since then R(t)z; = R(t)z = 0 for sufficiently large j.
Let (r;,0;) be the solutions of (6.1) corresponding to the initial data z;. We first
claim that given ¢ > 0 there exists J(¢) such that if j > J(¢) and 7 € [0,tc(25))
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then either r;(7) < € or h(9;(r)) > e~1. If not there would exist a subsequence ji
and 7, € [0,t.(z;,)) with rj, (%) > € and h(0;, (%)) < ¢~1. From (6.3) we have
that

(6.7) Tin () _ Tk (0)

tan (65, (rc)/4)  tan(6;,(0)/4)
and the left-hand side of (6.7) is bounded away from zero and infinity. But this is
not true for the right-hand side, since z € L, establishing the claim. Now for ¢ >0
let t°(2;) = inf{s > 0 : r;(s) = €}. From (6.4) applied to r(t) = r;(t + t°(z;)) we
have that
(6.8) to(z;) = t(z;) < 2m%e?.

But for j > J(¢), 7 € [0,t°(z;)) we have h(6;(r)) > ¢! and thus rj(r) <
—rj(1)3e~1. Hence

(6.9) eb = ry(t5(z))} <r(0)F — %te(zj)s_l.

Combining (6.8), (6.9) we deduce that for j > J(¢)
to(z;) < 2me® + 2e(r;(0)% — £¥)
and letting ¢ — 0 we obtain t.(z;) — 0 as required.
We have thus shown that { R(t)};>0 is a semiflow on R%. Also, the map ¢ — R(t)z

is clearly continuous on (0, 00) for any z € R?.
We now modify R(t) using a map P : R? — R? defined by

P(.’L‘, y) = (1} - f(zay)vy)>
where f € C*(R?\{0}) satisfies f(z,y) = 0 if (z,y) € R := (-1,0) x (=1,1),
limy_o_ f(z,0) = a, where 0 < a < 1, and f,(2,y) < 3 for (z,y) # (0,0). Since
8. P(z,y) = (1 — fz(z,y),0) for (z,y) # (0,0), P is monotone on lines y = const.,
and hence P restricted to R2\{0} is a diffeomorphism with range R?\I, where
I:={(z,0): —a <z < 0}. We define S(t) : R? > R? by

S(t)z = P(R(t)P™'z) if z¢ I,t>0,
S(0)(z,0) = (z,0) if (z,0) €I,
S(t){(z,0) = (0,0) if (z,0)el,t>0.
(See Fig. 1b, where we have chosen
He+1)2(1—¢?)? if ~1<z< -y,
flz,y) =< Lz +1)2(1 — y?)?sin’(nz/2y?) if —y2 <2 <0,
0 otherwise,

for which a = .)

It is easily checked that S(0) = identity, S(s +t) = S(s)S(¢) for all s,¢ > 0.
Each solution t +— S(t)z is continuous on (0,00). The only case that is not im-
mediately obvious is when z ¢ I and P~z ¢ L. But then R(¢)P~'z is continu-
ous on (0,00) and is zero for ¢t > t, = t,(P7'z). So we just need to show that
lim;_; _ P(R(t)P~'z) = 0. But this follows since R(t)P~'z belongs to the first
quadrant for t € (¢, — ¢, ) for some € > 0, and there P = identity.

We now prove that each S(t) is continuous from R? — R2. Let t > 0, z; — 2.
We must show that S(t)z; — S(t)z. There are various cases.
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(i) Suppose z € I, so that S(t)z = 0. We may assume that either z; € I for all j
or z; ¢ I for all j, and in the former case S(t)z; = 0 and we are done. If z; ¢ I for
all j then we may assume that P~'z; — w, and clearly w = 0. But then by (6.4)
R(t)P~'z; = 0 for j large enough, and hence S(t)z; = 0 for j large enough.

(#i) Suppose z & I, so that P~1z # 0 and P~'z; — P~*z. Then R(t)P~'z; —
R(t)P~1z, so that if R(t)P~1z # 0 we have S(t)z; — S(t)z. If R(t)P~1z = 0 there
are two subcases. If P~1z € L then we may assume that either P~'z; € L for
all j or that P~1z; € L for all j. In the first case we have S(t)z; = S(t)z = 0.
In the second we already showed that t.(P~'2;) — 0. Hence R(t)P~'z; = 0 and
S(t)z; = O for j large enough. The second subcase is when P~z ¢ L. Then
P~lz; ¢ L for j large enough, and since R(t)P~'z approaches 0 from the first
quadrant, so R(t)P~1z; belongs to the closed first quadrant for j large enough.
Hence S(t)z; = R(t)Ptz; — 0= S(t)z.

