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DIFFERENTIABILITY PROPERTIES OF SYMMETRIC
AND ISOTROPIC FUNCTIONS

J.M. BALL

1. Introduction. Let G be a group of linear transformations 7:R"—>R". A
function f:R"—>R is invariant under G if f(Tx)= f(x) for all xeR", T eG.
Many well-known representation theorems take the following form: for a
particular group G, a function f is invariant if and only if there exists a function
F such that

f(x)=F(y(x)) forall x€R’,

where y(x) is a vector of preferred new variables. The object of this article is to
study, in certain special cases, how the differentiability properties of f and F are
related. In the examples we consider y(-) takes values in some subset of R,
m < n, and F may be required to have its own invariance properties. Also f may
only be defined on an invariant subset of R". In general there are many different
possible representations F of f in terms of different sets of new variables y(x).

Perhaps the best known result of this type, due to Whitney [1942}, concerns the
case n = 1, G = {1, — 1). Clearly f is invariant under G if and only if f(1)=f(—1)
for all  €R (i.e., f is even), and this holds if and only if f(7) = F(t»)forallteR
and some F':[0, 0)—> R. (An example of another representation is f(#) = F(r*))
Whitney’s result is that if f € C¥(R) then F € C’([0,)), and that in general
F & C ([0, 00)), so that there is a loss of derivatives in going from f to its
representation F.

In Section 3 we study the case G =S, = {permutations on n symbols}. A
function f: R" >R is invariant under S, if and only if f is symmetric, ie.,

F(xpys-eor Xpa)=f(%15 ..., x,)  forall x=(x,...,%)ER", PES,,
and, as is well known, this holds if and only if
f(x)=F(S(x)) forall x€R",

for some F, where S(x) = (S,(x), - - -, S,(x)) denotes the n-vector of elementary
symmetric functions of x, ie.,

Si(x)=—(x;+ -+ +x,), Sy(x)=x X%+ -yt
S,(x)=(=1)"x;x5...%,.
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We give a proof (Theorem 3.2) of a result of Barbangon [1972] (for developments
see Barbangon & Rais [1982]), that if f € C™(R") then F= C’(D), where
D = int S(R"). The same result for 7 = co was proved earlier by Glaeser [1963].
We also show (Theorem 3.8) that if f has the form

i, %) = 3 o)

then f € C™(R") if and only if F € C"(D), so that the loss of derivatives given
by Theorem 3.2 is optimal. To see that a loss of derivatives occurs, consider the
example n =2, r = 1. Then

f(x1,x)) = F(—=(x, + x3),x,x,).

Differentiating formally we obtain

O __9F OF
ax, 9§, 2E}S ’
of _ _dF , 3F
ax, S, TM3s;
so that
S o S _
OF Mox, 9x, aF 0x;  dx,
S, T x-xm 88, x-x

To evaluate these derivatives as x, - x, requires the existence of certain second
derivatives of f. Of course f and F belong to the same differentiability class away
from x, = x,. The result of Barbangon is stronger than that proved here because
he uses a different definition of C’(D). Throughout this paper we mean by
C’(D), where D CR" is open, the set of r-times continuously differentiable
functions u: D—>R which together with their derivatives of order < r have
continuous extensions to D. Barbangon uses the definition C'(D) = {u: D—>R:
u is_the restriction to D of a function @€ C’(R")}). We always have

¢(D)ycc’ (D), but if 3D is irregular then equality may not hold, and it is not
known if equality holds for D = int S(R") if n > 5. (If n < 4 equality is proved in
Barbangon [1969], who states that he can prove equality also for n=35.)
Barbanqon s proof of Theorem 3.2 is neither elementary nor simple, and avoids
provmg equality by means of a complexification technique. Our proof, though
giving a weaker result, is completely elementary and if a proof of equality for
D =intS(R") were found would probably provide the quickest route to
Barbangon’s theorem.

In Section 4 we discuss the case G = O(n) = orthogonal group, an example of
a group that is compact but not finite. Then f: R"— R is invariant if and only if
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f(Qx) = f(x) for all x € R", Q € O(n), which holds if and only if f is radial, i.e.,
f(x) = F(|x|), x €R",

for some F:[0, 0)—> R, where | - | denotes the Euclidean norm. We extend F to
R by making F even. Then (Theorem 4.1) f € C"(R") if and only if F € C"(R),
so that there is no loss of derivatives. A similar result (Theorem 4.2) holds in
Holder spaces. The proofs of these results are a useful warm up for those of
Section 5.

In Section 5 we consider functions h:S"*"—>R, where §"*"=R""~"/2
denotes the space of real symmetric n X n matrices. We let G = {4 > QAQT;
Q €8S0(n)}, where SO(n) denotes the special orthogonal group. Thus f is
invariant under G if and only if f is isotropic, i.e.,

h(QAQ")=h(4), A€S"™", Q €SO(n),
and it is well known that this holds if and only if

h(A)= H(a,,...,a,),

for some symmetric function H:R"— R, where the g, are the eigenvalues of 4.
We conjecture that h € C'(S"*") if and only if H € C’(R"), and prove this
(Theorem 5.5) in the cases r =0, 1 or 2. We also show (Theorem 5.7) that if r is
an arbitrary nonnegative integer and if 0 < a <1 then h € C™*(S§"*") if and
only if H € C™*(R"). These results are quite surprising since k is a composition
of the two mappings H(-) and 4 —(a,, . . ., a,), and the second of these is only
Lipschitz; nevertheless the composition retains the same differentiability as H. Of
course h € C'(S"*") (resp. h € C"*(§"*")) implies H € C"(R") (resp. H
€ C"*(R")) trivially, for all r. It would be very interesting to prove a more
general chain rule in which symmetry conditions compensate for reduced
differentiability at certain points of one or more maps in a composition. Another
way of interpreting Theorem 5.5 and 5.7 is that the set of eigenvalues
{ay,...,a,} of A behaves with respect to symmetry preserving compositions as
if it were a C* function of A.

At several points in our analysis we are able to compute derivatives of
functions at points not belonging to some small exceptional set, but need to draw
conclusions concerning differentiability everywhere. A useful technical lemma
enabling this to be done is stated and proved in Section 3.

The article was motivated by the example of isotropic stored-energy functions
in nonlinear elasticity, and we apply our results to this case in Section 6. There
are several different representations commonly used for the stored-energy
function W of a homogeneous isotropic material in n space dimensions. For
instance, we can write

W(F)=®(v,,...,0,)
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where @ is a symmetric function of the singular values v,..., v, of the
deformation gradient F, or

W(F)=H(I(B), ..., 1,(B)),

where the I,(B) denote the invariants of B = FF”, that is the elementary
symmetric functions of the eigenvalues of B. Our results show that W € C* if
and only if @, HecC *, but that in general H is less differentiable than W or ®.
A loss of differentiability in a different but related situation is discussed by Serrin
[1959]). Explicit expressions in terms of ® obtained for the second derivatives of
W are applied to recover known results concerning convexity and strong
ellipticity.

Notation. 1In this article, except where stated otherwise, C denotes a generic
constant whose value may vary from line to line. We do nor use the summation
convention for repeated suffices.

2. Extension of differentiable functions. Let U CR" be open and let
f € C(U;R™), the space of r times continuously differentiable real valued
functions on U with valued in R™. We will frequently encounter the following
situation: we know that f € C'(U\K;R™) for some ‘small’ set K, that the
derivatives of f up to order r extend continuously to U, and we wish to conclude
that f € C"(U; R™). For this purpose it is not sufficient that K have measure zero
or be of first category. For example, let U = (0,1) and let K be the Cantor set.
Let f € C([0,1]) be a ‘Cantor function’, that is a function satisfying f(0) =0,
f(1)=1 and f'(1)=0 for ¢ & K; then f is not C' but all derivatives of f extend
continuously.

Definition 2.1. A set K C R" is sparse if given any x € K and any nonzero
¢ € R" there exist sequences X=X, § > { and a number € > 0 such that for
each j=1,2,... the line segment {x;, + 1§, : t €[0,¢]} intersects K at most
countably often.

Clearly any sparse set K has empty interior. Note that if K= {x €R";
p(x) =0}, where p is a nonconstant polynomial in the coordinates of x, then K is
sparse. Indeed, let x € K, 0# { €R", and suppose for contradiction that
{x+t({+y):t€[0,e]} N K contains many points for all sufficiently small
€ >0 and | y|. Then since p(x + #({ + p)) is analytic in ¢ it vanishes identically
for sufficiently small # > 0, | y|. Thus K contains a ball, which is impossible since
p is a polynomial.

ProPOSITION 2.2. Let U C R" be open and let K C R" be closed and sparse.
Let f € C(U;R™)N C"(U\K;R™) be such that for each j with 0 <|j| < r and
each y € UN K the limit of D/f(x) as x—>y with x € U\K exists. Then
fE€C(U;R™).



DIFFERENTIABILITY PROPERTIES 703

Proof. By induction it is sufficient to prove the result for r=1. We first
suppose also that n = 1. Clearly we may assume U to be connected. For n =1
K C Ris itself countable and it follows from our assumption that Df: U\K - R™
has a continuous extension g € C(U; R™). Let 1, € U and define fort € U

h(0) = 1) = fto) = [8(5)ds

Then Dh(r) exists and is zero except for at most countably many 7 € U and it
follows from Dieudonné [1960 Theorem 8.7.1] that & = 0, so that f € C'(U;R™).

Suppose n > 1 and let f satisfy the hypotheses of the proposition. It suffices to
prove that each partial derivative D,f exists and is continuous on U, and we are
given that D,f has a continuous extension g: U—>R". Let x € UNK, let
0% { €R" and let x;, {;, and € be as in Definition 2.1. We can suppose that

x( + £, € U for all t€[0,¢] and all j. For each j the set K= (1 €[0,e];
x;, + 1, €K} is closed and countable. Applying the case n=1 to the

function j;.(t)'?-—iff(xhn + ;) we deduce that f, € C'(0,e;R™) and that for
0<r<t<e

fxen + B = fxip + ) = 1 S, 8lxip + ) s @D
By continuity (2.1) holds also for 7 = 0. Writing
f(x +88) = f(x) = f(x + te)) = f(x + BK¢p)
+f(xp + Bp) = f(xp) + (%) = [(%)

and letting j — oo we thus obtain

S+ &)= f() = [ 3 gi(x + k)5 ds 22)

for 0 < f < e. Setting { = *¢,, where ¢; denotes the ith basis vector, we see that
the partial derivatives D,f exist at x and D,f(x) = g;(x). The result follows. O

Remark 2.3. A similar result to Proposition 2.2 is given by Dieudonné [1960

p. 159 Exercise 6]. (The statement of Dieudonné’s result in certain editions
accidentally omits an essential hypothesis, that f be continuous.)

3. Symmetric functions in R". For x =(x,,...,x,) ER" the elementary



704 J. M. BALL

symmetric functions are defined by

So(x)=l,
Sx)=(-1)/ 3  x...x.1<j<nf (3.1)
I<i<--- <i<n
We write S(x) = (S,(x), . . ., S,(x)), so that S:R">R".

Let E C R" be open and symmetric; i.e., PE = E for every permutation P of
Xy, -..,%,. Let K, denote the open cone consisting of those points x
=(xp,...,x)ER"withx; > x,> --- > x,. Let @y = S(E N K,).

LeEmMMA 3.2.

(i) R = intS(E),

(i) 92, = S@E) U S(E N 3K,),
(i) &, = S(E).

Proof. Letx=(x},...,x,)EQzandw=(w,,...,w,) = S(x). Since the x;
are the distinct roots of the equation A" + wA" ™'+ - -+ +w,_ A+ w, =0, it
follows from the implicit function theorem that if |z — w| is sufficiently small the
equation S(y) = z has a solution y € E N K. This proves that . is open and
hence 2, C int S(E). Suppose 8 € intS(E) but § & Q. Then § = S(x) for some
x € ENJK,, and hence x; = x; for some i # j. Therefore there is a sequence
6., — 0 such that the polynomial with coefficients given by 0, has two complex
conjugate roots, and hence # & intS(E), a contradiction. This proves (i).

Let @ € 9Q,. Then there exists a sequence 8, , = S(x;)—> 8 with x,) EEN
K,. Since the roots x;, of 37_,S,(x;)t" =0 can be bounded in terms of the
coefficients we may suppose that x , >x €E N K,. Since § is continuous,
0 = S(x). Since 8 & Q it follows that x & E N K, and hence that x € 3(E N
K,). If x EJE then § € S(OE). If x € 9E then x € E, and since E, K, are open
we obtain x € ENJK, and @ € S(E NIK,). Thus 3Rz C S@E)U S(E N
9K,). To prove the inverse inclusion, note first since each S, is symmetric,
S(4)= S(ANK,) for any symmetric set A. Let § € S@E)U S(E NIK,)
= S@E N K,) U S(E N 9K,). Then § = S(x) for some x E(QE N K)U (E N
- 9K,). Since E is open and symmetric there exists a sequence x, ;> x with
x(; € E N K,. Therefore § = lim S(x ;) ES(Q;). But S| is one-to-one, and so
S(E N K,)N S(PE N K,) U (E N JK,)) is empty. Hence § € 92, and S(IE) U
S(E NJK,) C Q.

To prove (iii) we use (ii) to obtain

Q:=S(ENK,)US@E)U S(ENJK,)
=S(ENK,)U S@E)

=S(E)US(E)=S(E). (I
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If r >0 and © C R" is open, then C"(Q;R™) denotes the space of functions
f € C"(2;R™ which together with their derivatives of order < r have
continuous extensions to . If € is bounded then C’(Q;R™) is a Banach space
with norm || fll = 3¢, SuP.c|D/f(x)|. We write C"(®) = C’@;R) and c*®)
=N2oC"(®). (Note that if 2, CQ is open with £, =% then in general
C'(@,) # C"@); for example, if @ =(0,1), K is the Cantor set and @, = I\K
then any Cantor function f € C*(@)\C'(®). However, if in_addition 20\Q, is
sparse it follows easily from Proposition 2.2 that C"(®,) = C"(®).)

Given any symmetric function f: E->R there exists a unique function
F: S(E)—R such that

f(x)=F(S(x)) forall x€E. (3.2)

Our main result relates the differentiability properties of f and F. For simplicity
we assume from now on that E is convex; this hypothesis can be weakened (see
below).

THEOREM 3.2 (Barbancon [1972]). If f € C"(E), then F € C" (), r=0,1,
2,....