It remains to show that {0} is a global attractor for {S(¢)}:>o that is not Lya-
punov stable. To show that {0} is a global attractor we just need to prove that it
attracts bounded sets. Let M > 2 and |2] < M. If z € I then, since P = identity
outside B(0,2), |P~12] < M. Hence by (6.4) R(t)P~'2 =0 fort > 2M 274, and so
S(t)z = 0 for such t. If z € I then S(t)z = 0 for t > 0. Hence S(¢)B(0, M) = {0}
for t > 2M 27 and thus S() attracts bounded sets.

To see that {0} is not Lyapunov stable, let z; = (j=!,—j~'). Then by (6.3)

there exists t; > 0 such that R(t;)z; = (—V2/(j cot 77/16),0). Then |S(t;)z;| =
[P(R(t;)2)] 2 a.
6.2. An example with X a Hilbert space. In this example we take X = H
to be a real Hilbert space with inner product ( , ), norm || - || and orthonormal
basis consisting of the vectors e;, €;, i = 1,2, ... . We construct a semiflow {S(t)}:>0
on H satisfying (C3) (ie. t — S(t)w is continuous from [0,00) — H for each
w € H) and such that {0} is a global attractor which is not Lyapunov stable. By
Corollary 6.2 such an example cannot occur for X locally compact. By Theorem
6.1 the semigroup S(t) cannot satisfy (C4), and so in particular we obtain an
explicit example of a semigroup on a Hilbert space satisfying (C3) but not (C4);
the example of Chernoff [15] is not explicit and is based on a nontrivial result of
infinite-dimensional topology.

Fix B with 0 < 3 < 1. For each ¢ we let L; = span{e;, €;} and

K :={u+v:ue L,ve L |v|? < Blul?},

where L denotes the orthogonal complement of L;. Let S = {w € H : ||w] = 1}.
We have the following elementary result.

Lemma 6.3.
dist (K; NS, K; N S) = ¢(B)

for i # j, where ¢(8) = v2(1 — /B)/VI+ B> 0.
Proof. Let w; € K; N S,w; € K; N.S. Then we have

w; = U + 25 + 9,

w; =u; +2; + 9,
with u;, 2; € Li, uj,2; € Lj, v,9 € (L; ® L;)* and
(6.10) lwill® + 2511 + loll® = fugh? + 2l + a)* = 1,
(6.11) Iz ll? + ol < Bllual®, Nzl + 190 < Bllus .
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It follows from (6.10), (6.11) that

1 1
lJug))® > 75 flusll® > 125

B 2 B
2501 < 15 flz:l]" < 5

Hence
s — wj1? = llus = zlf* + ug — 2li + o — 0
> (Jull = W22 + (lugll = 1z
J 2= VB)
1+8
and so dist (K; NS, K; N S) > ¢(B).
The opposite inequality follows on choosing v = v = 0, u; = (1/vT+ B)es,

u; = (1/VI7 Blej, z = (VB/VI+Blei, z; = (VB/V1+ Be;, and noting that
O

w; € K;NS, w; € K;NS.
Corollary 6.4. The sets K; are disjoint.
Proof. If w € K; NK; for i # j then w/|jw|| € K; NK; NS. d
Let 7 € C*°([0, 00)) satisfy n > 0 and
1 ifr =0,
n(r) = {O if 7 > Le(B).
Define h: S — R by

h(0) =1+ (i — L)n(dist (6, K; N S)).
i=1
Given 8 € S, all the terms in the sum vanish in a neighbourhood of § except perhaps
one. Thus h is locally Lipschitz. Clearly h > 1 and h(f) =i for # € K; N S.
We construct S(t) through an ordinary differential equation

(6.12) W = F(w)
on H\{0}, where F : H\{0} — H. For w ¢ |J2, K; we define

To define F on each K; we first define F on L;\{0}. Let ¢; € C§°(R) with
0<w; <1,suppt; C (1/4,3/i), $i(2/i) =1, and let 6; € Cg°(R) with 0 < 6; <1,
suppb; C (1/4,4), 6:(2/1) = 1, 6; > —1. Define P; : L; — L; by