COROLLARY 3.3 (Glaeser [1963])). Iff€C ®(E), then F € C*Qp).

Both Barbangon and Glaeser proved their results for the case E = R, but our
statements can easily be deduced from theirs by first extending f to a function
f € C™(R") by means of the following result of Whitney (which is a consequence
of the more familiar version of the Whitney extension theorem (Whitney [1934a],
Federer [1969])).

THEOREM 3.4 (Whitney [1934b]). Let @ C R" be open and satisfy the following
regularity condition: for any M > 0 there is a constant Cy, such that if x, y €Q
with | x| < M, | y| < M then x may be joined to y by a rectifiable curve lying in
with length 1 < Cp/|x — y|. Let g € C*(@). Then there exists § € C*(R") with
&lo = gla-

(If the boundary of Q is not regular, the extension in Theorem 3.4 is not in
general possible. A one-dimensional example is furnished by a Cantor function,
as described above. An example with € a two-dimensional domain with an
inward pointing cusp is given in Gilbarg & Trudinger [1977 p. 52] and is
discussed by Fraenkel [1982].)

Thus Theorem 3.2 and Corollary 3.3 hold if E is symmetric and satisfies the
regularity condition in Theorem 3.4, and even this regularity condition is only
needed near the set {x:x;=x; for some i#j }). The proof given below
also works if E is symmetric and such that x € E implies (¢x, + (1 — 0)x,,
tx, + (1 = )xy,%3, ..., x,) € E for all t €[0, 1].

As explained in the introduction, Barbangon proves the stronger result that
f € C™(R") implies F € C-"(ﬁﬂ.). This would follow from Theorem 3.2 if it were
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true that Qg. = int S(R") satisfies the regularity condition in Theorem 3.4, this
being unknown for n > 5. The first nontrivial case is n =3, when Qg. is the
region lying between the two surfaces which are the images under S of the sets
{x;=x;> x,} and {x, > x, = x;}, these surfaces being joined along the line
t+>(—3¢,3¢%, —3¢%) corresponding to polynomials with three equal roots. The
regularity condition is then an easily proved generalization of the statement that
‘the cusp points outwards’; cf. Arnold [1983 p. 256] and the principle that
‘everything good is fragile’. Despite some efforts and seeking of advice the author
has not been able to find a proof for arbitrary n. The most obvious attempt at a
proof fails. This consists of taking as the path joining S(x) and S(y), where
Xy > Xy> 100 > X, >y > - >y, the path S(tx + (1 —1)y), t€[0,1].
Even in the case n = 3, when the desired result holds, this path does not satisfy
the inequality / < C|x — y|, as can be seen by taking

x=e(l‘:'/5_,%,l_4{§ ), y=¢€(1,0,0)

and letting € — 0. Some possibly relevant information on the structure of 4 (R"),
where A(x)=(A\(x),...,4,(x)) and A(x)=3]_,x/ is the jth Newton
polynomial, is given in Ursell [1959], and on account of the diffeomorphism
between the A; and the S, given by Newton’s formulae it is clear that S(R") is
regular if and only if 4(R") is. S(R") and 4(R") may be characterized by finitely
many polynomial inequalities (Gantmacher [1960 p. 203]), but it is not obvious
how to exploit this to give a proof. .

Before proving Theorem 3.2 we introduce some notation. Let x = (x,, . . ., x,)
€R™ If n>1 we write x"=(x,,...,x_,%x,,...,x)ER", i=1,
2, ..., n. Note that by (3.1)

98;(x) , ; .
E;x =(-1)/ ¥ ox...x =-85,(Y), 1<ij<n
i l(:,(---{qun
i

(3.3)

with the obvious convention if n = 1.

"By a simple and well-known application of the implicit function theorem the
roots of a polynomial depend smoothly on its coefficients in any domain in
which the roots remain distinct. Thus, by the chain rule, if f € C*(E) then
F € C*(Qg). In particular, if f € C'(E) then

(%) So(x™y Lo S, (x") || F(S(x))
== : : : (34)

f,,,ix) So(x!"™y ... S, (x'") F.,,(.S"(x))
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for all x =(x,,..., x,) € E with x, distinct, where the commas denote partial
differentiation. We may write (3.4) in the abbreviated form
Df(x) = — A(x)Dg(S(x)), (3:5)

where A(x) is the n X n matrix with components 4;(x) = .S}_,(x[‘] ).

LEMMA 3.5.
ep=t o xr ] [y
: : 0
A(x)‘_l= Xy e Xn
0
| A | IL(x)~"
for all x=(x,,...,x,) with the x; distinct, where l'[;(x)q'—gf Hi:#j(xf - x;). (We

set II(x)=1ifn=1)
Proof. The equation Se(x!MA" "'+ .-+ + 8, ,(x!MA+ 8,_(x!1) =0 has

TOOLS Xy, - . .y X;_15Xi41s - - - » X, Therefore

SO("“])X,«'"_] L Sn—Z(x[“])xj + Sn-l("m) =11 (x5 — x)
ki

for 1 < i, j < n. The result follows immediately. []
By Lemma 3.5 and (3.4) we have thatfori=1,2,...,n

Fi(S(x) = —[xI"T(x)""fy(x)+ - - + X M(x) ' fx)]  (36)
provided the x; are distinct. From (3.6) we see that F , has the form
F(S(x))=h(x;, %y, -, X)I(x) 7" 4 B(x, %3, -+ 5 X, X )TIy(x) ™
+ oo (XX, ..., xn_l)l'l,,(x)_',
where h is symmetric with respect to permutations of its last n — | arguments.
LEMMA 3.6. Letm > 0,s > 0. Let A CR"*™ be open, convex, and such that if
(X, p)=(X15 -« oy Xy Y15 -« 5 Vi) E A 50 does (Px, y) for any permutation P of

Xy ooy Xy Lot h=h(x;p)=h(X;, ..., % Vs>, belong to C"**~\(A)
and be symmetric with respect to permutations of x,, . . ., X,.
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Then

def R(Xys ooy X,50)  h(Xps iy X, %05 p)
DT T ey YT o

h(x,,,-l‘],-- -;xu—l;y)
IT,(x) ’

defined for (x, y) € A with the x, distinct, has an extension belonging to C*(A).

Remark 3.7. We will use Lemma 3.5 only in the case m =0. The extra
variables y are introduced only to facilitate the proof.

Proof of Lemma 3.6. The proof is by induction on n. When n = 1 the result is
trivial. Let n =2, h € C**'(4). We have to prove that

h(xy,x35 ) + h(xy,x,; )
Xl—xz xz—x|

I(x,y)=

has an extension in C*(A4). But since A4 is convex,

1d
I(x, y)= }-]—_—xz A Eh(x2 +1(x) — x), %, + 1(x, — x)); y)dt

=Ll(h_, — ha)(Xp + 1(x, = X5), %, + (X, — X,); y)dt (3.7)

when x, # x,. Let K= {(x, y) ER?>*™: x, = x,}. K is a closed, sparse subset of
R?*™. By (3.7), for each (X, y) € A and each multi-index j with 0 < || < s the
limit of D/I(x, y) as (x, y)=(X, y) with (x, y) € A\K exists. If (x, y) €94 U
(AN K) we define I(x,y) by continuity, so that I € C(4) N C*(A\K). It
follows from Proposition 2.2 that / € C*(4) and hence that I € C°(4) as
required.