P;(ze; +yé;) = ze; + (y + ¥i(2)0:(y))é:.
Since
2+ (@) = 1+ ) > 0

it is easily seen that P; is a diffeomorphism satisfying P; = identity if z & (1/1,3/%)
or y & (1/4,4). Consider the ordinary differential equation

(6.13) p=—ip



17

on L;, whose trajectories are given by
p(t) = exp(—it)po,  Po € Ls,
and the ordinary differential equation
¢ = fi(q)
on L; whose trajectories are given by
(6.14) q(t) = Pi(p(t)).
Differentiating (6.14) and using (6.13) we see that

fila) = —iDP(PTH ()P (9).
Note that f; has the form
fi(zei + yé;) = —izei + gi(x, y)é;,
where g; is smooth with g;(z,y) = —iy if £ & (1/4,3/i) or y &€ (1/1,4).
Let w € K;, so that w = ze; + yé; + v with (v,e;) = (v,&) = 0 and |jv||® <
B(z? + y?). Define
F(w) = —ize; + hi(w)é; — iv,
where ol o]
llv ) ofl* .
hi =(1- i\dy - .
@ = (1= gty #e0) ~ ar
Note that F(w) = fi(w) if w € L;\{0}, that F(w) = —iw if z ¢ (1/4,3/i) or
y ¢ (1/4,4), and that F(w) + iw — 0 as w — 0K;\{0}.

We have thus defined F : H\{0} — H, and it is easily seen that F' is locally
Lipschitz on H\{0}. If wo € H\{0} there thus exists a unique continuous solution
w(t) of (6.12) satisfying w(0) = wy, defined and remaining in H\{0} on a maximal
time interval [0,¢.), where 0 < t. < oo. If wy & Uiz, Ki then this solution is given
by

(6.15) w(t) = exp (—h (HZ—EO t> wo

and so t, = 0o. Also, since h > 1,
(6.16) lw®)] < exp(—t)|woll-
Suppose wg = Toe; + Yoé; + v € K;. We have that
w(t) = z(t)ei + y(t)é; + exp(—it)v,
where xz(t) = exp(—it)zo and y(t) = hi(w(t)). By the backwards uniqueness of the
solution (6.15) w(t) cannot belong to 0K;\{0} for any ¢. Also w(t) = —iw(?) if
lw(®)l} € v2/i or if |w(t)|] > 4v/2, and so t, = co. If g < 1/i then x(t) < 1/i for
all t > 0 and thus w(t) = exp(—it)wo. So let zo > 1/i. Then z(to) = 1/i where
to = i~ !ln(izo), and therefore
y(t) = exp(—i(t — to))y(to) for all t > to.
But h;(w(t)) = —iy(t) if |y(t)] > 4, and so
ly(to)| < max{|yol, 4}.
Hence if t > i7! In(izo)

ly(t)] < exp(—it)izo max{|yo|, 4}
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and thus
lw(t)? < exp(=2it)(jzol? + i%|zo|* max{|yo|?, 16} + [lvoll?)
< 12 exp(—2it)(17|zol> + |zo|*|yol® + [lvol1?)
< 2 exp(—2it) 17 |lwoll* + [Jwol*)
1 2 4
. < — .
(6.17) < oy (L7llwoll® + 1wl )

For t > 0 we define S(t)wo = w(t) if wo # 0 and S(¢)0 = 0. Then the map
t +— S(t)wp is continuous on [0,00) for all wy € H, and from standard properties
of ordinary differential equations we also have that S(t)we; — S(t)wo whenever
wo; — wp # 0. To show that S(¢) is continuous we must therefore show that
wo; — 0 implies that S(¢t)wo; — 0. But if £ > 0 and wo = ze; + yéi +v € H with
lwoll £ te, we have that

lw(@)l < exp(=t)|lwoll

if wy & U2, K; (by (6.16)) or if wg € K; with zo < 1/4, and that (6.17) holds if
wo € K; with zo > 1/, since i~} In{izo) < i~!In(ite) < t. Hence S(t)wo; — 0 if
Wo; — 0.