Suppose now that the result holds forn — 1 and for allm > 0, s > 0 and 4. We
prove it holds for n. Let h € C"**~(A4). We first remark that by Lemma 3.5 and
(3.5) with f(x) = x, + - - - + x, we have that

_2 I(x)~"'=0,
Jj=1

provided the x; are distinct. Hence, when the x; are distinct,

R(Xgy ooy Xy, X153 0) = R(X1 X050y X3 )
I(x,y)= — 0 e

h(Xy, Xy, oo s Xy 13 9) = h(X1,X5, ..., %5 ))
+ .
IL,(x)
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Let
H(xy,%3,...,%,5%,))
def h(Xy,X3, s Xy X153 Y) = h(X1, X2, X3, .- X3 ))
X2 = X
We apply the case n =2 to H, absorbing the variables x,, ..., x, into a new

y €R™*"~2 Thus H has an extension, again denoted by H, belonging to
C" % A)= C"~D*~1(4). We now note that

H(xy, ..., %,5%,p)  H(x3,X4, .-+ X, %35%1, ))
I(x, y)= + -
I, (xt" I(x")
L HGw Xy Xai 3 %15 Y)
T, (x!" '

and apply the induction hypothesis with (n — 1,m + 1) for (n, m). It follows that
I has an extension in C*(A4), which completes the proof. []

Proof of Theorem 3.2. We use induction on 7. When r =0 the result is a
consequence of the symmetry of f and the fact that the set of roots of a
polynomial varies continuously with the coefficients.

Suppose the result holds for » — 1. Let f € C™(E). It suffices to show that
FEC'@) and F, € C"'@p) foreach i= 1, ..., n. But F,(S(-)) is given by
(3.6) and satisfies the hypotheses of Lemma 3.5 with m=0, A =E and
he C” Y(E)= C"*""~Y-YE). Thus F,(S(-)) has an extension belonging to
C"™"=VY(E). The extension is clearly symmetric in x,, ..., x, and thus can be
written as a function F,: S(E)—R. By the induction hypothesis F; € C"~'(Qp).
But F € C™(2;) N C%Q;) and F,(8) = F,(9) for all § €Q,. Thus F € c'(rfg)
and F, € C"~'(Q) as required. []

We now show that the loss of derivatives given by Theorem 3.2 is optimal;
thus in general f € C™~'(E) does not imply F € C’(2), and f € C"*'(E)
does not imply F € C"*'(Q;) unless n = 1. Consider the special case when

foxiee )= S o), (38)

where ¢:I/—>R and I is an open interval (possibly unbounded). Thus
f: E=1I1"->R. Let F = F, be given by (3.2) and (3.8).
THEOREM 3.8.
o€ C™(I) ifandonlyif F € C"(Q).

The proof of Theorem 3.8 is based on the following lemmas.
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LemMA 3.9. If ¢ is a polynomial then for all t € I and r=0,1,2, . . .,

d"e(t)y (=) (nr)! yp( n(n-=1) .
@ = an as;("”_zl_‘z""”)‘

39)

Proof. Suppose that ¢(7) = 2_?-0‘}"‘ is a polynomial. We use Newton’s
equations
a,(x) + §,(x) =0,
ay)(x) + §\(x)a,(x) + 28,(x) =0,

a,(x)+ Sy(x)a,_(x)+ --- +nS,(x)=0,
ik (X)+ S)(X)8py (X)) + -+ + Sy(x)a(x) =0,
where zrj(x)‘tfz’,.'_lx{. It follows from these equations that F(S,,..., S,) is a

polynomial and that only the sum ¢, >7_,x/"" contributes a term in §,/, namely
(= 1Ync,,. Therefore

qu,{o) - (—l)r(ﬂl‘)! IF
ar™ n-r! 0S,

0,0, ...,0). (3.10)
Nowlett#0,0(r)=¢(t +7),e=(1,1,..., 1). Then

E:le(xi) = ,-g ((x + te),)
= F(S,(x+te), ..., S,(x+ te))
= F(S,(x) + 1S,(€)s - . ., Sy(x) + - -+ + 7).

Applying (3.10) we obtain (3.9). []

LemMA 3.10. _Let I be a bounded open interval. Then the map T : ¢+> F, from
C"(I) into C"(2;s) is continuous.

Proof. T is clearly linear. We show that T has closed graph. Let ¢, > ¢ in
C™(I)and F, > F in C'(Q;.). Let 0, 2> 0 in £,..
_ Then o, = S(x;) for some x;, € I", and we can suppose that x , = x in
I", and thus that ¢ = §(x). Hence

F(o)= Jl_l‘_n;lo F@(qj) = Jl_l_’n;lo iglﬁ'(xtj)r') = igl d(x;) = F.,.(U)_

Hence F = F, and T is continuous by the closed graph theorem. []
LemMa 3.11.  If ¢ € C™(I) then (3.9) holds for all t € I.
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Proof. Without loss of generality we can suppose [ is bounded. Let
¢ € C*2(I) and let {9} be a sequence of polynomials converging to ¢ in cm ().
By Lemma 3.9 ¢; satlsfles (3.9). Passing to the limit using Lemma 3.10 we obtain

(3.9) for¢. [
Proof of Theorem 3.8. Let ¢:I—>R with F = F, € C’(Qp). Since
ne(t)= F(nt, ..., 1")
it follows that ¢ € C(I). Let p be a mollifier; i, p€ C*(R), p> 0,

[ap(t)dt =1, suppp C (—1,1). Define p (1) = € ~1p(t/¢€) for € >0. Let J be a
bounded open interval with J C /. For € > 0 sufficiently small and 1 € J let

(b 9)(0) = [ p(m)o(t = 7).
Then if x € J"

Fp.(S(x)) = 2  Jpnex =y

=fnpe(T)F¢(2,.(x .2 (%~ ")(-"f"’)"")dT

i%j
= [PMELSi(x) = mm, -, Sy(x) + e )
Thus Fﬂ.w € Cr(ﬁ_;l) and

OF OF
Pt &
W(SUHHS,,)-J;&(T)W(SI— nt,...,S,+---)dr

for all S=(S,,...,S,)EQ,.. Let v € Cg°(J). Then from Lemma 3.11 we
deduce that

(=hn-r!

(! fdr”(pt ®)()o(r) dt

o'F,
=J;_Lp((f)ﬁ;ﬁi(n(r — 1)y (1= 7)")0(t)drdt,

and hence that

COE [ o= o e

oF, o drd
ELLp((;—T)W(m,...,T yo(1)dr dt.
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Passing to the limit using standard results for mollifiers we obtain

( l)(u+l}r
(nr)!

Since v is arbitrary we deduce that

t
f@() d:()d faS’("‘ L") - o(f)dr.

_(—l)’(m»)! IF
a0 = " ey

(nt,...,t")  in2'(J). (3.11)

Since J is arbitrary and the right-hand side of (3.11) is continuous on I it follows
that ¢ € C™([/) as required. [7]

4. Radial functions. In this section we consider functions g:R"— R which
are invariant under the orthogonal group O(n); i.e., g( Ox) = g(x) for all x €R",
Q € 0O(n). Any such g can be written in the form

g(x)=G(|x)) 4.1)

for some G : [0, o0)— R. We extend the domain of G to R by requiring that G be
even; i.e., G(p) = G(—p) for all p ER.