The same inequalities clearly imply that {0} attracts bounded sets, and so it
remains to show that the global attractor A = {0} is not Lyapunov stable. Let
Wo; = 47:—1(61' + éi), t; = i~1In2. Then by (6.14)

S(t)we; = P; (2’1:—1(62' + é1))
=2i"te; + (207 + 1)
and thus ||S(¢;)woi| > 1 for all 4.

7. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Let Q C R3 be a bounded open set with boundary Q. Let f € L?(Q)? and
consider the incompressible Navier-Stokes equations

(7.1a) u + (u- Viu=vAu—Vp+ f,
(7.1b) divu=0

with boundary condition

(7.2) ulsq =0,

where v > 0 is a constant. (Similar results to those below can be established for
the more realistic case of the nonzero boundary condition u|sn = U provided Q is
of class C? and that U = curl V for a sufficiently smooth V', using the well-known
device of Hopf [25].) As is customary, we use the function spaces

V= {uc C(Q)3 divu = 0},

H = closure of V in L?(Q)3,

V = {u € H}(Q)?divu = 0}.
We denote by V' the dual space of V, and by H,, the space H endowed with its

weak topology. We denote respectively by (-,-) and |- || the inner product and norm
in L2(2)3, and for u,v € V write

3

8u' 8v~ 1
Du, Dv =/ t dx, Dul| = (Du, Du)z=.
(DuDe) = [ 52 52 G, Dul = (Du.Du
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For u,v,w € V we let

3
b(u, v, w) =/ Z u;V;, Wi dT.
Q

ij=1
We say that u : [0,00) — H is a weak solution of (7.1), (7.2) if u € C([0,T]; Hy) N
L%(0,T;V), du/dt € L}(0,T; V') for all T > 0, if

(7.3) (z—?,v) + v(Du, Dv) + b(u,u,v) = (f,v) forae. t>0,

for all v € V, and if u satisfies the energy inequality
(7.4) V(u)(t) < V(u)(s) forallt >s,

for a.e. s € (0,00) and for s = 0, where

¢

0
Standard theory [24, 28, 17, 42, 43] shows that given any uo € H there exists at
least one weak solution with u(0) = up, constructed via a Galerkin method. Let
Gns denote the set of all weak solutions. Gyg satisfies (H1), (H3) but it is not
known whether (H4) holds. (H2) would hold if V(u)(t) were nonincreasing, but
this does not follow directly from (7.4) which is consistent, for example, with the
behaviour V(u)(t) = 1 for t € [0,1), V(u)(1) =0, V(u)(t) = a for ¢ € (1, 00), where
0 < a < 1. This undesirable behaviour cannot be eliminated simply by redefining
the weak solution on a set of times of measure zero, since we have already chosen
a representative which is continuous from [0, 00) — Hy.

In Proposition 7.4 below we show that Gns is a generalized semiflow on H if
and only if each weak solution u is continuous from (0,00) — H. In preparation
for this result we give in Proposition 7.3 a consequence of the energy inequality
(7.4) that is well known to hold for any weak solution constructed via the Galerkin

method; however, our proof does not assume that the weak solution is constructed
in this way. We need two lemmas.

15 V@ = g+ [ 1Du e - [ (g e

Lemma 7.1. Let p € L}, (0,00). Then the following conditions are equivalent:
(i) p has a nonincreasing representative p: (0,00) — R,
(#1) p <0 in D'(0, 00).

If in addition p : {0,00) — R is lower semicontinuous and continuous at zero
then (¢) and (ii) are equivalent to
(#41) p(t) < p(s) for allt > s, for a.e. s € (0,00) and for s = 0.

Proof. The equivalence of (i) and (ii) is standard. For (i)=-(ii) one takes ¢ €
D(0, 00), ¢ > 0, and passes to the limit A — 0+ in

/Ooo M—_——Z(tﬂgo(t) dt = /Ooo p(t)ﬁ(L;‘j(—t———h—)— dt >0,

which is valid for A > 0 sufficiently small, while (ii)=(i) follows from mollifying p.
Suppose now that p : [0,00) — R is lower semicontinuous, continuous at zero,

and satisfies (i). Then p(r) = p(r) for all 7 ¢ N, where N is a null set. Let

$§>0,s¢N,t>sandt; — ¢t witht; ¢ N. Then

(76) p(¢) < liminf p(t;) = limin p(t;) < A(s) = (s),
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while if s = 0 we obtain p(t) < p(0) by passing to the limit s — 0 in (7.6) with
sx € N. Hence (iii) holds.

Conversely if (iii) holds then p(t) := sup,», p(7) defines a nonincreasing repre-
sentative of p. B O

Lemma 7.2. Let 8 : [0,00) — R be lower semicontinuous, continuous at zero,
0 € LY(0,T) for all T > 0, and let 0 satisfy, for some constant c > 0,

t s
(7.7) 8(t) + / 0(r) dr < 6(s) + / o(r) dr
0 0
for allt > s, for a.e. s> 0 and for s =0. Then
(7.8) 0(t)e < (s)e

for allt > s, for a.e. s >0 and for s =0.

Proof. Let p(t) = 6(t) + cfot 6(r)dr. Then p € L. (0,00), is lower semicontinuous
and continuous at zero. Hence by Lemma 7.1, p < 0 in D’(0,00). Hence 6 +cf <0
in D'(0, 00) and so 4% (fe) < 0 in D'(0,00). The result then follows from Lemma

7.1 applied to fe. O

Let A; denote the lowest eigenvalue for the Stokes operator on 2; thus

(7.9) |Dv]|? > Mlv||*?  forallveV.
Proposition 7.3. Let u be a weak solution. Then
1 1
2 _ 2 ¢ vt 2 _ 2
@10 WO - 17 < e (WO - 351

for allt > 0.
Proof. By (7.4)

t t
(1) S +v [ 1DuPdr < Gl + [ 171 uldr

for all t > s, for a.e. s > 0 and for s = 0. Using (7.9) and the inequality
1 1
191 ol < 5 (At + S0

it follows that 0(t) := |Ju(7)||* — (,/Tll);ﬂflp satisfies (7.7) with ¢ = vA;. Further,
since u : [0,00) — H,, is continuous it follows that 6 is lower semicontinuous and

hence also, from (7.7) with s = 0, continuous at zero. The result then follows from
Lemma 7.2, taking s = 0 in (7.8). O

Proposition 7.4. The following conditions are equivalent:
(1) Gns is a generalized semiflow on H.

(i1) Each weak solution u is continuous from (0,00) to H.

(i11) Each weak solution u is continuous from [0,00) to H.

Proof. (1)=>(ii). Suppose Gys is a generalized semiflow on H. Clearly Gnys has
unique representatives and so by Theorem 2.1 we just need to show that each
weak solution u is strongly measurable. But u is weakly continuous, hence weakly
measurable, and so by a well-known result {22, p 73] u is strongly measurable.
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(ii)=>(iii). Let u be a weak solution that is continuous from (0,00} — H. Let t; —
0+. Since u € C([0,T]; Hy) for all T > 0 we have that [[u(0)|| < liminf; . ().
But from (7.4) with s = 0 we have that limsup,_,., [u(t;)§* < Ju(0)||?, and so
llu(t;)|| — Jlu(0)||. Hence u(t;) — u(0) in H strongly, as required.

(iii)=(i). Suppose each weak solution is continuous from [0, 0o) to H. Then V(u)(t)
is continuous for ¢ > 0 and hence V (u)(t) is nonincreasing. In particular, (H2) holds.
Also, if we define

PO = 3@ - [ (fur)ar

then V(u)(t) is continuous for ¢ > 0 and nonincreasing in t.

Let u9 be a sequence of weak solutions with u(9(0) — ug in H. By Proposition
7.3 w9 is bounded in L°(0, co; H), and thus from the energy inequality (7.4) uld)
is bounded in L?(0,T;V) for every T > 0. A standard estimate then shows that

(7.12) du'? /dt is bounded in L*/3(0,T; V")

for every T > 0, and hence using the usual compactness results that for a diagonal
subsequence, which we do not relabel, there exists u : [0,00) — H with u €
C([0,T); Hy) N L2(0,T; V) for all T > 0 such that

(7.13) u? () = u(t) in H for all t > 0,

(7.14) u® — yin L2(0,T;V) for all T > 0,
(7.15) dul?) /dt — du/dt in LY3(0,T; V") for all T > 0,
(7.16) ul? — u strongly in L?(0,T; H) for all T > 0.

It follows from (7.16) that extracting a further subsequence we have that
(7.17) w9 (t) - u(t) in H, ae. t>0.