THEOREM 4.1. Let r > 0. Then g € C'(R") if and only if G € C"(R).

Proof. Let g€ C'(R"). Let e €R", |e| = 1. Then G(p) = g(pe) for all p ER,
and hence G € C’(R). Conversely, let G € C'(R) be even. Then ('i,(p)rli—r

=0 D'G(0)(p’ /j!) contains no odd powers and consequently g,(:r)d;f G.(|x]) is
smooth. Therefore by subtracting G, from G we can without loss of generality
suppose that D/G(0) =0 for 0 < j < r. Since |x| is smooth for x # 0 it follows
from the chain rule that g€ C"(R"\{0}). It is therefore sufficient (using
Proposition 2.2 or a direct argument) to show that D“g(x) = o(|x|"~/*) as x>0

for 0 < |a| < r for any function g(x) = G(|x|) with G € C"(R) and D/G(0) =
for 0 < j < r. We prove this by induction on r. The case r = 0 is trivial. Suppose
that the result is true for r — 1 and that G € C"(R), D/G(0) =0 for 0 < j < r. By
the induction hypothesis DAG'(|x|) = o(|x|""'~!A), 0 < | B| < r — 1. Also, it is
easily proved that DY(x/|x|)= O(|x|~'"). Since Dg(x)= G'(|x|)(x/|x]), it
follows that if 0 < |a| < r then D°(x) is a finite sum of terms D”G(|x|)
D(x/|x|) with | 8| + |y| = |a| — 1. Thus D°%(x) = o(|x|"~'*!) as x —>0. Finally
D%(x) = G(|x|) = o(|x]") by Taylor’s theorem, which completes the induction.
O

Next we consider Hélder continuity. If € C R" is open, k > 0, 0 < a < 1, we
define C**(Q) to be the subspace of C*() consisting of functions whose kth
order partial derivatives are locally Holder continuous with exponent a in €.

TueoREM 4.2. Let r>0, 0<a<1. Then g€ C™*(R") if and only if
G € C™(R).
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Proof. That g € C"*(R") implies G € C"*(R) follows as in Theorem 4.1. Let
G € C%*(R). Then if D C R" is compact and x, y € D,

lg(x) = g =1G(Ix]) = G(IyDl < ClIx| = IyI* < Clx =yl
so thatg € C**(R").If G € C"*(R) and x, y € D with |x| <|y] then

|Dg(x) — Dg(y)l =|G"(Ix]) -I%I -G'(Iy)) ﬁl"

<1G'(Ixl) - G'(IyDl + |G'uy|)|\ o l—j,’l\

< clx—ypr+cpr 222

¥l
< Clx = yl%,

where we have used the fact that G'(0) = 0. Hence g € C"*(R"). We complete
the proof by induction. Suppose the result is true for r — 1, where r > 2. Let
G € C"*(R"). By Theorem 4.1, g € C*R") and
, G'(|1x]) det
Ag(x) = G"(Ixl) + (n — 1) —7— =T(Ix])-

Ix|

Since
T(|x]) = G"(|x|) + (n - I)L""G'mxndt

we have that T € C"~2%(R), that T' is even, and hence I'(| - |) € C r=22(R") by the
induction hypothesis. By the regularity theory for Poisson’s equation (see Gilbarg
and Trudinger [1977)) it follows that g € C™*(R"), as required. []

5. Isotropic functions. Let S"*" denote the n(n — 1)/2-dimensional vector
space of real, symmetric nXn matrices with inner product {4,B)=
Gj=14;B;. Let E C S"*" be open and invariant under SO(n); ie., if A € E
and Q € SO(n) then QAQ” € E. Let Ty denote the set of diagonal matrices
belonging to E. We regard T as a subset of R". Clearly I'; is open. A function

h: E—R is said to be isotropic if
‘h(QAQT)=h(4) forall AE€E, Q€ESO(n) (5.1)

It is well known that A is isotropic if and only if there exists a symmetric function
H :T—R such that

h(A) = H(o,(A), - . ., 0,(A)), (52)

for all A€ E, where the v(A4) are the eigenvalues of A. Of course
H(x,,...,X,)=h(diag(x,, ..., x,)) for all x= (X455 X,) ETg, and this



714 J. M. BALL

shows that h € C'(E) (resp. h € C"*(E)) implies that H € C"(T';) (resp.
H € C"*(T'g)). To obtain results in the reverse direction we first note that if
H € C'(I'y) then h € C"(E,), where E, is the open set consisting of those 4 € E
whose eigenvalues are all different; this is because the eigenvalues v,(A4) are
smooth functions of 4 in E,. The subset M = {4 € $"*": v, (4) = v;(A4) for
some i # j} is closed and sparse, since it is the zero set of the discriminant

2
H (vi(4) - v(4 )|
I<i<j<n
which is a symmetric polynomial function of the v; and is thus expressible as a
polynomial in the entries of 4. To prove that h € C'(E) it therefore suffices by
Proposition 2.2 to show that lim,_,, ,cz D’h(A) exists for all BEENM
= E\E, whenever 0 < |j| < r.

Let H € C(T'z). The set of eigenvalues of A4 varies continuously with 4, and
since H is symmetric it follows that # € C(E). The same argument shows more,
namely that if a sequence of symmetric functions H; converges uniformly to H
on compact subsets of I'; then the corresponding h; converge uniformly to 4 on
compact subsets of E.

Let H € C'(Ty). For A € E, we have that

Dh(A4) = é H (v(A)) Dv,(4), (53)
i=1
where v(A)E—if(v,(A), - .., 0,(A)). We use the following well-known lemma.
LEMMA 5.1.
Do, (A) = P,(A) (54)

Jorall A € S"*"\M and i=1, ..., n, where P,(A) denotes the projection onto the
i™ eigenspace of A.

Remark 5.2. We regard P;(A) as an element of $"*", so that P,(4)x = (x,
e,(A))e;(A) for x € R", where ¢,(4) denotes the ith unit eigenvector of 4 and
(', ) the inner product in R". Equivalently, P;(4) = ¢,(4) ® ¢,(4). We identify
Z(8"",R) with $"*", so that Du;(4) is the unique n X n symmetric matrix
satisfying

Lo (4 + tB)|‘-o= (Dv,(A),B).

Proof of Lemma 5.1 (cf. Serrin [1959]). Let 4 € S"™*"\M, B € §"*",
Q € O(n). If the eigenvalues are ordered by magnitude then

-‘%o,-(QAQT+ tB)|‘_0= -‘%u,-(A +107BQ) .
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and so Dv,(QAQ7) = QDv,(A)Q". Also we have that P( QAQT) = QP(A)Q".
It is therefore sufficient to prove (5.4) when 4 = diag(a,, . . -, a,) and a; # g; if
i # j, and we can take (e;(A)} to be the standard basis {e;} of R". Fix j and let Q
satisfy Qe; = —¢;, Qe, = ¢, for k#j. Then QAQT = A and hence (QDv,(4)
or ik = —(Dv;(A))y = (Do, (4 ))jx When j # k. Therefore Dv;(A) is diagonal. But
if B, = 8,8, then

(Do (A)),= % (4 + rB)‘

=0

-4 =8
dr(af+:3,.,)|'_0 8-

Hence Dv,(4) = P,(A) as required. []
It follows from (5.3) and Lemma 5.1 that if A = diag(a) € S"*"\M then
Dh(A) = diag(H \(a), - - -, H ,(a))- (5-3)

Let D C S"*" be open with D C E. Let {H_;} be a sequence of symmetric
polynomials converging to H in C 1(Z) for every open Z with Z CT'z: (Without
the requirement of symmetry the existence of such a sequence ¢ (v, - - - » v,) is
standard. A symmetric sequence is obtained by defining

1
H(ﬂ(ul s s D)= 3 gcpu)(v,m s o Unm))

where the sum is over all permutations = of (l,...,n).) Define h;(A)
= H;(v\(4), ..., v,(A4)). Then h; isa polynomial. By (5.5)

Dhy,(A) = Qdiag(H;(v(4)), - - - H(ﬁ.n(”(A)))QT'

where A = Qdiag(v(4))Q7 and Q € SO(n), and hence (since M is nowhere
dense)

"Dh(j] - Dh(k) I C(D;S$""") < CHHU; - H(k) Il aTp) -

But h;, = h uniformly on D. Therefore h, is a Cauchy sequence in C (D) and
hence h € C (D). Since D was arbitrary we have shown that h € C Y(E).
Let H € CXT';). For A € E, and B € $"*" we have that

dl " dzvf
4_h(A4+1B)| = H{o(4))—5(4+1B)
dr* 0 =1 dt

t =0

" dv; dt?j
+ 3 Hfo(4) G (4 +1B) G A+ B)

ij=

=0

(5.6)
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LEMMA 5.3. Let A = diag(a,,...,a,) € E,, B € S"*". Then

—3 (4 +1B) _22m. (5.7)

=0 J=i

Proof. Fix i and A. We have that

n

= E ‘{J‘ku ‘Bjk Brx

=0 JSkrs=1

d%,
?(A +1B)

for certain coefficients a,,, with %krs = @y =,y . By choosing Q as in the proof
of Lemma 5.1 it is easily shown that @y,s = 0 unless {j,k,r,s) consists of two,
possibly equal, pairs of integers. One of these pairs is {i, i}, since if B, =0 when
I'=iorm=ithen v;(4 + tB) is an eigenvalue of 4. Choosing B diagonal shows
that a;,, = 0, and thus

d™,
-;';2_(,4 +1tB)| = Z‘chyB,j

t=0 JFi

for some constants ¢;- To compute ¢; we can without loss of generality take n = 2,
i= l, j=2 and B” = Bnﬂo, Bnﬂ BZI = 1. Since ) + Uy =4, + a,, v,
= a,a, — 1>, we obtain easily that ¢, =2/(a, — a,), as required. []

Remark 5.4. Formulae (5.4) and (5.7) are well-known results of perturbation
theory (see, for example, Kato [1966 Chapter II]), but we have given elementary
proofs to make the exposition self-contained.

Substituting (5.4) and (5.7) into (5.6) we deduce that if 4 = diag(a,, . .., a,)
€ E, and B € §"*" then

d*h S
p At = Elﬁ_g(a)s,.,,sjﬁ 23y B;B;. (58)

H (a) - H (a)
=0 ij= i>j -9
To prove that h € C*(E) it suffices to show that, given any A, € E, there exists
€ = €(A4g) > 0 such that h € C*(B,(A4,)), where B,(A4,) denotes the open ball in
§"*" with centre A, and radius €. Let 4, have eigenvalues a2 - >a,LetN
be a closed ball contained in T'; with centre a =(ay,...,a,) and positive
radius. Choose € >0 small enough so that if 4 = Qdiag(a,,...,a,)Q7
€B,(Ao)\M with Q €SO(n)anda, > - - - > a, thena=(a,,...,a,) € N and
|a; — @] > € whenever a; # a;. We deduce from (5.8) that for such an A4

t=0 Byj=

j_:g!(A + IB) = E”:I Hl}(a)( QTBQ)H( QTBQ )J}"

H (a) — H ;
+22 M(gng)y(QTBQ)g

i>j a; —
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for all B € §"*". If o; # «; then

H (a) — H (a)
AT TSR Hll ~ions s
4 a,- g < Ce| "C(N)
while if a; = a;, i > J, then
H (a) - H (a)
a;,—a
1
=U(; (H;— Hy)a,, - . V@ ta+ (1= 08,85,y

X ooy ta+ (11— 08,8, - - , a,)dt

< CllH |l cxny -
Hence
ID*(A)(B,B)|| < Cl|H || cxm I BI (59)

Now let {H,} be a sequence of symmetric polynomials converging to H in
C¥N). Applying (59) to H, — H, we deduce that the corresponding
sequence h;, is Cauchy in C*(B,(4,)), and hence that h € C %(B.(A,))- This
completes the proof that h € C*(E).

We sum up our results so far.

THEOREM 5.5. Letr=0,10r2. Then h € C'(E) if and only if H € C'(Tg). If
A = Qdiag(a,, . . .,a,)Q" € E with Q € SO(n) and a, # a; for i # j then

Dh(A)(B)= ﬁ:lH.,{a)( 0"BQ"), (5.10)
for all B € S™" if H € C\(Tg), and

DU(AYB.B) = 3 H (a)(Q"BQ),(Q7BO);

=

H(a)— H
+22_r{?_-_a‘i(fl(QTBQ)y(QTBQ)U (5_”)
i>j i i

for all B € S™" if H € CXTy).

Remark 56. It is natural to conjecture that h € C'(E) if and only if
H € C'(Ty) for any r, but a proof of this has eluded the author. We have
already noted that h € C’(E) implies H € C"(T'g) for any r. On the other hand,
if H € C’(T'y) then given any A,B € §"*" the map t—>h(A + tB) is C" for
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sufficiently small [¢|; this follows from the fact that the eigenvalues v, (1) of
A + tB can be ordered so as to be smooth in ¢ (see Rellich [1969], Kato [1966]),
and hence 1+ H(v,(2), ..., v,(f) is C". Unfortunately the eigenvalues of a
symmetric matrix A cannot in general be ordered so as to be C” in A, even if
n=2,

THEOREM 5.7. Let 0< a < 1,r=0,1,2,... . Then h € C"*(E) if and only if
H e C™(Ty).

The proof of Theorem 5.7 follows the idea of the proof of Theorem 4.2, and
requires a number of preliminary lemmas.

LEMMA 5.8. There exists a constant C such that if A,B € S"*" have
eigenvalues a; > a, > - - - > a, and b, > b, > - - - > b, respectively then

la—b| < C||4 - B|, (5-12)
where a =(a,,...,a,), b=(b,,...,b,).