From (7.13)-(7.17) we deduce that u satisfies (7.3) and that u(0) = ue. Also
V(u@)(s) — V(u)(s) for a.e. s >0 and for s =0. If t > s then since V(u9)(t) is
nonincreasing, by (7.13) and weak lower semicontinuity, we have that u satisfies the
energy inequality (7.4). Hence u is a weak solution. Since, therefore, each V{ut)(t)
and V(u)(t) are nonincreasing and continuous it follows that V(u)(t) — V(u)t)
for allt > 0.

But this implies that |u® (¢)|] — ||lu(t)|| and so u()(t) — u(t) in H. Hence (H4)
holds and G g is a generalized semiflow. d

Corollary 7.5. If Gns is a generalized semiflow then it satisfies (C4).

Proof. Let u9) be as in the proof of Proposition 7.4. By Theorem 2.2 we have to
show that if t; — 0+ then u()(t;) — uo in H. We first show that u)(t;) — uo in
H. For v € V we have that

(7.18) (’u,(j)(tj) ‘U(j)(()),v) =/ j au"
0

Since du? /dt is bounded in L%/3(0,T; V"), (du'?/dt,v) is bounded in L¥/3(0,T),
and hence by Holder’s inequality the right-hand side of (7.18) tends to zero. Hence
(u@(t;),v) — (uo,v) for all v € V, and since u(t;) is bounded in H it follows
that u((t;) = up in H.
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To prove strong convergence, note that in fact the convergence of V(ul))(¢)
to V(u)(t) is uniform on compact subsets of [0,00), and so V(u@)(t;) — V(uo).
From this it follows that lim sup;_, u ()] < |luoll, and the strong convergence
follows. O

As an application of Theorem 3.3 we prove

Theorem 7.6. Under the hypothesis that Gns is a generalized semiflow there ex-
ists a global attractor for Gnsg.

Proof. By Proposition 7.4 Gns is a generalized semiflow if and only if all weak
solutions are continuous from [0, 00} -+ H. It then follows from Proposition 7.3 that
G s is point dissipative. By Proposition 7.3 we also have that Gyg is eventually
bounded. Using Proposition 3.2, to show that Gyg is asymptotically compact we
thus need only show that G g is compact. But this follows from the argument in
Proposition 7.4 (note that we do not need 4 (0) — ug to conclude that u()(t) —
u(t) for all t > 0). O

The connectedness of the attractor for Gy g, assuming that G g is a generalized
semiflow, depends on whether Kneser’s property holds. This does not seem easy to
prove.

It follows from Theorem 6.1, Corollary 7.5 that the attractor for Gyg (assuming
that Gyg is a generalized flow) is asymptotically stable. However, this does not
use the full strength of Theorem 6.1 since in this case (C3) holds.

It might still be true that there is a global attractor in H if there exist weak so-
lutions that are not continuous from (0, 00) — H. However, such a global attractor
would not exist if there was a complete orbit that was bounded but not continuous,
since such an orbit would have to be contained in the global attractor and would
not be relatively compact on account of the continuity of weak solutions into H,,.
It might be possible to eliminate any discontinuous solutions from (0, 00) — H by
means of some unknown admissibility criterion; if this could be done in such a way
that the resulting family of solutions Gns C Gns formed a generalized semiflow,
then the above methods would guarantee the existence of a global attractor for
G NS in H.

The existence and properties of a global attractor have been studied by Con-
stantin, Foias & Temam [18] under the a priori assumption that all solutions with
initial data in V remain bounded in V for all finite times. The only results on the
existence of a global attractor in H which do not make unsubstantiated assump-
tions on the solutions seem to be those of Raugel & Sell [32],[33],(34] for suitable
thin 3D domains.

Foias & Temam [20] have introduced the concept of a universal attractor A for
the 3D Navier-Stokes equations. In the definition of a weak solution they drop
the requirement that the energy equation (7.4) hold with s = 0 (as does Sell [39]).
With this definition translates of weak solutions are weak solutions. Let us call the
corresponding (possibly larger) set of weak solutions Gns. For Gy g the statements
of our theorems need slight modification. Proposition 7.3 holds only for solutions
that are continuous at zero, and Proposition 7.4 is replaced by the assertions (i)
that Gns is a generalized semiflow implies that each weak solution is continuous
from (0,00) — H, and (ii) that if each weak solution is continuous from [0, co) — H
(i.e. (C3) holds) then Gy is a generalized semiflow. Corollary 7.5 is dropped, and
Theorem 7.6 is replaced by the statement that a global attractor exists for Gns
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provided (C3) holds. Foias & Temam then define A as the set of all ug € H through
which there passes a complete orbit u : R — H. If (C3) holds then it is easily seen
that A coincides with the global attractor A in Theorem 7.6. It does not seem to be
obvious without making a priori assumptions on solutions that A attracts bounded
sets in the sense of weak convergence in H, i.e. that if 1l are weak solutions with
1 (0) bounded, and if t; — oo, then ul)(t;) has a subsequence converging to a
point of A. This is because the estimate (7.10) is not proved, so that it is not even
clear that (¥ (t;) is bounded. This weak attraction property would hold, however,
if we knew that V(u)(t) were nonincreasing for all weak solutions.

Acknowledgements.

I am grateful to G.R. Sell and Y. You for providing me with prepublication
versions of [40}, and to P. Constantin, J.K. Hale and J. Howie for helpful comments.
This version of the paper incorporates a modification to the proofs of Proposition
7.4 and Corollary 7.5 (see Erratum, J. Nonlinear Science 8(1998)p.233). I am
grateful to G. Francfort for querying this point.

REFERENCES

[1] H. Auerbach. Sur la relation limp,, oo f(2 + hn) = f(z). Fund. Math., 11:193-197, 1928.

[2] A.V. Babin. Attractor of the generalized semigroup generated by an elliptic equation in a
cylindrical domain. Izv. Russ. Akad. Nauk., 58, 1994. English translation in Russian Acad.
Sci. Izv. Math. 44(1995) pp. 207-223.

[3] A.V. Babin and M.L Vishik. Maximal attractors of semigroups corresponding to evolution
differential equations. Mat. Sbornik, 126:397-419, 1985. English translation in Math. USSR
Sbornik 54(1986) pp. 387-408.

[4] A.V. Babin and M.L Vishik. Attractors of Evolution Equations. Nauka, Moscow, 1989. Eng-
lish translation, North-Holland, 1992.

[5] J.M. Ball. Global attractors for damped semilinear wave equations. In preparation.

[6] J.M. Ball. Continuity properties of nonlinear semigroups. J. Functional Analysis, 17:91-102,
1974.

[7] J.M. Ball. Measurability and continuity conditions for nonlinear evolutionary processes. Proc.
Amer. Math. Soc., 55:353-358, 1976.

(8] J.M. Ball. On the asymptotic behaviour of generalized processes, with applications to non-
linear evolution equations. J. Differential Eqns, 27:224-265, 1978.

[9] J.M. Ball, J. Carr, and O. Penrose. The Becker-Déring cluster equations; basic properties
and asymptotic behaviour of solutions. Comm. Math. Phys., 104:657-692, 1986.

[10] E.A. Barbashin. On the theory of generalized dynamical systems. Moskov. Gos. Ped. Inst.
Uéen. Zap., 2:110-133, 1948. English translation by U.S. Department of Commerce, Office
of Technical Services, Washington D.C. 20235.

[11] J.E. Billotti and J.P. LaSalle. Periodic dissipative processes. Bull. Amer. Math. Soc., 6:1082-
1089, 1971.

[12} 1.U. Bronstein. On dynamical systems without uniqueness as semigroups of non-singlevalued
mappings of a topological space. Izv. Akad. Nauk. Moldav. SSR, 1:3-17, 1963. English trans-
lation in Amer. Math. Soc. Transl. 97 (1970) pp. 205-225.

[13] B.M. Budak. The concept of motion in a generalized dynamical system. Moskov Gos. Ped.
Uéen. Zap., 5:174-194, 1952. English translation in Amer. Math. Soc. Transl. 97 {1970) pp.
205-225.

(14} V.V. Chepyzhov and M.L. Vishik. Trajectory attractors for evolution equations. Comptes
Rendus Acad. Sciences I, 321:1309-1314, 1995.

[15] P.R. Chernoff. A note on continnity of semigroups of maps. Proc. Amer. Math. Soc., 53:318—
320, 1975.

[16] P.R. Chernoff and J.E. Marsden. On continuity and smoothness of group actions. Bull. Amer.
Math. Soc., 76:1044-1049, 1970.

[17] P. Constantin and C. Foias. Navier-Stokes equations. University of Chicago Press, 1989.