Proof. By approximation it is sufficient to prove (5.12) when the a; and the b,
are distinct. Consider the matrix A () = t4 + (1 — t)B. The discriminant of A (0
is nonzero for ¢ = 0, 1, and therefore vanishes for at most finitely many ¢ € (0, 1);
therefore the eigenvalues v,(¢) > vy(f) > - - - > v,(¢) are distinct except for at

most finitely many 7 € (0, 1). But when the v,(¢) are distinct we have by Lemma
5.1 that |,(7)| < C||4 — B|. Therefore

la — bl <J:J{:(t)idt< 4 - B
as required. []
LEMMA 5.9. Let H € C*(T;), 0< a < 1. Then h € C**(E).
Proof. 1f ||A|,||B|| < M then
Ih(4) = h(B)|| = ||H(a) = H(b)|| < Clla—b|* < C||4 - B||"
by Lemma 58. [
LEMMA 5.10.  There exists a constant K such that if A = Q diag(a,, . . ., a,)Q7

€ S"*", where a,>a,>--->a, Q€EO(n), and B=diagb,,...,b)
€ S"" with by > by > - -+ > b, then

2 |Qlla—a| < K||4 - B||.

i)
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Proof. We have that

> 19ylla— a| = C|| Q diaga — (diaga) Q||

i%j
= C||A — diagal||
< C[||4 — diagb|| + ||/diaga — diagb|| ]
< K||4 - B,
where we have used Lemma 5.8. []
LEMMA 5.11. Let HE C"*(Tg),0< a < 1. Then h € C"(E).

Proof. Let A,B € $"*" with ||4]|,||B]| < M. Without loss of generality we
may suppose that B = diag(b,, ..., b,) is diagonal with b, > b, > -+ 2 b,
and that 4 = Qdiag(a,, ..., a,)Q" with Q €SO(n) and @, > a, > - - - 2 a,.
Then by (5.10) and the Hélder continuity of DH,

| Dh(4) — Dh(B)||
= || Qdiag(H (a), ..., H,(a)) Q" — diag(H y(b), - - -, H, (o)l
< ||diag(H ,(a) — H (b}, - - - » H ,(a) — H (b))l
+ || Qdiag(H (@), . . ., H,(a)) Q" — diag(H \(a), - - - , H ,(a))l
< C[lla - b||* + || Q diag(H y(a), - - - » H ,(a))
— diag(H \(a), - - ., H ,(a))QIl]

- C[ la— bl + 3 | Q) H (a) - H,..-(a)l]

ie=j
< c[ta=bir+ Z10)lla - af |

isj

By Lemmas 5.8 and 5.12 we deduce that

1Dh(4) - DA(B)I < [ ta = i+ £ @)l o] |
i#=j
< C|4 - B|~
Together with Lemma 5.9 this proves that h € C"*(E). []

Proof of Theorem 5.7. 1f h € C"*(E), then clearly H € C"*(I'g). We prove
by induction on r that H € C"*(T'z) implies h € C r%(E). The result is true for
r=0,1 by Lemmas 5.9 and 5.11. Let » > 2; suppose the result is true for r — 1,
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and let H € C"*(T';). By Theorem 5.5, h € C¥E) and we have that if

A = Qdiag(a,, ..., a,)Q" with the g, distinct, and if B € $"*", then
d? -
~—h(A +B) = 2 Aap B, By - (5.13)
dl'z =0 nsab=1
where
H (a ) H(a)
Armb 2 Hﬂ(a)QﬂQﬂQanb;"_ 22 —_—'—* QnQ.ngQb;
ij=1 izj 4 J'
Note that
n n H(a)— H ;(a)
gi(a) +2 —_— i 5.14
2 A= B (@) 423 TS (5.14)
and
> A= > H(a). (5.15)
=1 i=1

We compute the second order partial derivatives of A, regarded as a function of
the n(n — 1)/2 variables 4, 1 < j < i < n. By (5.13)

?h() =~
=S4, 5.16
,‘gl a Aj ,‘2] i ( )
and
Ph(A)
= (Ayy + Ay + Ay + A
E, 842 E,( W i * )
. E:J(Aw + Aw,)
_‘E (Ayy + Ayy) — 22A,,,, (5.17)

Combining (5.14)—(5.17) we deduce that

n Bzh(A)
;2[ BA,%

az(),

b(ay,-..,a,), (5.18)
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where

n H(a)— H;
b(a,,...,a,)= EIH.JJ(“)"' 2._"(%3:{&

i>j i

provided the g; are distinct.

Clearly 8 is symmetric. We claim that § € C"~*%(Ty). Let a =(a, ..., @)
€T, and let N be an open ball in R" with centre a and with radius p >0
sufficiently small so that N C T and inf{|g, — a|:a=(a,,....a,) € N,iandj
such that o; # a;} > 0. Then for a = (a,, . . . , a,) € N we have that

n Hr’ - H.
9(“)=ZIHJ:'(“)+ zj %&
i= i> L

1
+ > L(H_,.,.—H‘g)(a,,...,%,,,raj+(l—r)a,-,aj+,,
i>j

Sy ta+(1-0a,a,,, ... , a,)dt,

and since H € C*(I'y) it follows easily that @ € C"">*(N). A simple
compactness argument now shows that # € C'"2%(T,). By the induction
hypothesis # € C"~>*(E) as a function of 4. By the regularity theory for
Poisson’s equation we deduce from (5.18) that h € C"*(E). This completes the
induction. 0

6. Applications to nonlinear elasticity. Let M"*" denote the set of real n X n
matrices, and writt M"*"=(F € M"*":detF >0}, S}*"={(Fe€S"*":F
> 0}.

We are concerned with a homogeneous elastic body having stored-energy
function W: D—R, where D is an open subset of M *" invariant under SO(n)
(that is QF, FQ € D whenever F € D and Q € SO(n)). The assumption of
homogeneity is made only for simplicity. The function W is defined with respect
to a fixed reference configuration in which the body occupies the bounded open
subset 2 € R". The significance of W is that the total energy stored in a
deformation x : @ > R" is given by

E=LW(V’x(X))dX. (6.1



DIFFERENTIABILITY PROPERTIES 723

The above development is standard; the reader unfamiliar with nonlinear
elasticity can consult Truesdell & Noll [1965] for a more complete discussion.

We will apply the results of sections 3 and 5 to relate the differentiability
properties of W, ®, ©, h, H and H. We make use of the following technical
lemmas.

LEMMA 6.1. The mapping C+> C'/? of 7" to itself is C™.

Proof. Define f: $"*" X §"™*"— §"*" by f(U,C) = U?— C.Clearly fis C*
and f(C'/?,C) =0 for any C € S}*". Also

Dyf(U,C)(A)=UA + AU, A€ S"™".

Suppose that U € §7*", so that U= QGQ" for some Q € SO(n) and some
G = diag(d,, . . ., d,), where d,>0 for 1 <i<n. For G,€S8"" write H
= Q7G, Q. Then the equation

GW+ WG=H

has a unique solution W € §"*" given by W, = H,/(d, + d)). Therefore the
equation UA + AU = G, has the unique solution A = QWQ', and hence
D, (U,C) is an isomorphism. By the inverse function theorem there is a unique
C* solution U(C) of

f(U,C)=0, U(c,)=c\”?

in a neighbourhood of C, in $7%". The uniqueness of C'/? and the continuity of
U(C) show that U(C) = C'/2 It follows that C+> C'/*is C* in S1*". [J

Remark 6.2. A similar proof is given by Gurtin [1981] and attributed by him
to W. Noll.

LemMA 6.3. The mapping U(F)=V{F'F from M7*" to S}*" is C*. If
F = diag(a,, . . . , a,) with all a,> 0 and if G € M"™" then the first and second

derivatives with respect to t of U l[!‘)d=ef U(F + tG) at t =0 are given by

v(0),= 2%+ 5% (6.12)
©; a+a '
and
.. 2 n . .
U(0),= ata E’] [ GGy — U(0),U(0),] (6.13)
respectively.