24

[18

19

CONTINUITY PROPERTIES AND GLOBAL ATTRACTORS

] P. Constantin, C. Foias, and R. Temam. Attractors representing turbulent flows. Memoirs
Amer. Math. Soc., 53(314):1-67, 1985.

] J.R. Dorroh. Semi-groups of maps in a locally compact space. Canad. J. Math., 19:688-696,
1967.

[20] C. Foias and R. Temam. The connection between the Navier-Stokes equations, dynamical

[21
[22

[23
(24

(25
26
[27
28
[29

[30

systems, and turbulence theory. In M.G. Crandall, P.H. Rabinowitz, and R.E.L. Turner,
editors, Directions in Partial Differential Equations, pages 55-73, Boston, 1987. Academic
Press.

]} J.K. Hale. Asymptotic behavior and dynamics in infinite dimensions. Pitman, 1984.

| E. Hille and R.S. Phillips. Functional analysis and semi-groups, volume 31 of Collog. Publ.
Col.. Amer. Math. Soc., 1957.

] J.G. Hocking and G.S. Young. Topology. Addison-Wesley, 1961.

] E. Hopf. Uber die aufangswertaufgabe fiir die hydrodynamischen grundgliechungen. Math.
Nachr., 4:213-231, 1951.

| E. Hopf. On nonlinear partial differential equations. In Lecture Series of the Symposium on
Partial Differential EquationsBerkeley, 1955, pages 1-29. The University of Kansas, 1957.

] J.K.Hale, J.P. LaSalle, and M. Slemrod. Theory of a general class of dissipative processes. J.
Math. Anal. Appl., 39:177-191, 1972.

] O. Ladyzhenskaya. Attractors for semigroups and evolution equations. Cambridge University
Press, 1991.

] J-L. Lions. Quelgues méthodes de résolution des problémes aux limites nonlinéaires. Dunod,
1969.

] V.S. Mel’nik. Multivalued semiflows and their attractors. Doklady Akad. Nauk., 343:302-302,
1995. English translation in Doklady Mathematics 52(1995) pp. 36-39.

] M.I. Minkevic. A theory of integral funnels for dynamical systems without uniqueness.
Moskov. Gos. Ped. Inst. Uéen. Zap., 135:134-151, 1948. English translation in Amer. Math.
Soc. Transl. 95 (1970) pp 11-34.

[31] J.C. Oxtoby. Measure and category. Springer-Verlag, New York, 1971.

(32

] G. Raugel and G.R. Sell. Navier-Stokes equations on thin 3D domains. 1. Global attractors
and global regularity of solutions. J. Amer. Math. Soc., 6:503-568, 1993.

[33] G. Raugel and G.R. Sell. Navier-Stokes equations on thin 3D domains. II. Global regularity

of spatially periodic solutions. 1993.

[34] G. Raugel and G.R. Sell. Navier-Stokes equations on thin 3D domains. I11. Global and local

35

attractors, 1993.

] E. Roxin. On generalized dynamical systems defined by contingent equations. J. Differential
Equations, 1:188-205, 1965.

[36] E. Roxin. Stability in general control systems. J. Differential Equations, 1:115-150, 1965.

[37

38

] G.R. Sell. On the fundamental theory of ordinary differential equations. J. Differential Equa-
tions, 1:370-392, 1965.

] G.R. Sell. Differential equations without unigueness and classical topological dynamics. J.
Differential Equations, 14:42-56, 1973.

[39] G.R. Sell. Global attractors for the three-dimensional Navier-Stokes equations. J. Dynamics

and Differential Eqns, 8:1-33, 1996.

[40] G.R. Sell and Y. You. Dynamics of evolutionary equations. Book in preparation.
[41] G.P. Szego and G. Treccani. Semigruppi di trasformazioni multivoche, volume 101 of Lecture

Notes in Mathematics. Springer-Verlag, Berlin, 1969.

[42] R. Temam. Infinite-dimensional dynamical systems in mechanics and physics, volume 68 of

Applied Mathematical Sciences. Springer-Verlag, New York, 1988.

[43] W. Von Wahl. The equations of Navier-Stokes and abstract parabolic equations. Fried. Vieweg

& Sohn, Braunschweig, 1985.

MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD, 24-29 ST. GILES, OXxrorD OX1 3LB,

U.K.

E-mail address: ball@maths.ox.ac.uk