Proof. The mapping U is a composition of Fi—> F TF and { , and is therefore
C* by Lemma 6.1. Expanding U(¢) by Taylor’s theorem about 7 =0 we have
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that
. 2 . 2
(diaga +10(0)+ 5 00)+ a(fz))

= (diaga)’+ 1(G"diaga + (diaga)G ) + ’G’G. (6.14)
Equating coefficients in (6.14) gives
U(0)diaga + (diaga)U(0) = G "diaga + (diaga)G
and
4[ U(0)diaga + (diaga) U(0)] + U(0)*= GG,

and (6.12), (6.13) follow. []

THEOREM 6.4. Let W: D —R be isotrapic, and let ® be given by (6.7).

(i) Let r=0, 1,2 or co. Then W € C'(D) if and only if ® € C"(T'y).

(i) Let 0<a<l, r=012,.... Then W€ C"(D) if and only if
® e C"(Tg).

(iii) Letr F = diagv € D, where v=(v,,...,v,) with all v;>0, and let
GeM™"

Then if ® € C'(Ty)

DW(F)G = 3 ®(v)G,, (6.15)
i=1
and if ® € C*(T'y) then
- 0,® (v) — 1@ (v)
DiW(F)(G,G)= 3 @,v)G,G;+ > — (G;)
=1 i v — Y
'¢1 - |'¢

+ 3 LA 200 6, (6.16)

iwj v - Uj

Proof. By Lemma 6.3, W € C'(E) (resp. C"*(E)) if and only if W € C'(D)
(resp. C"*(D)). Thus (i) and (ii) follow from Theorems 5.5 and 5.7. (The case
r= o0 in (i) is a consequence of (ii).)

Let ® € C'(T';). Then by (5.10) and (6.12),

d

Dy W(F)G = £ W(F +1G)

=0

= E ® (0)Us(0)

= 'gl q:'r( U) GH '
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Let ® € C*(I';). Then by (5.11) and (6.13),

2
D}W(F)(G,G) = % W(F + 1G)

t=0

= 3 @ (v)U,(0) + D W(diagv)(U(0),U(0))

i=1
2
(G)2 _ u‘-G’j + laf(l:“
s o+

@ (v) - (D..r{n) )( uiGaj + '-}G:;; )2

v Y vty

_5 2O

izj U

+ > ®(0)G, G+ 2 (
i inj

and an easy calculation gives (6.16). []

The formula (6.16) has useful applications to the theory of constitutive
inequalities.

THEOREM 6.5. If W € C*(D) is isotropic then W satisfies

DW(F)(G,G)= 2 TW(F)

j"..k‘l m Gkaf> O (6.17)

for all F € D and nonzero G € M"™" if and only if ® given by (6.7) satisfies

> @ (0)AN>0  forall vE€T, and nonzero AER", (6.18)

ij=1
@ (0) ~ @ (v) o .
__.ﬁ—_ >0 foralli#jandallo=(v,,...,0,) € gwithv,# v,
(6.19)
and
D (0)+ P 0)>0 forall i#] andall vETg. (6.20)

Remark 6.6. 1f T is convex then (6.19) follows from (6.18), since if i <jand
v € T with v; # v; then (6.18) implies that

(@40) ~ B0~ 0) = 5 3 (Pu(0) = Pu®)(v ~ 8) >0

def

where 5=(v, ..., 01U Ois1s - -+ Y13 Gpis - - - s Up)-

Remark 6.7. Suppose that D = M"*", so that Ty = {a=(a,,...,q,) € R":
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a; > 0 for all i}. Then if (6.18) and (6.20) hold it does not follow that W can be
extended to a convex function on M"*" = convex hull of M}*". For example, let
n=2and

(v, ,0,) = o] + 02 + av,v, .

Then (6.18) and (6.20) hold if and only if |a| < 2. However, if 0 > a > —2 then
®, and @, can be negative, so that by a result of Hill [1970] (see also Ball [1977])
W has no convex extension.

Proof of Theorem 6.5. By (6.17),

D*W(F)(G, G) _uE* ® (v)G;

+ é > [(a + By)(Gy)* + (o — B;) GGy (621)

i#=j
where if v; # v,
_20-0) 00+ OS0)

v v—v i gty

The first sum in (6.21) is positive definite in the G; if and only if (6.18) holds.
The second sum in (6.21) is positive definite in the G;; (i # /) if and only if a;; > 0
and B; > 0. When v, = v; then a; = ®,(v) — P, (v), which is positive if (6 18)
holds as then ®,(v) =@, () >0 and P, (0)®; (v) > @2 ;(v). The result follows.

O

A stored-energy function W € C*(D) is said to be strongly elliptic if

d2 W(F ® b E 32W F
a_ +ta =
dr* ( ) (=0 ikl aF Fy

a;ba b,> 0

whenever F € D and a,b € R" are nonzero. Two well-known consequences of
strong ellipticity of an isotropic W follow immediately from (6.16). These are the
strengthened tension-extension inequalities

q),il{v) > 0& l - ]! ey (6.22)
and the Baker- Ericksen inequalities

0@ (v) = 5@ (v)

ﬁ;"l}-

>0 if u#y. (6.23)

The inequalities (6.23), which were first derived from strong ellipticity by Hayes
[1969], are in fact consequences of the weaker condition of strict rank 1
convexity (see Ball [1982]).
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The necessary and sufficient conditions for strong ellipticity in the case n =2
due to Knowles & Sternberg [1977] also follow easily from (6.16).

For related work on weakly closed sets and rank 1 convexity see Aubert &
Tahraoui [1982].

Finally we turn to the representations (6.8)-(6.11). Let D’ = (FFT:F€ D)
C §"*" Then Tp. = ((v},...,v):v=(v),...,0) Elg}.

THEOREM 6.8. Let W:D—R be isotropic, and let h,H be given by (6.9),
(6.10).

(i) Let r=0,1,2o0r co. Then W € C'(D) if and only if h € C"(D’) and if and
only if HE C"(T'p).

(i) Let 0<a<l1, r=0,12,.... Then W € C"*(D) if and only if
h e C™(D’) and if and only if H € C™*(T'p).

Proof. This follows immediately from Theorems 5.5,5.7, and 6.4 and the fact
that the map (v,,...,0)—(0f,...,0p) from T to Tp is a smooth
diffeomorphism. [] '

In contrast to ®, h and H the functions © and H given by (6.8) and (6.11) are
in general less differentiable than W.

TuEOREM 6.9. Let W: D—>R be isotropic, and let ® and H be given by (6.9)

and (6.11) respectively. Let r =0,1,2, ... . If W € C"(D) and T is convex then
def

© € C'@) and fi € C"(@), where =0, ¥ = Q.
_ Remark 6.10. Theorem 6.9 is optimal. Let / be an open interval with
I c(0,00),let D= {F € M7™": each principal stretch v; € 1} and suppose that

vy, ... 0,)= zltp(v,-),
where ¢: /- R. Then © € C"*'(@) (equivalently, H e cr'@)) if and only if
é € C™"*"(I) by Theorem 3.8. But then W € Cc"r*Y=1(D) by Theorem 5.7
~and Lemma 6.3.

Proof of Theorem 69. 1f W € Cc™(D) then ®€ C™(Tg), and hence
H € C™(T ). The result follows from Theorem 3.2. O
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